Tutorial sheet 5

The exercise marked with a star is homework.
Discussion topics: Green-Kubo formula; Onsager relations \& fluctuation-dissipation theorem in linear response theory

14. Static linear response

Consider a system, governed by a Hamiltonian \hat{H}_{0}, at thermodynamic equilibrium at temperature T. Let $Z_{0}(\beta)$ and $\langle\cdot\rangle_{0}$ denote the corresponding (canonical) partition function and averages, with as usual $\beta=1 / k_{B} T$.
The system is perturbed, via a static modification of the Hamiltonian $\hat{H}_{f}=\hat{H}_{0}-f \hat{A}$, leading to a new equilibrium state. The goal is to determine $\langle\hat{B}\rangle_{f} \equiv \operatorname{Tr}\left[\mathrm{e}^{-\beta \hat{H}_{f}} \hat{B}\right] / Z_{f}(\beta)$, where the partition function Z_{f} is given by $Z_{f}(\beta) \equiv \operatorname{Tr} \mathrm{e}^{-\beta \hat{H}_{f}}$. For that purpose, Duhamel's formula

$$
\begin{equation*}
\mathrm{e}^{-\beta \hat{H}}=\mathrm{e}^{-\beta \hat{H}_{0}}-\int_{0}^{\beta} \mathrm{e}^{-(\beta-\lambda) \hat{H}_{0}} \hat{W} \mathrm{e}^{-\lambda \hat{H}} \mathrm{~d} \lambda \quad \text { for } \hat{H}=\hat{H}_{0}+\hat{W} \tag{1}
\end{equation*}
$$

will prove useful.
i. Compute first $Z_{f}(\beta)$ in function of $Z_{0}(\beta)$ and $\langle\hat{A}\rangle_{0}$ to first order in f. What does this give for the free energy of the perturbed system?
ii. Show that

$$
\operatorname{Tr}\left[\mathrm{e}^{-\beta \hat{H}_{f}} \hat{B}\right]=Z_{0}(\beta)\left[\langle\hat{B}\rangle_{0}+f \int_{0}^{\beta}\left\langle\hat{A}_{\mathrm{I}}(-\mathrm{i} \hbar \lambda) \hat{B}\right\rangle_{0} \mathrm{~d} \lambda+\mathcal{O}\left(f^{2}\right)\right],
$$

where $\hat{A}_{\mathrm{I}}(t) \equiv \mathrm{e}^{\mathrm{i} \hat{H}_{0} t / \hbar} \hat{A} \mathrm{e}^{-\mathrm{i} \hat{H}_{0} t / \hbar}$ denotes the interaction-picture representation of \hat{A}.
iii. Deduce from the results to the first two questions the identity $\langle\hat{B}\rangle_{f}=\langle\hat{B}\rangle_{0}+\chi_{B A}^{\text {stat. }} f+\mathcal{O}\left(f^{2}\right)$, where the static response function is given by

$$
\chi_{B A}^{\text {stat. }} \equiv \int_{0}^{\beta}\left[\left\langle\hat{A}_{\mathrm{I}}(-\mathrm{i} \hbar \lambda) \hat{B}\right\rangle_{0}-\langle\hat{A}\rangle_{0}\langle\hat{B}\rangle_{0}\right] \mathrm{d} \lambda .
$$

Can you relate $\chi_{B A}^{\text {stat. }}$ to one of the correlation functions encountered in the lecture?
iv. If you still have time... can you prove Duhamel's formula (1)?

Hint: Find a differential equation obeyed by $\mathrm{e}^{-\beta \hat{H}}$, viewed as a function of β.

*15. Detailed balance relation

Consider a two-level system coupled to a macroscopic system Σ at thermodynamic equilibrium. The total Hamiltonian is given by

$$
\begin{equation*}
\hat{H}=-\frac{\hbar \omega_{0}}{2} \hat{\sigma}_{z}+\hat{H}_{\mathrm{int}}+\hat{H}_{\Sigma} \equiv \hat{H}_{0}+\hat{H}_{\mathrm{int}} \tag{2}
\end{equation*}
$$

with σ_{z} the usual Pauli matrix and $\omega_{0}>0$. Let $|g\rangle,|e\rangle$ denote the two levels (ground state, excited state) of the small system and $\left\{\left|\phi_{n}\right\rangle\right\}$ be a basis of energy eigenstates of \hat{H}_{Σ}. The interaction between the systems is chosen so as to induce transitions in the small one:

$$
\begin{equation*}
\hat{H}_{\mathrm{int}}=-\hat{\sigma}_{x} \otimes \hat{X}, \tag{3}
\end{equation*}
$$

with \hat{X} an observable of the macroscopic system.
We want to study the absorption and emission rates $\Gamma_{g \rightarrow e}, \Gamma_{e \rightarrow g}$ of the small system.

i. Time evolution

Let $|\psi(0)\rangle=|\alpha\rangle \otimes\left|\phi_{n}\right\rangle$ with $\alpha=g$ or e denote the initial state of the composite system. Check that to lowest non-trivial order in perturbation theory this state becomes at time t

$$
|\psi(t)\rangle=\mathrm{e}^{-\mathrm{i} \hat{H}_{0} t / \hbar}\left[1+\frac{\mathrm{i}}{\hbar} \int_{0}^{t} \hat{\sigma}_{x}\left(t^{\prime}\right) \hat{X}\left(t^{\prime}\right) \mathrm{d} t^{\prime}\right]|\psi(0)\rangle .
$$

ii. Absorption rate

a) Deduce from the previous result that the absorption probability at time t when the macroscopic system is initially in the state $\left|\phi_{n}\right\rangle$ is given by

$$
p_{\mathrm{abs}}^{\left(\phi_{n}\right)}(t)=\sum_{m} \left\lvert\,\left.\left(\langle e| \otimes\left\langle\phi_{m}\right|\right)|\psi(t)\rangle\right|^{2} \simeq \frac{1}{\hbar^{2}} \int_{0}^{t} \int_{0}^{t}\left\langle\phi_{n}\right| \hat{X}\left(t^{\prime}\right) \hat{X}\left(t^{\prime \prime}\right)\left|\phi_{n}\right\rangle \mathrm{e}^{-\mathrm{i} \omega_{0}\left(t^{\prime}-t^{\prime \prime}\right)} \mathrm{d} t^{\prime} \mathrm{d} t^{\prime \prime}\right.
$$

Hint: It might help to realize that $\hat{\sigma}_{x}(t)=\frac{1}{2}\left(\hat{\sigma}_{+} \mathrm{e}^{-\mathrm{i} \omega_{0} t}+\hat{\sigma}_{-} \mathrm{e}^{\mathrm{i} \omega_{0} t}\right)$, from where its matrix elements become trivial, with $\sigma_{ \pm}$the usual linear combinations of σ_{x} and σ_{y}.
b) Check that this leads for the total absorption probability to

$$
p_{\mathrm{abs}}(t) \simeq \frac{1}{\hbar^{2}} \int_{0}^{t} \int_{0}^{t}\left\langle\hat{X}\left(t^{\prime}\right) \hat{X}\left(t^{\prime \prime}\right)\right\rangle_{\mathrm{eq} .} \mathrm{e}^{-\mathrm{i} \omega_{0}\left(t^{\prime}-t^{\prime \prime}\right)} \mathrm{d} t^{\prime} \mathrm{d} t^{\prime \prime}
$$

with $\langle\cdot\rangle_{\text {eq. }}$. the usual equilibrium expectation value using the density operator of the macroscopic system.
c) One recognizes in the integrand the non-symmetrized correlation function $C_{X X}\left(t^{\prime}-t^{\prime \prime}\right)$ for \hat{X}. Assuming that this function only takes significant values when its argument is close to 0 , show how you can approximate the double integral according to

$$
\int_{0}^{t} \int_{0}^{t} \mathrm{~d} t^{\prime} \mathrm{d} t^{\prime \prime} \simeq t \int_{-\infty}^{\infty} \mathrm{d}\left(t^{\prime}-t^{\prime \prime}\right)
$$

Deduce from there the absorption rate

$$
\begin{equation*}
\Gamma_{g \rightarrow e}=\frac{1}{\hbar^{2}} \tilde{C}_{X X}\left(-\omega_{0}\right) \tag{4}
\end{equation*}
$$

with $\tilde{C}_{X X}$ the Fourier transform of $C_{X X}$.

iii. Emission rate

Repeating the computation of question ii. (you need not do it explicitly! the only change is that of a matrix element), deduce that the emission rate of the small system is

$$
\begin{equation*}
\Gamma_{e \rightarrow g}=\frac{1}{\hbar^{2}} \tilde{C}_{X X}\left(\omega_{0}\right) . \tag{5}
\end{equation*}
$$

iv. We let the populations π_{g}, π_{e} of the two levels according to the coupled rate equations (do you agree that they make sense if one remains in a linear regime?)

$$
\begin{aligned}
& \frac{\mathrm{d} \pi_{g}(t)}{\mathrm{d} t}=-\Gamma_{g \rightarrow e} \pi_{g}(t)+\Gamma_{e \rightarrow g} \pi_{e}(t) \\
& \frac{\mathrm{d} \pi_{e}(t)}{\mathrm{d} t}=\Gamma_{g \rightarrow e} \pi_{g}(t)-\Gamma_{e \rightarrow g} \pi_{e}(t) .
\end{aligned}
$$

Find the ratio π_{e} / π_{g} of these populations in the stationary regime: first in terms of the rates; then, using the detailed balance relation [Eq. (III.53) of the lecture notes], in terms of the energy difference between both levels. What do you recognize?

If you want more information on the possible interest of the system modeled above, you may have a look at R. J. Schoelkopf et al., Qubits as Spectrometers of Quantum Noise, http://arxiv.org/abs/ cond-mat/0210247.

