Wintersemester 2023/24 Universitat Bielefeld Nonequilibrium physics

Tutorial sheet 7

The exercises marked with a star are homework.

Discussion topics:
— Langevin model of Brownian motion
— Markov processes; Fokker—Planck equation

18. Vibrating string

Consider a weightless elastic string, whose extremities are fixed at points x = 0 and « = L along the
z-axis. Let y(x) denote the displacement of the string transverse to this axis—for the sake of simplicity,
we can assume that this displacement is one-dimensional—at position x. For small displacements, one
can show that the elastic energy associated with a given profile y(x) reads
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with k£ a positive constant.

When the string undergoes thermal fluctuations, induced by its environment at temperature 7', y(x)
becomes a random function (of position, instead of time), where one expects that the probability for a
given y(z) should be proportional to e PEV@)] with g = 1/kpT. Here, we wish to consider a discretized
version of the problem and view y(z) as the realization of a stochastic function Y (x).

i. Let n € IN. Consider n points 0 < 1 < 23 < --- < z, < L and let y; be the displacement of
the string at point x;. Write down the energy of the string, assuming that it is straight between two
successive points x;, T;11.

Hint: For the sake of brevity, one can introduce the notations g =0, zp4+1 = L, yo = Yn+1 = 0.

ii. We introduce the n-point probability density
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which for large n, agrees with the anticipated factor e #E¥(@)] (are you convinced of that?).

Show that the various p  satisfy the 4 properties of n-point densities given in the lecture. Write
down the single-point and two-point averages (Y (x1)) and (Y (z1)Y (z2)), as well as the autocorrelation
function. Which properties does the process possess?

*19. Another view of the Fokker—Planck equation in one dimension
Consider an arbitrary one-dimensional Markovian process X (t), taking its values in a real interval
[a,b], and such that the corresponding first two coefficients M (t,x), Mo(t,x) in the Kramers—Moyal
expansion are actually independent of time.

i. Stationary solutions

Recall the form of the Fokker—Planck equation. Assuming that there is no flow of probability across
the boundaries = a and = = b (“reflecting boundary conditions”), write down the differential equation
obeyed by the stationary solution pig 1(7) to the Fokker—Planck equation. Show that
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where C' is a constant which need not be computed. Why is this solution unique?
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ii. Transforming the Fokker—Planck equation
M 2 dM 1 (.CI?)
2 dx

Perform the change of unknown function p ., (t,r) = [pig'l(@]l/%/)(t, x) in the Fokker—Planck equation,
where piz , () is the stationary solution , and deduce the equation obeyed by 1 (t, ). What do you
recognize?

In the new language you just found, to which known problem is that of the Fokker—Planck equation
for the Langevin model [M(x) = vz, My = D, x € R] equivalent?

1
Assume now that M5 is actually constant. Let V(z) = 5[571/[1 (z)]2 +

*20. Master equation for Markov processes
The purpose of this exercise is to derive a linear integrodifferential equation—equivalent to the
Chapman—Kolmogorov equation—for the transition probability and the single-time density of an (al-
most) arbitrary homogeneous Markov process Y (t), i.e. a process for which the probability transition
PY,1|1(t2’ y2 | t1,y1) only depends on the time difference 7 = to —t;. In analogy with stationary processes,

the latter will be denoted by Ty.-(y2 | y1).

We assume that for time differences 7 much smaller than some time scale 7, the transition proba-
bility is of the form

Tyir(y2ly1) = [1 = v(y1)7]0(y2 — y1) + T(y2 | y1) T + o(7), (3a)

where o(7) denotes a term which is much smaller than 7 in the limit 7 — 0. The nonnegative quantity
I'(y2 | y1) is the transition rate from y; to yo, and ~y(y1) is its integral over o

1) = [ Tlaa ) dye (3b)

i. Compute the integral of the transition probability Ty.-(y2 |y1) over final states ys.

ii. Master equation
Starting from the Chapman—Kolmogorov equation

Ty (Y3 1) :/TY;T/(y3 ly2) Ty .r (Y2 | y1) dya,

and assuming that 7/ < 7.—note that no assumption on 7 is needed—, show that after leaving aside a
negligible term, one obtains

Tyvirer (ysly) = [1 = v(ys) 7' Ty (ys | 1) + T,/F(ZJB ly2) Ty (y2 | y1) dye,

Check that this leads in the limit 7/ — 0 to the integrodifferential equation
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or
and eventually, after invoking Eq. and relabeling the variables, to the master equation
aTY;T Y 1Yo
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Note that this evolution equation has the structure of a balance equation, with a gain term, involving
the rate I'(y |¢/), and a loss term depending on the rate T'(y' | y).

iii. Evolution equation for the single-time probability density
Starting from the consistency condition

Py (7:) = [ Tvir (0] 0) py (E=0,00) o, (5)
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show that the above master equation leads to

6PY71 (T> y) Vi !/ / /
— = (L 1y) Ty [90) =Ty |9) Tyir (1 90)] Py, (t=0,30) dyo dy'.
Check that this leads to the evolution equation
Opy (T, y)
e Z/[F(yly')py,l(ﬂ V) =T y) py,(my)] 4y, (6)

which is formally identical to the master equation for 7y ... How can you interpret this equation?



