Tutorial sheet 8

The exercise marked with a star is homework.
Discussion topic: Fokker-Planck equation

21. Brownian motion in the viscous limit

Consider the process of Brownian motion in the viscous limit, described by the stochastic differential equation

$$
\begin{equation*}
M \gamma \frac{\mathrm{~d} x(t)}{\mathrm{d} t}=F_{\mathrm{L}}(t) \tag{1}
\end{equation*}
$$

where $F_{L}(t)$ is a stochastic force with vanishing expectation value $\left\langle F_{\mathrm{L}}(t)\right\rangle=0$ and memoryless autocorrelation function $\left\langle F_{\mathrm{L}}(t) F_{\mathrm{L}}\left(t^{\prime}\right)\right\rangle=2 D M^{2} \gamma^{2} \delta\left(t-t^{\prime}\right)$.
i. Show that Eq. (1) can be obtained from the Langevin equation introduced in the lecture in the combined limit $M \rightarrow 0, \gamma \rightarrow \infty$ with the product $M \gamma$ held constant.
ii. Show that the Fokker-Planck equation for the probability distribution $f(t, x)=p_{1}(t, x)$ associated with Eq. (1) is

$$
\frac{\partial f(t, x)}{\partial t}=D \frac{\partial^{2} f(t, x)}{\partial x^{2}}
$$

Why is this result satisfactory?
iii. Calculate the average displacement $\left\langle x(t)-x\left(t_{0}\right)\right\rangle$ and its variance $\left\langle\left[x(t)-x\left(t_{0}\right)\right]^{2}\right\rangle$ for $t>t_{0}$ and comment on the similarities and differences between the results obtained for the simplified model (1) and the Langevin model discussed in the lecture.
Remark: Equation (1) is actually the description of Brownian motion proposed by A. Einstein and M. Smoluchowski (1872-1917) in 1905-06, before the introduction of the Langevin model in 1908.

*22. Fokker-Planck equation as approximation to the master equation

In exercise 20., it was found that the evolution of the probability density $p_{Y, 1}(\tau, y)$ of an homogeneous Markov process $Y(t)$ is governed by the so-called master equation

$$
\frac{\partial p_{Y, 1}(\tau, y)}{\partial \tau}=\int\left[\Gamma\left(y \mid y^{\prime}\right) p_{Y, 1}\left(\tau, y^{\prime}\right)-\Gamma\left(y^{\prime} \mid y\right) p_{Y, 1}(\tau, y)\right] \mathrm{d} y^{\prime}
$$

where $\Gamma\left(y \mid y^{\prime}\right)$ denotes the transition rate from y^{\prime} to y. In many situations, only small jumps $w \equiv y-y^{\prime}$ occur. Rewriting $W\left(y^{\prime}, w\right) \equiv \Gamma\left(y^{\prime}+w \mid y^{\prime}\right)$, this means that $W\left(y^{\prime}, w\right)$ is a sharply peaked function of w, while it varies slowly with y^{\prime}. Assuming that $p_{Y, 1}(\tau, y)$ also varies slowly with y, show that a Taylor expansion of the master equation up to second order yields the Fokker-Planck equation

$$
\frac{\partial p_{Y, 1}(\tau, y)}{\partial \tau}=-\frac{\partial}{\partial y}\left[M_{1}(y) p_{Y, 1}(\tau, y)\right]+\frac{1}{2} \frac{\partial^{2}}{\partial y^{2}}\left[M_{2}(y) p_{Y, 1}(\tau, y)\right] \quad \text { with } \quad M_{n}(y) \equiv \int w^{n} W(y, w) \mathrm{d} w
$$

