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Tutorial sheet 8

Discussion topic: Stochastic processes

15. Electrical conductivity in a magnetic field: Hall effect
This exercise is a sequel to exercise 14 from the previous tutorial sheet. We again consider the

problem of electric conduction in a metal subject to an electric field ~E and a magnetic field ~B. The
conductor is a rectangular parallelepiped, with its sides along the coordinate axes. Let L denote the
length of the side parallel to the x-axis, l the length of the side along the y-axis, and d the length of
the side along the z-axis.

i. Drude–Lorentz model
To model the effect of collisions in a simple way, one introduces an “average equation of motion” for the
conduction electrons—i.e., an evolution equation for their average velocity 〈~v〉

d〈~v〉
dt

= −〈~v〉
τr
− e

m

(
~E + 〈~v〉 × ~B

)
.

Give a physical interpretation for this equation. Check that in the stationary regime one has

〈vx〉 = −eτr
m

Ex − ωτr〈vy〉 , 〈vy〉 = −eτr
m

Ey + ωτr〈vx〉 ,

with ω the Larmor frequency defined in exercise 14. Show that if one takes τr = τF, one recovers the
same expression for the conductivity tensor as in exercise 14.

ii. Calculate in terms of Ex the value EH of Ey which cancels (Jel.)y. Verify that the transport of
electrons in that situation is the same as in the case ~B = ~0, in other words (Jel.)x = σel.Ex. The field
intensity EH is called Hall field , and the Hall resistance is defined by

RH ≡
VH
I

where VH is the Hall voltage, VH/l = EH, and I the total electric current along the x direction. Show
that RH is given by

RH =
B

nde
,

with n the density of conduction electrons. By noting that RH is independent of the relaxation time,
find its expression using an elementary argument.

16. Bulk viscosity
In a hydrodynamic model, the (conserved) stress-energy tensor for a fluid obeying the Navier–Stokes

equation can be written as

Tij(t, ~r) = P (t, ~r)δij + πshearij (t, ~r) + Π(t, ~r)δij ,

where P is the equilibrium pressure, πshearij the traceless shear stress tensor—which depends on the first
derivatives of the flow velocity ~v(t, ~r)—, and Π the bulk pressure. The latter is of the form Π = ζ ~∇ ·~v,
with ζ the bulk viscosity. Thus, ζ measures the size of the deviation [in compressible (~∇ ·~v 6= 0) flows]
of the trace

∑
i Tii of the stress-energy tensor from the equilibrium value 3P .

Microscopically, the stress-energy tensor for a gas of non-interacting particles is related to the phase
space density f(t, ~r, ~p) through

Tij(t, ~r) =

∫
pipjf(t, ~r, ~p)

d3~p

E~p
,

where E~p denotes the energy of a particle with momentum ~p. Similarly, the energy density e—which is
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related to the equilibrium pressure over the equation of state of the fluid—is given by

e(t, ~r) =

∫
E~p f(t, ~r, ~p) d3~p.

i. Gas of massless particles
For a noninteracting gas of massless particles, the equation of state reads e = 3P .1 Using the known
relation for E~p as a function of momentum, check that, irrespective of the expression for f , the trace of
the stress-energy tensor simply equals e. What does this mean for the bulk viscosity ζ?

ii. Nonrelativistic ideal gas
The internal energy U and pressure P of a nonrelativistic ideal gas occupying a volume V obey the
relation U = 3

2PV .1 Using the nonrelativistic relation for E~p and appropriate approximations, compute
the trace of the stress-energy tensor and express it as a (simple) function of the energy density e and
the particle number density n defined as the integral over momenta of the phase space density. What
does this again give for the bulk viscosity ζ?

Remark: Since no knowledge of the phase space density f was actually needed in the above derivations,
the systems need not be equilibrated for the result(s) to hold.

1Check your favorite course on equilibrium statistical physics and thermostatics!
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