
Spring term 2021 Universität Bielefeld

Seminar “Mathematical Physics”

Here is a list of possible topics for the talks. Each talk should be about 60 minute long and followed
by a question and discussion session.

Variational principles (N.B., May 7): Give a mathematical introduction to variational cal-
culus and give physical examples from classical mechanics and field theory. Suggested references:
[Kna17,Kna18 section 8]

Noether Theorem (S.H., May 14): State and prove the Noether Theorem regarding continuous
symmetries and conserved quantities (in both the classical and field theoretical version). Explain why
this theorem is so important in physics. Suggested reference: [Tao06, sec. 1.4]

Introduction to Lie algebras (M.Sc., May 21): Give an introduction to the theory of Lie
algebra over the field of complex numbers. Give a formal definition of an “abstract” Lie algebra and
illustrate it with various examples (gl(n), sl(n) etc.). Define the notion of simple and semi-simple Lie
algebras. Explain Cartan’s criterion for semi-simplicity. Suggested references: [EW06] and [Tao13].

Classification of Cartan–Killing (M.Sp., May 28): Give an overview of the classification of
the simple complex Lie algberas in terms of root systems and Dynkin diagrams. Suggested references:
[EW06] and [Tao13].

Introduction to Lie groups (P.N., June 4): Give the formal definition of a Lie group and
prove that every matrix Lie group (i.e. a closed subgroup of GL(n,C)) is an embedded submanifold
of GL(n,C). Thus, it is a Lie group. For this purpose you should define the Lie algebra associated
to a matrix Lie group and explain the relation with the previous talk. Suggested references: [Hal15,
Chap. 1,2 and 3], [Bak02].

Introduction to Supersymmetry (B.M., June 11): Ask Tim!

Introduction to Random Matrix Theory (N.A., June 18): Give an introduction to Random
Matrix Theory. Focus on the basic ideas to connect the notion of matrices to probability theory and
introduce random matrix models such as GOE. Suggested references: [LNV17], [AGZ09], [EKR15].

Representation of groups Give an introduction to the representation theory of finite groups over
the field of complex numbers. State and prove the theorem of Maschke and explain the classification of
the irreducible representations using the theory of characters. The talk should be illustrated with small
examples (cyclic groups, symmetric groups, etc.). Suggested references: [Ser77] or [FH91].

Young diagrams and representations of Symmetric groups Using the previous talk,
explain that the irreducible representations of the symmetric group Sn are in bijection with partitions
of the integer n. Introduce the notion of Young diagrams and Specht modules. Explain how the
representation theory of the symmetric group is related to the combinatorics of Young diagrams (e.g.
Frobenius character formula, Young’s rule or Littlewood–Richardson rule). Suggested reference: [Ful97].

Spontaneous symmetry breaking Explain the concept of spontaneous symmetry breaking and
state the Goldstone Theorem. Use examples such as spin systems and Higgs mechanism to illustrate the
differences between explicit symmetry breaking, spontaneous symmetry breaking and anomal symmetry
breaking. Suggested references: [Gol61], [Nam60], [Hig64], [vD12], [Wei96, sec. 19 and 21]

Introduction to Padé Approximants Suggested reference: [Zin71].
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