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Tutorial sheet 4

9. Moments and cumulants of some common probability distributions
i. Poisson distribution
Let λ be a positive real number. The Poisson distribution with parameter λ is defined on the discrete
range of natural numbers n ∈ N by

pn =
λn

n!
e−λ.

Find its first two moments, as well as its cumulants.

ii. Gaussian distribution
Let X be a continuous random variable, whose sample space Ω is R, and µ, σ two real numbers. Give
the first two moments and the cumulants of arbitrary order of the Gaussian probability distribution

p
X

(x) =
1√

2πσ2
exp

[
− (x− µ)2

2σ2

]
.

Find the moments of order greater than 2 in the case µ = 0.

10. Two-particle phase space density in a classical ideal gas
The purpose of this exercise is to show that even in a classical ideal gas of identical particles, (small)

correlations between particles arise when their total number N is fixed.

i. Canonical equilibrium
Consider first the case of a classical gas of N non-interacting identical particles, each of which is
described by a Hamilton function h, so that the total Hamilton function reads

HN = h(1) + h(2) + · · ·+ h(N),

where the positions and momenta of the particles have been for brevity denoted through the particle
label. At thermodynamic equilibrium, the canonical partition function for this gas is

ZN (β,V ) =

[
Z1(β,V )

]N
N !

,

with Z1 the partition function for a single particle—which need not be specified hereafter.
a) Compute first the single-particle phase space density f1(~r1, ~p1).
b) Write down the two-particle phase space density f2(~r1, ~p1, ~r2, ~p2), and compare it to the product of
the single-particle densities for particles 1 and 2. What you notice?

ii. Grand canonical equilibrium
The number of particles in the gas is now allowed to vary, so that the proper description at thermody-
namic equilibrium takes place in the grand canonical ensemble, with the “chemical” Lagrange multiplier
α = βµ.
a) Recall the expression of the grand canonical partition function Z(β,V , α) as function of the canonical
partition functions ZN and α, then as function of Z1 and α.
b) Derive the single-particle phase space density f1(~r1, ~p1).
Hint : Consider first the contribution to f1 coming from the case when the gas consists of N particles,
then carefully sum over all possible values of N .
c) Compute the two-particle phase space density f2(~r1, ~p1, ~r2, ~p2) and rewrite it as function of the
single-particle densities for particles 1 and 2. Compare with the result in the canonical approach.
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11. Collisionless evolution of the single-particle phase space density
Let f(t, ~r, ~p) denote the single-particle phase space density of a system of non-interacting particles

with massm evolving in the absence of long-range interactions deriving from a vector potential. Consider
the particles which at time t are in an infinitesimal volume element d3~r d3~p about point (~r, ~p).

Where are these particles at the instant t+ dt? Show that the volume element d3~r ′ d3~p ′ they then
occupy equals d3~r d3~p. Derive the partial differential equation governing the evolution of f .
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