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Tutorial sheet 7

The exercises marked with a star are homework.

Discussion topics:
– Langevin model of Brownian motion
– Markov processes; Fokker–Planck equation

18. Vibrating string
Consider a weightless elastic string, whose extremities are fixed at points x = 0 and x = L along the

x-axis. Let y(x) denote the displacement of the string transverse to this axis—for the sake of simplicity,
we can assume that this displacement is one-dimensional—at position x. For small displacements, one
can show that the elastic energy associated with a given profile y(x) reads

E[y(x)] =

∫ L

0

k

2

[
dy(x)

dx

]2
dx, (1)

with k a positive constant.
When the string undergoes thermal fluctuations, induced by its environment at temperature T , y(x)

becomes a random function (of position, instead of time), where one expects that the probability for a
given y(x) should be proportional to e−βE[y(x)] with β = 1/kBT . Here, we wish to consider a discretized
version of the problem and view y(x) as the realization of a stochastic function Y (x).

i. Let n ∈ N. Consider n points 0 < x1 < x2 < · · · < xn < L and let yj be the displacement of
the string at point xj . Write down the energy of the string, assuming that it is straight between two
successive points xj , xj+1.
Hint : For the sake of brevity, one can introduce the notations x0 = 0, xn+1 = L, y0 = yn+1 = 0.

ii. We introduce the n-point probability density

p
n
(x1, y1; . . . ;xn, yn) =

√
2πL

kβ

n∏
j=0

√
kβ

2π(xj+1 − xj)
exp

[
− kβ

2

(yj+1 − yj)
2

xj+1 − xj

]
,

which for large n, agrees with the anticipated factor e−βE[y(x)] (are you convinced of that?).
Show that the various p

n
satisfy the 4 properties of n-point densities given in the lecture. Write

down the single-point and two-point averages ⟨Y (x1)⟩ and ⟨Y (x1)Y (x2)⟩, as well as the autocorrelation
function. Which properties does the process possess?

∗∗∗19. Another view of the Fokker–Planck equation in one dimension
Consider an arbitrary one-dimensional Markovian process X(t), taking its values in a real interval

[a, b], and such that the corresponding first two coefficients M 1(t, x), M 2(t, x) in the Kramers–Moyal
expansion are actually independent of time.

i. Stationary solutions
Recall the form of the Fokker–Planck equation. Assuming that there is no flow of probability across
the boundaries x = a and x = b (“reflecting boundary conditions”), write down the differential equation
obeyed by the stationary solution pst.

X,1
(x) to the Fokker–Planck equation. Show that

pst.
X,1

(x) =
C

M 2(x)
exp

[
2

∫ x

a

M 1(x
′)

M 2(x′)
dx′

]
, (2)

where C is a constant which need not be computed. Why is this solution unique?
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ii. Transforming the Fokker–Planck equation

Assume now that M 2 is actually constant. Let V (x) ≡ 1

2
[M 1(x)]

2 +
M 2

2

dM 1(x)

dx
.

Perform the change of unknown function p
X,1

(t, x) = [pst.
X,1

(x)]1/2ψ(t, x) in the Fokker–Planck equation,
where pst.

X,1
(x) is the stationary solution (2), and deduce the equation obeyed by ψ(t, x). What do you

recognize?
In the new language you just found, to which known problem is that of the Fokker–Planck equation

for the Langevin model [M 1(x) = γx, M 2 = D, x ∈ R] equivalent?

∗∗∗20. Master equation for Markov processes
The purpose of this exercise is to derive a linear integrodifferential equation—equivalent to the

Chapman–Kolmogorov equation—for the transition probability and the single-time density of an (al-
most) arbitrary homogeneous Markov process Y (t), i.e. a process for which the probability transition
p
Y,1|1(t2, y2 | t1, y1) only depends on the time difference τ ≡ t2−t1. In analogy with stationary processes,

the latter will be denoted by TY ;τ (y2 | y1).
We assume that for time differences τ much smaller than some time scale τc, the transition proba-

bility is of the form

TY ;τ (y2 | y1) = [1− γ(y1)τ ] δ(y2 − y1) + Γ(y2 | y1)τ + o(τ), (3a)

where o(τ) denotes a term which is much smaller than τ in the limit τ → 0. The nonnegative quantity
Γ(y2 | y1) is the transition rate from y1 to y2, and γ(y1) is its integral over y2

γ(y1) =

∫
Γ(y2 | y1) dy2. (3b)

i. Compute the integral of the transition probability TY ;τ (y2 | y1) over final states y2.

ii. Master equation
Starting from the Chapman–Kolmogorov equation

TY ;τ+τ ′(y3 | y1) =
∫
TY ;τ ′(y3 | y2) TY ;τ (y2 | y1) dy2,

and assuming that τ ′ ≪ τc—note that no assumption on τ is needed—, show that after leaving aside a
negligible term, one obtains

TY ;τ+τ ′(y3 | y1) =
[
1− γ(y3) τ

′]TY ;τ (y3 | y1) + τ ′
∫
Γ(y3 | y2) TY ;τ (y2 | y1) dy2,

Check that this leads in the limit τ ′ → 0 to the integrodifferential equation

∂TY ;τ (y3 | y1)
∂τ

= −γ(y3)TY ;τ (y3 | y1) +
∫
Γ(y3 | y2) TY ;τ (y2 | y1) dy2,

and eventually, after invoking Eq. (3b) and relabeling the variables, to the master equation

∂TY ;τ (y | y0)
∂τ

=

∫ [
Γ(y | y′) TY ;τ (y

′ | y0)− Γ(y′ | y) TY ;τ (y | y0)
]
dy′. (4)

Note that this evolution equation has the structure of a balance equation, with a gain term, involving
the rate Γ(y | y′), and a loss term depending on the rate Γ(y′ | y).

iii. Evolution equation for the single-time probability density
Starting from the consistency condition

p
Y,1

(τ, y) =

∫
TY ;τ (y | y0) p

Y,1
(t=0, y0) dy0, (5)
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show that the above master equation leads to

∂p
Y,1

(τ, y)

∂τ
=

∫ [
Γ(y | y′) TY ;τ (y

′ | y0)− Γ(y′ | y) TY ;τ (y | y0)
]

p
Y,1

(t=0, y0) dy0 dy
′.

Check that this leads to the evolution equation

∂p
Y,1

(τ, y)

∂τ
=

∫ [
Γ(y | y′) p

Y,1
(τ, y′)− Γ(y′ | y) p

Y,1
(τ, y)

]
dy′, (6)

which is formally identical to the master equation for TY ;τ . How can you interpret this equation?
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