Tutorial sheet 7

Discussion topic: Relativistic Boltzmann kinetic equation

14. Electrical conductivity in a magnetic field¹

We consider the problem of electric conduction in a metal subject to an electric field $\vec{\mathscr{E}}$ and a magnetic field $\vec{\mathscr{B}}$. The conduction electrons (mass m, charge -e) form a non-relativistic, highly degenerate ideal Fermi gas obeying the kinetic Lorentz equation (cf. Tutorial sheet 6) in the presence of an external force $\vec{F}(\vec{r})$, which is here simply the Lorentz force. We assume that the various densities are uniform and stationary: $f(t, \vec{r}, \vec{p}) = f(\vec{p})$, where \vec{p} denotes the linear momentum, and $n(t, \vec{r}) = n$, which leads to simplifications in the left-hand side of the Lorentz equation. In addition, we assume that the equilibrium distribution $f_{eq.}$ is a function of energy only: $f^{(0)}(\vec{p}) = f^{(0)}(\varepsilon \equiv \vec{p}^2/2m_e)$.

i. We first take $\vec{\mathscr{B}} = \vec{0}$. Calculate $\delta f \equiv f - f^{(0)}$ and show that the electric current density $\vec{J}_{\rm el.}$ is given in the relaxation time approximation by

$$\vec{J}_{\rm el.} = -e^2 \int \tau_{\rm r}(|\vec{p}|) (\vec{v} \cdot \vec{\mathscr{E}}) \vec{v} \, \frac{\mathrm{d}f^{(0)}}{\mathrm{d}\varepsilon} \, \mathrm{d}^3 \vec{p}.$$

If $f^{(0)}$ is the Fermi distribution at T = 0

$$f^{(0)}(\varepsilon) = \frac{2}{(2\pi\hbar)^3}\Theta(\varepsilon_{\rm F} - \varepsilon)$$

with $\varepsilon_{\rm F}$ the Fermi energy, show that the electrical conductivity $\sigma_{\rm el.}$ is given by

$$\sigma_{\rm el.} = \frac{n \, e^2}{m} \tau_{\rm F}$$

where $\tau_{\rm F} \equiv \tau_{\rm r}(p_{\rm F})$, with $p_{\rm F}$ the Fermi momentum.

ii. We now take $\vec{\mathscr{B}} \neq \vec{0}$. How is the electrical conductivity modified if the applied $\vec{\mathscr{B}}$ field is parallel to $\vec{\mathscr{E}}$?

Consider then the case where the electric field is in the *xy*-plane and the magnetic field along the z-axis, $\vec{\mathscr{B}} = \mathscr{B} \vec{\mathrm{e}}_z$ with $\mathscr{B} > 0$. Show that the Lorentz equation in the relaxation time approximation becomes

$$-eec{v}\cdotec{\mathscr{E}}rac{\mathrm{d}f^{(0)}}{\mathrm{d}arepsilon}-eig(ec{v} imesec{\mathscr{B}}ig)\cdotec{
abla}_{ec{p}}\delta f=-rac{\delta f}{ au_r(ec{p}ec{l})}$$

We look for a solution of the form

$$\delta f = -\vec{v} \cdot \vec{C} \, \frac{\mathrm{d}f^{(0)}}{\mathrm{d}\varepsilon}$$

where \vec{C} is a vector, function of $\vec{\mathcal{E}}$ and $\vec{\mathcal{B}}$ but independent of \vec{v} , to be determined. What should \vec{C} be when $\vec{\mathcal{B}} = \vec{0}$? when $\vec{\mathcal{E}} = \vec{0}$? For the latter case, estimate first the average magnetic force on the electrons.

iii. Show that \vec{C} satisfies the equation

$$-eec{\mathscr{E}}+ec{\omega} imesec{C}=rac{ec{C}}{ au_r(ec{p}ec{)})},$$

with $\vec{\omega} = \omega \vec{\mathbf{e}}_z$, where $\omega \equiv e\mathscr{B}/m_e$ is the Larmor frequency. Justify that \vec{C} is necessarily of the form

¹This exercise was shamelessly stolen from the book *Equilibrium and non-equilibrium statistical thermodynamics* by M. Le Bellac *et al.*

 $\vec{C} = \alpha \vec{\mathscr{E}} + \delta \vec{\mathscr{B}} + \gamma \vec{\mathscr{B}} \times \vec{\mathscr{E}}$, where α, δ, γ are real numbers. Find the expression for \vec{C} and show that

$$\delta f = \frac{e\tau_{\rm r}}{1+\omega^2\tau_{\rm r}^2} \left(\vec{\mathscr{E}} + \tau_{\rm r}\vec{\omega}\times\vec{\mathscr{E}}\right) \cdot \vec{v} \,\frac{\mathrm{d}f^{(0)}}{\mathrm{d}\varepsilon}.$$

iv. Calculate the electric current and the components $(\sigma_{\rm el.})_{ij}$, i, j = x, y of the electrical conductivity tensor. Verify that $(\sigma_{\rm el.})_{xy} = -(\sigma_{\rm el.})_{yx}$ and comment on this relation.