Tutorial sheet 6

The exercise marked with a star is homework.

16. A bizarre exercise with generating functions

In this exercise, you are to consider functions of a variable z, whose Taylor expansion involves graphic coefficients $\odot, \odot \odot$, \because and so on. One can multiply those coefficients using "normal" rules, such that each bullet - remains confined within its original subgraph, and that different subgraphs do not merge: for instance $\odot^{2}=\bigcirc \bigcirc$ is not the same as
i. Let $f(z) \equiv \odot z+\odot \frac{z^{2}}{2!}+\bigodot \frac{z^{3}}{3!}+\circlearrowleft \frac{z^{4}}{4!}+\cdots$.

Using the Taylor expansion of e^{x} for small x, compute $\exp [f(z)]$ to order $\mathcal{O}\left(z^{4}\right)$.
ii. Consider now graphs consisting of one, two, three, four, ... bullets, that are now no longer enclosed in "connected groups": •, •, $\bullet \bullet \bullet \bullet, \ldots$ All bullets of a given (non-connected) graph are supposed to be distinguishable, i.e. can be designated with different labels, as e.g. $(1,2,3)$ for the bullets of $\bullet \bullet$.
a) For each non-connected graph with $n=2,3$ or 4 bullets, find all possible ways of "decomposing" the graph by regrouping all its bullets in non-overlapping connected groups of $1 \leq m \leq n$ bullets. For $n=1$, i.e. \bullet, there is a single possibility:

Hint: Starting with $n=3$, there might be different groupings with the same "topology", say for instance (for $n=3$) with one pair and one single bullet: you may regroup these groupings - but do not forget their multiplicity, i.e. how many groupings have that topology.
b) Compare your "rewritings" of the disconnected graphs $\bullet \bullet, \bullet \bullet \bullet \bullet$ in terms of connected subgraphs with the coefficients of z^{2}, z^{3}, z^{4} of the function $\exp [f(z)]$ in question \mathbf{i}. What do you notice? ${ }^{1}$

*17. Examples of Markov processes

The lecture introduced the so-called Markov processes, which are entirely determined by their singletime density $p_{Y, 1}$ and their conditional probability density $p_{Y, 1 \mid 1}$. The latter, which is referred to as transition probability, obeys the Chapman-Kolmogorov equation

$$
\begin{equation*}
p_{Y, 1 \mid 1}\left(t_{3}, y_{3} \mid t_{1}, y_{1}\right)=\int p_{Y, 1 \mid 1}\left(t_{3}, y_{3} \mid t_{2}, y_{2}\right) p_{Y, 1 \mid 1}\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right) \mathrm{d} y_{2} \quad \text { for } t_{1}<t_{2}<t_{3} \tag{1}
\end{equation*}
$$

i. Wiener process

The stochastic process defined by the "initial condition" $p_{Y, 1}(t=0, y)=\delta(y)$ for $y \in \mathbb{R}$ and the transition probability $\left(0<t_{1}<t_{2}\right)$

$$
p_{Y, 1 \mid 1}\left(t_{2}, y_{2} \mid t_{1}, y_{1}\right)=\frac{1}{\sqrt{2 \pi\left(t_{2}-t_{1}\right)}} \exp \left[-\frac{\left(y_{2}-y_{1}\right)^{2}}{2\left(t_{2}-t_{1}\right)}\right]
$$

is called Wiener process.
Check that this transition probability obeys the Chapman-Kolmogorov equation, and that the probability density at time $t>0$ is given by

$$
p_{Y, 1}(t, y)=\frac{1}{\sqrt{2 \pi t}} \mathrm{e}^{-y^{2} / 2 t}
$$

Remark: Note that the above single-time probability density is solution of the diffusion equation

$$
\frac{\partial f}{\partial t}=\frac{1}{2} \frac{\partial^{2} f}{\partial y^{2}}
$$

with diffusion coefficient $D=\frac{1}{2}$.

[^0]
ii. Ornstein-Uhlenbeck process

The so-called Ornstein-Uhlenbeck process is defined by the time-independent single-time probability density

$$
p_{Y, 1}(y)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-y^{2} / 2}
$$

and the transition probability $(\tau>0)$

$$
p_{Y, 1 \mid 1}\left(t+\tau, y \mid t, y_{0}\right)=\frac{1}{\sqrt{2 \pi\left(1-\mathrm{e}^{-2 \tau}\right)}} \exp \left[-\frac{\left(y-y_{0} \mathrm{e}^{-\tau}\right)^{2}}{2\left(1-\mathrm{e}^{-2 \tau}\right)}\right]
$$

a) Check that this transition probability fulfills the Chapman-Kolmogorov equation, so that the Ornstein-Uhlenbeck process is Markovian. Show that the process is also Gaussian, stationary, and that its autocorrelation function is $\kappa(\tau)=\mathrm{e}^{-\tau}$.
b) What is the large- τ limit of the transition probability? And its limit when τ goes to 0^{+}?
c) Viewing the above transition probability as a function of τ and y, can you find a partial differential equation, of which it is a (fundamental) solution?
Hint: Let yourself be inspired(?) by the remark at the end of question i.

[^0]: ${ }^{1}$ You are free to go to graphs with 5 or 6 bullets if you cannot sleep at night!

