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V.2 Fokker–Planck equation
In this Section, we analyze the Langevin model of Sec. V.1 by adopting a different view of the
dynamics of a Brownian particle in an environment. Instead of focusing on the solution v(t) of the
Langevin equation for a given initial condition, we rather investigate the dynamics of the velocity
probability density f(t, v), such that f(t, v) dv is the probability that at time t the Brownian particle
velocity lies between v and v + dv.

We first argue in Sec. V.2.1 that on time scales larger than the autocorrelation time τc of
the fluctuating force, the velocity is a Markov process. The density f(t, v) thus obeys the usual
consistency equation involving the transition probability, which is recast in Sec. V.2.2 in the form
of a partial differential equation of first order in t, yet involving an infinite number of successive
derivatives with respect to v. Truncating this equation at second order yields the Fokker–Planck
equation (Sec. V.2.3), whose solutions we examine in Sec. V.2.4. Eventually, we repeat the same
analysis in the case of the position of the Brownian particle and its probability density (Sec. V.2.5).

V.2.1 Velocity of a Brownian particle as a Markov process

Assume first that the spectral density of the Langevin force is a white noise, i.e. that its auto-
correlation function is proportional to a Dirac distribution, Eq. (V.3d), or equivalently, that the
autocorrelation time τc vanishes. In that case, we have seen [Eq. (V.26)] that the velocity at a given
instant t and the fluctuating force at a later time t′ are uncorrelated, 〈v(t)FL(t

′)〉 = 0 for t′ > t.
That is, the Langevin force at time t′ has no memory of the past of t′.

Now, if the Langevin force is a Gaussian stochastic process, then so is the velocity of the
Brownian particle. The covariance 〈v(t)FL(t

′)〉 = 0 for t′ > t then means that v(t) and FL(t
′) are

statistically independent for t′ > t.

If FL(t) is a Gaussian process, then its Fourier transform F̃L(ω) is a Gaussian random variable.
In turn, Eq. (V.30) shows that ṽ(ω) is also Gaussian—the proportionality factor 1/[M(γ − iω)]
is a “deterministic” function of ω. After a last inverse Fourier transform, v(t) is a Gaussian
random process, entirely determined by its first two moments.

Since the Langevin equation (V.1) is of first order, with the source FL(t), the velocity shift
between t and t+ ∆t only depends on the velocity at time t and the force in the interval [t, t+ ∆t],
yet is totally independent of v and FL at times prior to t, so that v(t) is a Markov process.

If on the other hand FL(t) and thus v(t) is not Gaussian, or if τc is finite, then the velocity
is strictly speaking no longer a Markov process. Restricting oneself to the change on time scales
much larger than τc—and assuming from now on that FL(t) and v(t) are Gaussian—, v(t) can
be approximated as Markovian. That is, we shall in the remainder of this Chapter consider the
evolution of the Brownian particle velocity on a coarse-grained version of time, and “infinitesimal”
time steps ∆t will actually always be much larger than τc, although we shall consider the formal
limit ∆t→ 0.

Remark: From the physical point of view, the coarse-graining of time actually corresponds to the
experimental case, in which observations are not performed continuously—in the mathematical
sense—, but rather at successive instants, between which the Brownian particle has actually under-
gone many collisions with its environment.

Since the velocity v(t) of the Brownian particle is assumed to be a Markov process, it is en-
tirely described by its probability density, which will be denoted by f(t, v) instead of the notation
p

1
(t, v) used in Appendix C.2.5, and by the transition probability p

1|1(t2, v2 | t1, v1). These obey
the consistency condition (C.24), which for the evolution between times t and t+ ∆t reads

f(t+ ∆t, v) =

∫
p

1|1(t+ ∆t, v | t, v′) f(t, v′) dv′, (V.41a)

where ∆t� τc.
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Physically, the collisions with the much lighter constituents of the environment lead on short
time scales—i.e. for ∆t much smaller than the relaxation time τr = γ−1—only to small shifts of the
velocity v of the Brownian particle. That is, the modulus of w = v − v′ is much smaller than v. In
order to later exploit this property, let us rewrite Eq. (V.41a) as

f(t+ ∆t, v) =

∫
p

1|1(t+ ∆t, v | t, v − w) f(t, v − w) dw, (V.41b)

where we now integrate over the change in velocity.

V.2.2 Kramers–Moyal expansion

We shall now assume that the transition probability p
1|1(t + ∆t, v | t, v′) and the probability

density f(t, v′) are continuous functions of t and ∆t, and that their product is analytic in the
velocity variables, which will allow us to derive a partial differential equation obeyed by f .
Note that the calculations in this subsection hold more generally for any Markovian stochastic
process with the necessary regularity properties; the specific case of the velocity in the Langevin
model will be studied in further detail in the next subsection.

Under the above assumptions, the integrand in the evolution equation (V.41b) can be expanded
in Taylor series as

p
1|1(t+ ∆t, v | t, v − w) f(t, v − w) = p

1|1(t+ ∆t, v + w − w | t, v − w) f(t, v − w)

=
∞∑
n=0

(−1)n

n!
wn

dn

dvn
[
p

1|1(t+ ∆t, v + w | t, v) f(t, v)
]
.

Introducing for n ∈ N the jump moments

Mn(t, t+ ∆t, v) ≡
∫
wn p

1|1(t+ ∆t, v + w | t, v) dw =

∫
(v′ − v)n p

1|1(t+ ∆t, v′ | t, v) dv′, (V.42)

and exchanging the order of integration over w and partial differentiation with respect to v, the
evolution equation (V.41) can be rewritten as

f(t+ ∆t, v) =

∞∑
n=0

(−1)n

n!

∂n

∂vn
[
Mn(t, t+ ∆t, v) f(t, v)

]
. (V.43)

Definition (V.42) shows that M0(t, t + ∆t, v) = 1 for arbitrary t and ∆t—which actually only
states that the integral over all possible final states of the transition probability of a Markov process
is 1.

For n ≥ 1, the “initial condition” p
1|1(t, v′ | t, v) = δ(v′ − v) and the assumed continuity in ∆t

mean that Mn(t, t + ∆t, v) tends to 0 in the limit ∆t → 0. Assume now—this will be shown
explicitly in the next subsection in the cases n = 1 and 2 for the jump moments of the velocity of
a Brownian particle—that the jump moments with n ≥ 1 are to leading order linear in ∆t at small
∆t:

Mn(t, t+ ∆t, v) ∼
∆t→0

Mn(t, v) ∆t+ o(∆t), (V.44)

where o(∆t)/∆t tends towards 0 when ∆t→ 0. Subtracting then from both sides of Eq. (V.43) the
term with n = 0, dividing by ∆t, and finally taking the formal limit ∆t→ 0 leads to(54)

∂f(t, v)

∂t
=
∞∑
n=1

(−1)n

n!

∂n

∂vn
[
Mn(t, v)f(t, v)

]
. (V.45)

(54)As in the study of the Boltzmann kinetic equation (Chapter IV), we take the mathematical limit of infinitesimal
small ∆t, notwithstanding the fact that physically it should be larger than τc.
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This equation is the so-called Kramers(az)–Moyal (ba) expansion, which may be written for any
Markovian stochastic process fulfilling the regularity hypotheses we have made.

In many situations, the first two jump moments yield a suitable description, and one truncates
the expansion at second order, neglecting the terms with n ≥ 3. This approximation yields the
Fokker (bb)–Planck (bc)equation

∂f(t, v)

∂t
= − ∂

∂v

[
M1(t, v)f(t, v)

]
+

1

2

∂2

∂v2

[
M2(t, v)f(t, v)

]
. (V.46)

The first resp. second term on the right hand side is referred to as drift resp. diffusive term, and
accordingly M1(t, v) resp. M2(t, v) as drift resp. diffusion coefficient.

Remarks:

∗ To give an interpretation of the jump moments, let us introduce the notation〈
g
(
v(t)

)∣∣ v(t0)=v0

〉
v
≡
∫
g(v) p

1|1(t, v | t0, v0) dv,

which denotes the average value at time t of the function g(v) of the stochastic process v(t), un-
der the condition that at some earlier instant t0 the latter takes the value v0. Comparing with
definition (V.42), the jump moment can be rewritten as

Mn(t, t+ ∆t, v) =
〈[
v(t+ ∆t)− v

]n∣∣ v(t)=v
〉
v
. (V.47)

That is, Mn(t, t+ ∆t, v) represents the n-th moment of the probability distribution for the change
in velocity between t and t+ ∆t, starting from velocity v at time t.

Hereafter, we shall use the fact that such moments can actually be computed in two equivalent
ways: either, as in the above two equations, by using the conditional probability p

1|1(t+∆t, v′ | t, v)

and integrating over v′; or by following explicitly trajectories in velocity space that start with the
fixed velocity v at time t, and computing the average velocity at a later time as in Sec. V.1.2, from
which the average velocity shift easily follows.

∗ If the Markov process under consideration is stationary, the jump moments are independent of
time. As we shall see below, the reciprocal does not hold.

∗ The Kramers–Moyal expansion (V.45) is sometimes referred to as generalized Fokker–Planck
equation.

V.2.3 Fokker–Planck equation for the Langevin model

We now apply the formalism developed in the previous subsection to the specific case of the
Langevin model.

::::::
V.2.3 a

:::::::::::::::::::::::::::::::::::::::::
Jump moments for the Langevin model

Let us compute the first two jump moments of the velocity in the Langevin model. Integrating
the Langevin equation (V.1) between t and t+ ∆t, one finds

v(t+ ∆t) = v(t)− γ
∫ t+∆t

t
v(t′) dt′ +

1

M

∫ t+∆t

t
FL(t

′) dt′. (V.48)

Considering now that v(t) is fixed and equal to v, and subtracting it from both sides of the equations,
one obtains the velocity change between t and t+ ∆t for a given realization of the Langevin force.
Averaging over the possible realizations of the latter, one finds the average velocity shift between t
(az)H. Kramers, 1894–1952 (ba)J. E. Moyal, 1910–1998 (bb)A. Fokker, 1887–1972 (bc)M. Planck, 1858–1947
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and t + ∆t under the condition that v(t) = v, i.e. according to Eq. (V.47) precisely the first jump
moment

M1(t, t+ ∆t, v) = −γ
∫ t+∆t

t

〈
v(t′)

∣∣ v(t)=v
〉

dt′ +
1

M

∫ t+∆t

t

〈
FL(t

′)
∣∣ v(t)=v

〉
dt′,

where the fact that the averages over realizations of the Langevin force are conditional ones has
explicitly been specified. Thanks to the absence of correlation between FL(t

′) and v(t) when t′ > t,
see Eq. (V.26), the condition on v(t) actually plays no role in the expectation value of the Langevin
force, which vanishes. In turn, a Taylor expansion of the integrand of the first integral yields

M1(t, t+ ∆t, v) = −γv∆t+O
(
(γ∆t)2

)
. (V.49a)

For time steps ∆t� τr, the term of order (γ∆t)2 is much smaller than the linear term and we may
write

M1(t, t+ ∆t, v) '
∆t�τr

M1(t, v)∆t+ o(γ∆t) with M1(t, v) ≡ −γv, (V.49b)

so that Eq. (V.44) holds here.

Equations (V.47) and (V.48) also give the higher jump moments, in particular the second one,
which follows from[

v(t+ ∆t)− v(t)
]2

= γ2

[∫ t+∆t

t
v(t′) dt′

]2

− 2γ

M

∫ t+∆t

t

∫ t+∆t

t
v(t′)FL(t

′′) dt′ dt′′

+
1

M2

∫ t+∆t

t

∫ t+∆t

t
FL(t

′)FL(t
′′) dt′ dt′′.

Fixing the initial value v(t) to v and averaging over an ensemble of realizations of the environment
amounts to performing the conditional averaging with p

1|1( · | t, v). In that average, the first term
on the right-hand side is of order (γ∆t)2. Since ∆t � τc, we can use approximation (V.26) for
the integrand of the second term, which again leads to a quadratic term in γ∆t. Eventually, the
integrand of the third term can be approximated by 2DvM

2δ(t′′ − t′) [Eq. (V.3d)], which gives

M2(t, t+ ∆t, v) = 2Dv∆t+O
(
(∆t)2

)
, (V.50a)

that is, a second jump moment

M2(t, t+ ∆t, v) '
∆t�τr

M2(t, v)∆t+ o(∆t) with M2(t, v) ≡ 2Dv. (V.50b)

Here again Eq. (V.44) holds.

::::::
V.2.3 b

::::::::::::::::::::::::::
Fokker–Planck equation

Inserting the jump moments (V.49b) and (V.50b) in the general relation (V.46), one obtains the
Fokker–Planck equation for the Langevin model

∂f(t, v)

∂t
= γ

∂

∂v

[
vf(t, v)

]
+Dv

∂2f(t, v)

∂v2
. (V.51)

We thus recover the interpretation of Dv as a diffusion coefficient in velocity space.

Remarks:

∗ Interestingly, the jump moments M1, M2 for the velocity of the Langevin model are not explicitly
time-dependent but only depend on ∆t, even though the velocity is not a stationary process as long
as equilibrium has not been reached.
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∗ If the Langevin force is a Gaussian stochastic process, so is the velocity, and the transition
probability p

1|1(t + ∆t, v′ | t, v) is also Gaussian.(55) The transition probability is thus entirely
determined by its first two moments, which are precisely the jump moments M1, M2, and we may
write

p
1|1(t+ ∆t, v′ | t, v) =

1√
4πDv∆t

exp

{
− [v′ − (1− γ∆t)v]2

4Dv∆t

}
for τc � ∆t� τr, (V.52)

where we have used the fact that M2 is also the variance, since it is much larger than M 2
1 .

∗ If the Langevin force and the velocity are not Gaussian processes, then one may still argue that
the transition probability, as function of the velocity shift v′ − v at fixed v, is given by a Gaussian
distribution when ∆t � τc. In such a time interval, many statistically independent collisions
between the Brownian particle and its environment take place, which lead to as many statistically
independent tiny velocity shifts: according to the central limit theorem, the resulting total velocity
shift over ∆t, which is the sum of these tiny shifts, is Gaussian distributed.

V.2.4 Solution of the Fokker–Planck equation

The Fokker–Planck equation (V.51) is a linear partial differential equation with non-constant
coefficients relating the time derivative of the velocity density to its first two “spatial” derivatives—
or, equivalently, an equation with constant coefficients involving time derivative, the first two spatial
derivatives, and the function itself. Accordingly, it has the form of a generalized diffusion equation
in velocity space, with a diffusion coefficient Dv—we recover the interpretation of that coefficient
found in Sec. V.1.2—, and a “drift term” γ∂[vf(t, v)]/∂v—so that γ is referred to as drift coefficient .

Defining a probability current (in velocity space) as

Jv(t, v) ≡ −γvf(t, v)−Dv
∂f(t, v)

∂v
, (V.53a)

the Fokker–Planck equation can be recast in the form of a continuity equation

∂f(t, v)

∂t
+
∂Jv(t, v)

∂v
= 0 (V.53b)

for the probability density.

::::::
V.2.4 a

:::::::::::::::::::::
Stationary solution

One can first investigate the stationary (or steady-state) solutions fst.(v) to the Fokker–Planck
equation. According to Eq. (V.53b), these solutions make the probability current (V.53a) constant.
To be normalizable, a solution fst.(v) should decrease faster than 1/|v| when |v| tends to ∞. The
only possibility is when Jv(t, v) = 0.(56) The corresponding stationary solution is then simply

fst.(v) =

√
γ

2πDv
e−γv

2/2Dv . (V.54)

If the environment of the Brownian particle is in thermal equilibrium at temperature T , then the
fluctuation–dissipation relation Dv/γ = kBT/M [Eq. (V.12)] shows that the steady-state solution
to the Fokker–Planck equation is the Maxwell–Boltzmann distribution. The Brownian particle is
thus “thermalized”.
(55)According to Bayes’ theorem (C.13), it equals the ratio of two Gaussian distributions.
(56)For a generic stochastic process Y (t), whose realizations take their values in a bounded real interval [a, b], the

existence and number of stationary solutions of the corresponding Fokker–Planck equation (V.46) depend on the
choice of boundary conditions imposed at a and b: vanishing JY ≡ M1pY,1− 1

2
∂(M2pY,1)/∂y for y = a and y = b—

i.e. so-called reflecting boundary conditions—, vanishing pY,1(y). . . The stationary solutions also depend on the
dimension of the stochastic process—in two or more dimensions, non-vanishing probability currents exist without
involving a flow of probability towards infinitely large values.
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Remark: If the drift coefficient γ were negative, the Fokker–Planck equation (V.51) would have no
stationary solution.

::::::
V.2.4 b

::::::::::::::::::::::::
Fundamental solution

As next step, one can search for the fundamental solutions—also called Green’s functions—of
the Fokker–Planck equation, namely the solutions to equation (V.51) obeying the initial condition
f(0, v) = δ(v − v0) for an arbitrary v0 ∈ R.

One can show that this fundamental solution is given by

f(t, v) =

√
γ

2πDv(1− e−2γt)
exp

[
− γ

2Dv

(v − v0 e−γt)2

1− e−2γt

]
for t > 0. (V.55)

• At a given instant t > 0, this distribution is Gaussian, with average value and variance

〈v(t)〉 = v0 e−γt, σv(t)
2 =

Dv

γ

(
1− e−2γt

)
,

in agreement with expressions (V.5) and (V.8), with t0 = 0, found in the case t− t0 � τc.

• When t becomes much larger than τr, the fundamental solution (V.55) tends to the stationary
solution (V.54).

In agreement with the consistency condition (C.24), the fundamental solution (V.55) equals the
transition probability p

1|1(t, v | t0 = 0, v0). At small t � τr—which is then rewritten as ∆t—, one
actually recovers Eq. (V.52). More generally, one recognizes in p

1|1(t, v | 0, v0) given by Eq. (V.55)
the transition probability (C.31b) of the Ornstein–Uhlenbeck process [42].

Remark: The Ornstein–Uhlenbeck process is actually defined by both its transition probability and
its time-independent single-time probability. The latter condition is not fulfilled by the velocity
of a Brownian particle in general—the velocity is not a stationary process—, yet is obeyed in the
equilibrium regime t� τr, in which case the terms e−γt and e−2γt in Eq. (V.55) vanish.

V.2.5 Position of a Brownian particle as a Markov process

We may now repeat the study of the previous subsections for the case of the position x(t) of a
free Brownian particle.

The first important point is that the evolution equation for the position deduced from the
Langevin equation (V.1) is of second order. As a consequence, the displacement x(t + ∆t) − x(t)
in a small time step does not depend on x(t) and FL(t

′) for t′ ≥ t only, but will also depend on
the velocity v(t), which in turn depends on the past of t. That is, the position is in general not a
Markov process, even if the Langevin force is a Gaussian process with a vanishing autocorrelation
time.

To recover the Markovian character, one has to consider time steps ∆t � τr, i.e. a coarser
graining than for velocity. Over such a time interval, the velocity of the Brownian undergoes many
random changes, and x(t+ ∆t)− x(t) will be independent of the position at previous times.

On such time scales, the acceleration term in the Langevin equation plays no role, and one
recovers the first-order equation (V.20a) valid in the viscous limit (cf. §V.1.3 c)

ηv
dx(t)

dt
= FL(t).

Additionally, the condition ∆t � τr automatically leads to ∆t � τc, so that the autocorrelation
time of the Langevin force can be neglected:

〈FL(t)FL(t+ τ)〉 = 2Dη2
v δ(τ)
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[cf. Eq. (V.20b)]. In analogy to the finding in Sec. V.1.4, this leads to 〈x(t)FL(t
′)〉 = 0 for t′ > t,

which if FL(t), and thus x(t), is Gaussian, guarantees their statistical independence.

Repeating the derivation in Sec. V.2.3 with v(t), M , γ and DvM
2 respectively replaced by

x(t), ηv, 0 and Dη2
v , one finds that the jumps moments for the position are M1(t, x) = 0 and

M2(t, x) = 2D. The Fokker–Planck equation for the evolution of the probability density f(t, x) of
the position thus reads

∂f(t, x)

∂t
= D

∂2f(t, x)

∂x2
. (V.56)

That is, f(t, x) obeys the ordinary diffusion equation, with the fundamental solution corresponding
to the initial condition f(0, x) = δ(x− x0) given by

f(t, x) =
1√

4πDt
exp

[
− (x− x0)2

4Dt

]
for t > 0. (V.57)

From this probability density, one recovers the large-time limit of the variance found in Eq. (V.22).
Again, the fundamental solution (V.57) also equals the transition probability of the Markov

process x(t). Together with the initial condition f(t= 0, x) = δ(x − x0), they exactly match the
definition of the Wiener process, Eq. (C.26).


