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Tutorial sheet 6

The exercise marked with a star is homework.

16. A bizarre exercise with generating functions
In this exercise, you are to consider functions of a variable z, whose Taylor expansion involves

graphic coefficients ©©©• ,©©•• ,©•• • and so on. One can multiply those coefficients using “normal” rules,
such that each bullet • remains confined within its original subgraph, and that different subgraphs do
not merge: for instance©©©• 2 =©©©•©©©• is not the same as©©•• .

i. Let f(z) ≡©©©• z +©©••
z2
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+©•• • z

3

3!
+©••• • z

4

4!
+ · · · .

Using the Taylor expansion of ex for small x, compute exp[f(z)] to order O(z4).

ii. Consider now graphs consisting of one, two, three, four, . . . bullets, that are now no longer enclosed
in “connected groups”: • , • • , •• •, • •• •, . . . . All bullets of a given (non-connected) graph are supposed
to be distinguishable, i.e. can be designated with different labels, as e.g. (1,2,3) for the bullets of •• •.
a) For each non-connected graph with n = 2, 3 or 4 bullets, find all possible ways of “decomposing”
the graph by regrouping all its bullets in non-overlapping connected groups of 1 ≤ m ≤ n bullets. For
n = 1, i.e. •, there is a single possibility: ©©©• .
Hint : Starting with n = 3, there might be different groupings with the same “topology”, say for instance
(for n = 3) with one pair and one single bullet: you may regroup these groupings — but do not forget
their multiplicity, i.e. how many groupings have that topology.
b) Compare your “rewritings” of the disconnected graphs • • , •• •, • •• • in terms of connected subgraphs
with the coefficients of z2, z3, z4 of the function exp[f(z)] in question i. What do you notice?1

∗∗∗17. Examples of Markov processes
The lecture introduced the so-called Markov processes, which are entirely determined by their single-

time density p
Y,1

and their conditional probability density p
Y,1|1. The latter, which is referred to as

transition probability , obeys the Chapman–Kolmogorov equation

p
Y,1|1(t3, y3 | t1, y1) =

∫
p
Y,1|1(t3, y3 | t2, y2) p

Y,1|1(t2, y2 | t1, y1) dy2 for t1 < t2 < t3. (1)

i. Wiener process
The stochastic process defined by the “initial condition” p

Y,1
(t=0, y) = δ(y) for y ∈ R and the transition

probability (0 < t1 < t2)

p
Y,1|1(t2, y2 | t1, y1) =

1√
2π(t2 − t1)

exp

[
− (y2 − y1)2

2(t2 − t1)

]
is called Wiener process.

Check that this transition probability obeys the Chapman–Kolmogorov equation, and that the
probability density at time t > 0 is given by

p
Y,1

(t, y) =
1√
2πt

e−y
2/2t.

Remark: Note that the above single-time probability density is solution of the diffusion equation
∂f

∂t
=

1

2

∂2f

∂y2

with diffusion coefficient D = 1
2 .

1You are free to go to graphs with 5 or 6 bullets if you cannot sleep at night!
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ii. Ornstein–Uhlenbeck process
The so-called Ornstein–Uhlenbeck process is defined by the time-independent single-time probability
density

p
Y,1

(y) =
1√
2π

e−y
2/2

and the transition probability (τ > 0)

p
Y,1|1(t+ τ, y | t, y0) =

1√
2π(1− e−2τ )

exp

[
− (y − y0e−τ )2

2(1− e−2τ )

]
.

a) Check that this transition probability fulfills the Chapman–Kolmogorov equation, so that the
Ornstein–Uhlenbeck process is Markovian. Show that the process is also Gaussian, stationary, and that
its autocorrelation function is κ(τ) = e−τ .
b) What is the large-τ limit of the transition probability? And its limit when τ goes to 0+?
c) Viewing the above transition probability as a function of τ and y, can you find a partial differential
equation, of which it is a (fundamental) solution?
Hint : Let yourself be inspired(?) by the remark at the end of question i.
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