Five lectures on

INTRODUCTION TO COSMOLOGY

Dominik J. Schwarz

Universität Bielefeld

dschwarz@physik.uni-bielefeld.de

Doktorandenschule Saalburg

September 2009

Lecture 1: The large picture

observations, cosmological principle, Friedmann model, Hubble diagram, thermal history

Lecture 2: From quantum to classical

cosmological inflation, isotropy & homogeneity, causality, flatness, metric & matter fluctuations

Lecture 3: Hot big bang

radiation domination, hot phase transitions, relics, nucleosythesis, cosmic microwave radiation

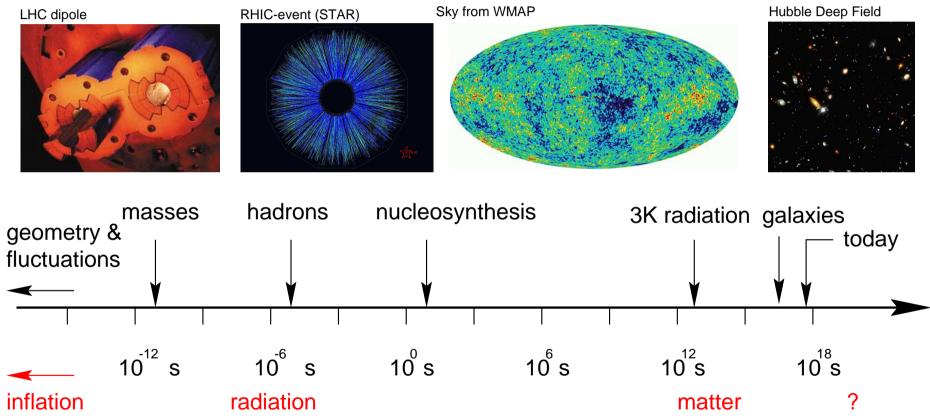
Lecture 4: Cosmic structure

primary and secondary cmb fluctuations, large scale structure, gravitational instability

Lecture 5: Cosmic substratum

evidence and candidates for dark matter and dark energy, direct and indirect dm searches

History of the Universe



Shortcomings of Λ CDM model

observed, but not explained:

- isotropy and homogeneity
- spatial flatness
- $\Omega_\Lambda \sim \Omega_m$ today

Horizon problem

 $\ell_p(t)$ past causal horizon $\ell_f(t)$ future causal horizon

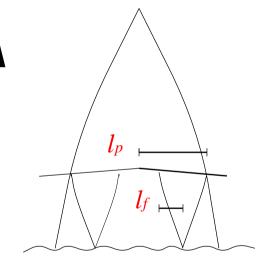
today

 $(\ell_p/\ell_f)(z_{\sf dec})\simeq \sqrt{z_{\sf dec}}\gg 1$ ($z_{\sf dec}\simeq$ 1100)

10³ causally disconnected patches have the same temperature. Why?

photon decoupling singularity

t



Flatness problem

Why is $\Omega_0 = \mathcal{O}(1)$? $|1 - \Omega(z)| = |1 - \Omega_0| \begin{cases} (1+z)^{-1} & \text{matter dominated} \\ (1+z)^{-2} & \text{radiation dominated} \end{cases}$ $\Rightarrow |1 - \Omega(z_{\text{dec}})| = \mathcal{O}(10^{-3}) , \quad |1 - \Omega(z_{\text{GUT}})| = \mathcal{O}(10^{-60}) \quad (z_{\text{GUT}} \sim 10^{30})$

Singularity problem

singularity $(a \to 0; \epsilon \to M_P^4)$ exists, if $\epsilon + 3p > 0$ (strong energy condition; satisfied in matter and radiation dominated universe)

proof: $\ddot{a} < 0$ from

 $-3\frac{\ddot{a}}{a} = 4\pi G(\epsilon + 3p) \qquad (\text{equation of geodesic deviation})$ if $\epsilon + 3p > 0$. Thus, $a \to 0$ for $t \ll t_0$.

N.B. today's cosmological constant cannot change this conclusion

Is quantum-gravity necessary to solve the problems above?

Cosmological inflation

epoch of accelerated expansion in the very early Universe Starobinsky 1979; Guth 1980

$$\ddot{a} > 0 \qquad \Leftrightarrow \qquad \epsilon + 3p < 0$$

since
$$-3\frac{\ddot{a}}{a} = 4\pi G \left(\epsilon + 3p\right)$$

number of e-foldings: $N \equiv \ln \frac{a}{a_i} = \int_{t_i}^t H dt$

Vacuum energy

 ϵ of vacuum is constant, thus

 $\mathrm{d}U = \epsilon \mathrm{d}V = -p\mathrm{d}V \Rightarrow p = -\epsilon$

equivalent to cosmological constant $\Lambda \equiv 8\pi G \epsilon_V$

from $\ddot{a} - \frac{\Lambda}{3}a = 0$ and $\dot{a}_{i} > 0$ follows

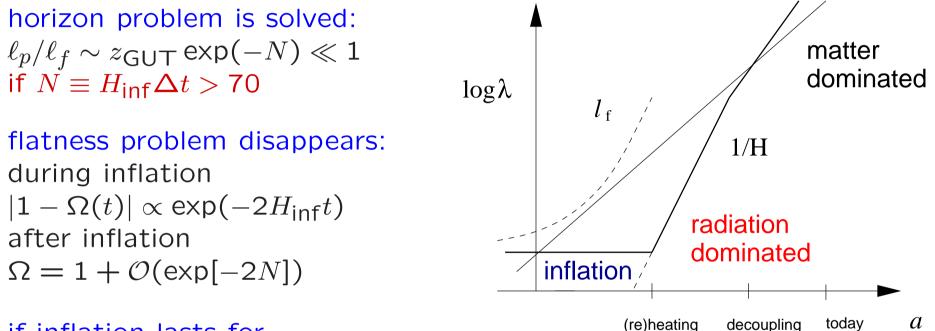
$$a(t) = a_{\mathrm{i}} \exp\left[\sqrt{\frac{\Lambda}{3}} \left(t - t_{\mathrm{i}}\right)\right]$$

exponential growth

 $H_{\rm inf} \approx \sqrt{\Lambda/3}$

$$N = \sqrt{\Lambda/3}(t - t_i) \sim (m_{inf}/m_{Pl})^2(t/t_{Pl}) \gg 1$$
 typically

Causality and flatness



if inflation lasts for at least 70 e-foldings

prediction 1: spatially flat Universe; $\Omega_0 = 1$

Inflation: Scenarios — History

Starobinskii 1979	R^2 -inflation (quantum gravity corrections)
Guth 1980	old inflation (first order GUT transition) never stops, because bubbles do not merge
Linde 1982 Albrecht & Steinhardt 1982	new inflation (flat potential, slow roll) needs special initial conditions
Linde 1983	Chaotic inflation (slow roll) arbitrary $V(\varphi)$, random initial conditions $\varphi_i, \dot{\varphi}_i$
La & Steinhardt 1989 Linde 1993	(hyper-)extended inflation (two scalar fields) hybrid inflation (two scalar fields)

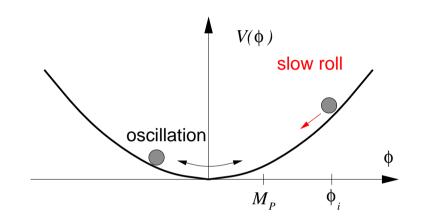
Chaotic inflation: slow roll

simple example $V = \lambda \varphi^4/4$, $\lambda \ll 1$ a single scale: $M_P \sim 10^{19} \text{GeV}$

equations of motion:

$$H^{2} = \frac{8\pi}{3M_{P}^{2}} (\frac{1}{2}\dot{\varphi}^{2} + V)$$
$$\ddot{\varphi} + 3H\dot{\varphi} + V_{,\varphi} = 0$$

generic initial conditions at $t \sim t_{\mathsf{P}}$: $\dot{\varphi}_{i}^{2} \sim M_{\mathsf{P}}^{4}$ and $V(\varphi_{i}) \sim M_{\mathsf{P}}^{4} \Rightarrow \qquad \varphi_{i} \sim \lambda^{-1/4} M_{\mathsf{P}} \gg M_{\mathsf{P}}$ slow roll: motion of φ is slowed down quickly by the Hubble drag $(H\dot{\varphi} \gg V_{,\varphi})$ $\Rightarrow \frac{1}{2}\dot{\varphi}^{2} \ll V$ and $\ddot{\varphi} \ll -3H\dot{\varphi} \qquad \Rightarrow a(t) \propto \exp(H[\varphi(t)]t)$ with $H(\varphi) \simeq [8\pi V(\varphi)/3M_{\mathsf{P}}^{2}]^{1/2}$ and $\varphi(t) \simeq \varphi_{i} \exp[-(\lambda/6\pi)^{1/2}tM_{\mathsf{P}}]$



Linde 1983

Chaotic inflation: end and heating up

Dolgov & Linde 1982; Abbott, Fahri & Wise 1982

inflation terminates at $\varphi \sim M_{\rm P}$: φ oscillates around its minimum

coherent oscillations decay into other particles e.g. Yukawa coupling $\frac{1}{2}g^2 v \varphi \chi^2$ to a bosonic particle χ

$$\ddot{\chi_k} + 3H\dot{\chi_k} + [k_{\text{ph}}^2 + m_{\chi}^2 + g^2 v \varphi(t)]\chi_k = 0$$

might be very efficient due to parametric resonance $\chi_k \sim \exp(\mu t)$ Traschen & Brandenberger 1990; Kofman, Linde & Starobinskii 1994

these decays produce entropy and (re)heat the Universe to $T_{\rm rh}$

 T_{rh} should be high enough to allow baryogenesis (probably GUT scale; in any case $T_{\text{rh}} > T_{\text{nuc}}$)

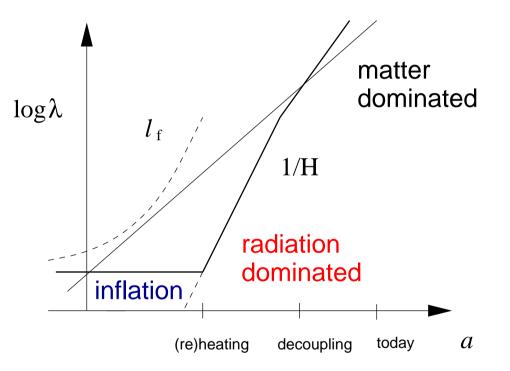
Kinematic considerations

(quantum) fluctuations of energy density and metric

Fourier modes $k = 2\pi/\lambda$

 $\lambda_{\rm ph} \equiv a\lambda$

 $\lambda_{\rm ph} \ll 1/H$ locally Minkowski $\lambda_{\rm ph} \gg 1/H$ no causal physics



Structure formation: quantum fluctuations

accelerated expansion provides energy to produce classical fluctuations from vacuum fluctuations

$$\hat{\varphi}(\eta, \vec{x}) = \frac{1}{a} \int \frac{\mathrm{d}^3 k}{(2\pi)^{3/2}} \frac{1}{\sqrt{2k}} [\hat{c}_k f_k(\eta) \exp(\imath \vec{k} \vec{x}) + \mathrm{h.c.}]$$

with $\hat{c}_k |0
angle = 0$ and $[\hat{c}_k, \hat{c}^{\dagger}_{k'}] = \delta(\vec{k} - \vec{k'})$

 $[\eta \equiv \int dt/a(t)$ conformal time]

$$f_k'' + (k^2 - \frac{a''}{a})f_k = 0$$

subhorizon scales $k_{ph} \equiv k/a \gg H$: harmonic oscillator superhorizon scales $k_{ph} \ll H$: $f_k \simeq a$ rapid amplification of fluctuations

rms amplitude at the moment $k_{ph} = H$: $\delta \varphi(k = H) \simeq \frac{H(\varphi)}{2\pi}$ power spectrum is almost scale-invariant (Harrison-Zel'dovich)

Structure formation: density perturbations

Chibisov & Mukhanov 1981; Hawking 1982; Guth & Pi 1982

fluctuations $\delta \varphi$ induce fluctuations in the metric $(\phi(\eta, \vec{x}), \psi(\eta, \vec{x}) \dots$ metric potentials of longitudinal sector)

$$\mathrm{d}s^2 = a^2(\eta)[-(1+2\phi)\mathrm{d}\eta^2 + (1-2\psi)\mathrm{d}\vec{x}^2]$$
 (longitudinal gauge)

and in the energy density

$$\delta\epsilon(\eta, \vec{x}) = \frac{1}{a^2} (\varphi' \delta \varphi' - {\varphi'}^2 \phi) + V_{,\varphi} \delta \varphi$$

characterise them by a hypersurface-invariant quantity Bardeen 1989

$$\zeta \equiv \frac{\delta\epsilon}{\Im(\epsilon+p)} - \psi$$

conserved on superhorizon scales, if perturbations are isentropic (see lecture 4)

Primordial power spectra

harmonic oscillator leads to gaussian fluctuations, characterised by two-point functions

def: power spectrum $P_Q(k)$ of some observable Q

$$\langle Q(\vec{0}), Q(\vec{r})
angle = \int d(\ln k) j_0(kr) k^3 P_Q(k)$$
 and $\mathcal{P}_Q \equiv k^3 P_Q(k)$

 $Q_{\rm rms} = \sqrt{\mathcal{P}_Q}$ is the root mean square amplitude in the interval (k, k + dk)

historic ansatz: scale-free power spectrum $\mathcal{P}_{\zeta} = A_{\zeta}(k/k_*)^{n-1}$ n = 1: scale-invariant Harrison-Zel'dovich, n - 1: spectral tilt

Density and metric fluctuations

Chibisov & Mukhanov 1981; Starobinsky 1980

prediction 2: existence of density fluctuations that are

a: gaussian distributed

- b: coherent in phase (only growing mode)
- c: close to scale-invariant (slow-roll models)
- d: isentropic (simplest models)

prediction 3: existence of gravity waves with properties a, b and c

prediction 4: no rotational perturbations at k < aH

Slow-roll inflation

attractor in many inflationary scenarios

dynamical (slow-roll) parameters: $\varepsilon_{n+1} \equiv d \ln \varepsilon_n / dN$ and $\varepsilon_0 \equiv H_i / H$ $\varepsilon_1 = \dot{d}_H$ Schwarz, Terrero-Escalante & Garcia 2001

$$\varepsilon_1 \simeq \frac{M_{\mathsf{P}}^2}{16\pi} (V'/V)^2, \quad \varepsilon_2 \simeq \frac{M_{\mathsf{P}}^2}{4\pi} \left[(V'/V)^2 - V''/V \right], \quad \dots$$

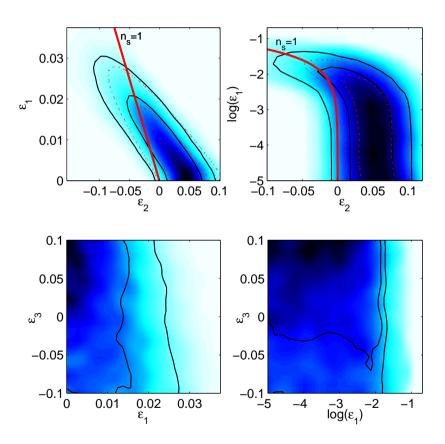
slow-roll inflation: $|\epsilon_n| \ll 1 \ \forall n > 0$

density perturbations
$$\mathcal{P}_{\zeta} = \frac{H^2}{\pi \varepsilon_1 M_P^2} \left(a_0 + a_1 \ln \frac{k}{k_*} + \frac{a_2}{2} \ln^2 \frac{k}{k_*} + \cdots \right)$$

gravitational waves $\mathcal{P}_h = \frac{16H^2}{\pi M_P^2} \left(b_0 + b_1 \ln \frac{k}{k_*} + \frac{b_2}{2} \ln^2 \frac{k}{k_*} + \cdots \right)$

with $a_i = a_i(\varepsilon_n), b_i = b_i(\varepsilon_n)$ and k_* pivot scale at which ε_n are evaluated Stewart & Lyth 1993; Martin & Schwarz 2000; Stewart & Gong 2001; Leach, Liddle, Martin & Schwarz 2002

Scale of inflation and slow-roll parameters



Martin & Ringeval 2006

CMB data from WMAP

from upper limit on tensor perturbations and the amplitude of scalar perturbations: $H < 1.6 \times 10^{14} \text{ GeV} = 1.3 \times 10^{-5} M_{\text{P}}$ $\varepsilon_1 < 0.022$

from deviation from scale-invariance: $-0.07 < \varepsilon_2 < 0.07$

The largest scales — a multiverse?

Does inflation predict isotropy and homogeneity?

classical dynamics:

inflation produces an isotropic Universe for all homogeneous models except Bianchi IX and Kantowski-Sachs models Turner & Widrow 1986

shown for some inhomogeneous models Calzetta & Sakellariadou 1992 counter examples exist, what are generic initial conditions?

quantum dynamics:

large fluctuations modelled by stochastic inflation

 \Rightarrow eternal inflation, multiverse, . . .

Summary of 2nd lecture

cosmological inflation explains isotropy & homogeneity, causality, spatial flatness and seeds for structure formation

inflationary parameters (slow-roll): $H_{inf}, \varepsilon_1, \varepsilon_2, \ldots$ or $A, n - 1, r \equiv \mathcal{P}_h / \mathcal{P}_{\zeta}, \ldots$

at first order slow-roll approximation: $n - 1 \simeq -2\varepsilon_1 - \varepsilon_2, r \simeq 16\varepsilon_1$

what is the fundamental physics of inflation? what is it's scale?