Tutorial sheet 7

The exercises marked with a star are homework.

Discussion topics:

- Langevin model of Brownian motion
- Markov processes; Fokker-Planck equation

18. Vibrating string

Consider a weightless elastic string, whose extremities are fixed at points $x=0$ and $x=L$ along the x-axis. Let $y(x)$ denote the displacement of the string transverse to this axis-for the sake of simplicity, we can assume that this displacement is one-dimensional-at position x. For small displacements, one can show that the elastic energy associated with a given profile $y(x)$ reads

$$
\begin{equation*}
E[y(x)]=\int_{0}^{L} \frac{k}{2}\left[\frac{\mathrm{~d} y(x)}{\mathrm{d} x}\right]^{2} \mathrm{~d} x \tag{1}
\end{equation*}
$$

with k a positive constant.
When the string undergoes thermal fluctuations, induced by its environment at temperature $T, y(x)$ becomes a random function (of position, instead of time), where one expects that the probability for a given $y(x)$ should be proportional to $\mathrm{e}^{-\beta E[y(x)]}$ with $\beta=1 / k_{B} T$. Here, we wish to consider a discretized version of the problem and view $y(x)$ as the realization of a stochastic function $Y(x)$.
i. Let $n \in \mathbb{N}$. Consider n points $0<x_{1}<x_{2}<\cdots<x_{n}<L$ and let y_{j} be the displacement of the string at point x_{j}. Write down the energy of the string, assuming that it is straight between two successive points x_{j}, x_{j+1}.
Hint: For the sake of brevity, one can introduce the notations $x_{0}=0, x_{n+1}=L, y_{0}=y_{n+1}=0$.
ii. We introduce the n-point probability density

$$
p_{n}\left(x_{1}, y_{1} ; \ldots ; x_{n}, y_{n}\right)=\sqrt{\frac{2 \pi L}{k \beta}} \prod_{j=0}^{n} \sqrt{\frac{k \beta}{2 \pi\left(x_{j+1}-x_{j}\right)}} \exp \left[-\frac{k \beta}{2} \frac{\left(y_{j+1}-y_{j}\right)^{2}}{x_{j+1}-x_{j}}\right]
$$

which for large n, agrees with the anticipated factor $\mathrm{e}^{-\beta E[y(x)]}$ (are you convinced of that?).
Show that the various p_{n} satisfy the 4 properties of n-point densities given in the lecture. Write down the single-point and two-point averages $\left\langle Y\left(x_{1}\right)\right\rangle$ and $\left\langle Y\left(x_{1}\right) Y\left(x_{2}\right)\right\rangle$, as well as the autocorrelation function. Which properties does the process possess?

*19. Another view of the Fokker-Planck equation in one dimension

Consider an arbitrary one-dimensional Markovian process $X(t)$, taking its values in a real interval $[a, b]$, and such that the corresponding first two coefficients $\mathcal{M}_{1}(t, x), \mathcal{M}_{2}(t, x)$ in the Kramers-Moyal expansion are actually independent of time.

i. Stationary solutions

Recall the form of the Fokker-Planck equation. Assuming that there is no flow of probability across the boundaries $x=a$ and $x=b$ ("reflecting boundary conditions"), write down the differential equation obeyed by the stationary solution $p_{X, 1}^{\text {st. }}(x)$ to the Fokker-Planck equation. Show that

$$
\begin{equation*}
p_{X, 1}^{\text {st. }}(x)=\frac{C}{\mathcal{M}_{2}(x)} \exp \left[2 \int_{a}^{x} \frac{\mathcal{M}_{1}\left(x^{\prime}\right)}{\mathcal{M}_{2}\left(x^{\prime}\right)} \mathrm{d} x^{\prime}\right] \tag{2}
\end{equation*}
$$

where C is a constant which need not be computed. Why is this solution unique?

ii. Transforming the Fokker-Planck equation

Assume now that \mathcal{M}_{2} is actually constant. Let $V(x) \equiv \frac{1}{2}\left[\mathcal{M}_{1}(x)\right]^{2}+\frac{\mathcal{M}_{2}}{2} \frac{\mathrm{~d} \mathcal{M}_{1}(x)}{\mathrm{d} x}$.
Perform the change of unknown function $p_{X, 1}(t, x)=\left[p_{X, 1}^{\text {st. }}(x)\right]^{1 / 2} \psi(t, x)$ in the Fokker-Planck equation, where $p_{X, 1}^{\text {st. }}(x)$ is the stationary solution $\sqrt{22}$, and deduce the equation obeyed by $\psi(t, x)$. What do you recognize?

In the new language you just found, to which known problem is that of the Fokker-Planck equation for the Langevin model $\left[\mathcal{M}_{1}(x)=\gamma x, \mathcal{M}_{2}=D, x \in \mathbb{R}\right]$ equivalent?

*20. Master equation for Markov processes

The purpose of this exercise is to derive a linear integrodifferential equation-equivalent to the Chapman-Kolmogorov equation-for the transition probability and the single-time density of an (almost) arbitrary homogeneous Markov process $Y(t)$, i.e. a process for which the probability transition $p_{Y, 1 \mid 1}\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right)$ only depends on the time difference $\tau \equiv t_{2}-t_{1}$. In analogy with stationary processes, the latter will be denoted by $\mathcal{T}_{Y ; \tau}\left(y_{2} \mid y_{1}\right)$.

We assume that for time differences τ much smaller than some time scale τ_{c}, the transition probability is of the form

$$
\begin{equation*}
\mathcal{T}_{Y ; \tau}\left(y_{2} \mid y_{1}\right)=\left[1-\gamma\left(y_{1}\right) \tau\right] \delta\left(y_{2}-y_{1}\right)+\Gamma\left(y_{2} \mid y_{1}\right) \tau+o(\tau), \tag{3a}
\end{equation*}
$$

where $o(\tau)$ denotes a term which is much smaller than τ in the limit $\tau \rightarrow 0$. The nonnegative quantity $\Gamma\left(y_{2} \mid y_{1}\right)$ is the transition rate from y_{1} to y_{2}, and $\gamma\left(y_{1}\right)$ is its integral over y_{2}

$$
\begin{equation*}
\gamma\left(y_{1}\right)=\int \Gamma\left(y_{2} \mid y_{1}\right) \mathrm{d} y_{2} . \tag{3b}
\end{equation*}
$$

i. Compute the integral of the transition probability $\mathcal{T}_{Y ; \tau}\left(y_{2} \mid y_{1}\right)$ over final states y_{2}.

ii. Master equation

Starting from the Chapman-Kolmogorov equation

$$
\mathcal{T}_{Y ; \tau+\tau^{\prime}}\left(y_{3} \mid y_{1}\right)=\int \mathcal{T}_{Y ; \tau^{\prime}}\left(y_{3} \mid y_{2}\right) \mathcal{T}_{Y ; \tau}\left(y_{2} \mid y_{1}\right) \mathrm{d} y_{2}
$$

and assuming that $\tau^{\prime} \ll \tau_{\mathrm{c}}$ - note that no assumption on τ is needed-, show that after leaving aside a negligible term, one obtains

$$
\mathcal{T}_{Y ; \tau+\tau^{\prime}}\left(y_{3} \mid y_{1}\right)=\left[1-\gamma\left(y_{3}\right) \tau^{\prime}\right] \mathcal{T}_{Y ; \tau}\left(y_{3} \mid y_{1}\right)+\tau^{\prime} \int \Gamma\left(y_{3} \mid y_{2}\right) \mathcal{T}_{Y ; \tau}\left(y_{2} \mid y_{1}\right) \mathrm{d} y_{2}
$$

Check that this leads in the limit $\tau^{\prime} \rightarrow 0$ to the integrodifferential equation

$$
\frac{\partial \mathcal{T}_{Y ; \tau}\left(y_{3} \mid y_{1}\right)}{\partial \tau}=-\gamma\left(y_{3}\right) \mathcal{T}_{Y ; \tau}\left(y_{3} \mid y_{1}\right)+\int \Gamma\left(y_{3} \mid y_{2}\right) \mathcal{T}_{Y ; \tau}\left(y_{2} \mid y_{1}\right) \mathrm{d} y_{2},
$$

and eventually, after invoking Eq. (3b) and relabeling the variables, to the master equation

$$
\begin{equation*}
\frac{\partial \mathcal{T}_{Y ; \tau}\left(y \mid y_{0}\right)}{\partial \tau}=\int\left[\Gamma\left(y \mid y^{\prime}\right) \mathcal{T}_{Y ; \tau}\left(y^{\prime} \mid y_{0}\right)-\Gamma\left(y^{\prime} \mid y\right) \mathcal{T}_{Y ; \tau}\left(y \mid y_{0}\right)\right] \mathrm{d} y^{\prime} \tag{4}
\end{equation*}
$$

Note that this evolution equation has the structure of a balance equation, with a gain term, involving the rate $\Gamma\left(y \mid y^{\prime}\right)$, and a loss term depending on the rate $\Gamma\left(y^{\prime} \mid y\right)$.
iii. Evolution equation for the single-time probability density

Starting from the consistency condition

$$
\begin{equation*}
p_{Y, 1}(\tau, y)=\int \mathcal{T}_{Y ; \tau}\left(y \mid y_{0}\right) p_{Y, 1}\left(t=0, y_{0}\right) \mathrm{d} y_{0} \tag{5}
\end{equation*}
$$

show that the above master equation leads to

$$
\frac{\partial p_{Y, 1}(\tau, y)}{\partial \tau}=\int\left[\Gamma\left(y \mid y^{\prime}\right) \mathcal{T}_{Y ; \tau}\left(y^{\prime} \mid y_{0}\right)-\Gamma\left(y^{\prime} \mid y\right) \mathcal{T}_{Y ; \tau}\left(y \mid y_{0}\right)\right] p_{Y, 1}\left(t=0, y_{0}\right) \mathrm{d} y_{0} \mathrm{~d} y^{\prime}
$$

Check that this leads to the evolution equation

$$
\begin{equation*}
\frac{\partial p_{Y, 1}(\tau, y)}{\partial \tau}=\int\left[\Gamma\left(y \mid y^{\prime}\right) p_{Y, 1}\left(\tau, y^{\prime}\right)-\Gamma\left(y^{\prime} \mid y\right) p_{Y, 1}(\tau, y)\right] \mathrm{d} y^{\prime} \tag{6}
\end{equation*}
$$

which is formally identical to the master equation for $\mathcal{T}_{Y ; \tau}$. How can you interpret this equation?

