Tutorial sheet 5

The exercise marked with a star is homework.

Discussion topics: Green–Kubo formula; Onsager relations & fluctuation-dissipation theorem in linear response theory

14. Static linear response

Consider a system, governed by a Hamiltonian \hat{H}_0 , at thermodynamic equilibrium at temperature T. Let $Z_0(\beta)$ and $\langle \cdot \rangle_0$ denote the corresponding (canonical) partition function and averages, with as usual $\beta = 1/k_B T$.

The system is perturbed, via a *static* modification of the Hamiltonian $\hat{H}_f = \hat{H}_0 - f\hat{A}$, leading to a new equilibrium state. The goal is to determine $\langle \hat{B} \rangle_f \equiv \text{Tr}\left[e^{-\beta \hat{H}_f}\hat{B}\right]/Z_f(\beta)$, where the partition function Z_f is given by $Z_f(\beta) \equiv \text{Tr} e^{-\beta \hat{H}_f}$. For that purpose, Duhamel's formula

$$e^{-\beta\hat{H}} = e^{-\beta\hat{H}_0} - \int_0^\beta e^{-(\beta-\lambda)\hat{H}_0} \hat{W} e^{-\lambda\hat{H}} d\lambda \quad \text{for } \hat{H} = \hat{H}_0 + \hat{W}$$
(1)

will prove useful.

i. Compute first $Z_f(\beta)$ in function of $Z_0(\beta)$ and $\langle \hat{A} \rangle_0$ to first order in f. What does this give for the free energy of the perturbed system?

ii. Show that

$$\operatorname{Tr}\left[\mathrm{e}^{-\beta\hat{H}_{f}}\hat{B}\right] = Z_{0}(\beta) \left[\left\langle \hat{B} \right\rangle_{0} + f \int_{0}^{\beta} \left\langle \hat{A}_{\mathrm{I}}(-\mathrm{i}\hbar\lambda)\hat{B} \right\rangle_{0} \mathrm{d}\lambda + \mathcal{O}(f^{2}) \right],$$

where $\hat{A}_{\rm I}(t) \equiv e^{i\hat{H}_0 t/\hbar} \hat{A} e^{-i\hat{H}_0 t/\hbar}$ denotes the interaction-picture representation of \hat{A} .

iii. Deduce from the results to the first two questions the identity $\langle \hat{B} \rangle_f = \langle \hat{B} \rangle_0 + \chi_{BA}^{\text{stat.}} f + \mathcal{O}(f^2)$, where the *static response function* is given by

$$\chi_{BA}^{\text{stat.}} \equiv \int_0^\beta \left[\left\langle \hat{A}_{\text{I}}(-\mathrm{i}\hbar\lambda)\hat{B} \right\rangle_0 - \left\langle \hat{A} \right\rangle_0 \langle \hat{B} \rangle_0 \right] \mathrm{d}\lambda.$$

Can you relate $\chi_{BA}^{\text{stat.}}$ to one of the correlation functions encountered in the lecture?

iv. If you still have time... can you prove Duhamel's formula (1)?

Hint: Find a differential equation obeyed by $e^{-\beta \hat{H}}$, viewed as a function of β .

*15. Detailed balance relation

Consider a two-level system coupled to a macroscopic system Σ at thermodynamic equilibrium. The total Hamiltonian is given by

$$\hat{H} = -\frac{\hbar\omega_0}{2}\hat{\sigma}_z + \hat{H}_{\rm int} + \hat{H}_{\Sigma} \equiv \hat{H}_0 + \hat{H}_{\rm int},\tag{2}$$

with σ_z the usual Pauli matrix and $\omega_0 > 0$. Let $|g\rangle$, $|e\rangle$ denote the two levels (ground state, excited state) of the small system and $\{ |\phi_n \rangle \}$ be a basis of energy eigenstates of \hat{H}_{Σ} . The interaction between the systems is chosen so as to induce transitions in the small one:

$$\dot{H}_{\rm int} = -\hat{\sigma}_x \otimes \dot{X},\tag{3}$$

with \hat{X} an observable of the macroscopic system.

We want to study the absorption and emission rates $\Gamma_{g \to e}$, $\Gamma_{e \to g}$ of the small system.

i. Time evolution

Let $|\psi(0)\rangle = |\alpha\rangle \otimes |\phi_n\rangle$ with $\alpha = g$ or *e* denote the initial state of the composite system. Check that to lowest non-trivial order in perturbation theory this state becomes at time *t*

$$|\psi(t)\rangle = \mathrm{e}^{-\mathrm{i}\hat{H}_0 t/\hbar} \bigg[1 + \frac{\mathrm{i}}{\hbar} \int_0^t \hat{\sigma}_x(t') \hat{X}(t') \,\mathrm{d}t' \bigg] |\psi(0)\rangle.$$

ii. Absorption rate

a) Deduce from the previous result that the absorption probability at time t when the macroscopic system is initially in the state $|\phi_n\rangle$ is given by

$$p_{\mathrm{abs}}^{(\phi_n)}(t) = \sum_m \left| \left(\langle e | \otimes \langle \phi_m | \right) | \psi(t) \rangle \right|^2 \simeq \frac{1}{\hbar^2} \int_0^t \int_0^t \langle \phi_n | \hat{X}(t') \hat{X}(t'') | \phi_n \rangle \, \mathrm{e}^{-\mathrm{i}\omega_0(t'-t'')} \, \mathrm{d}t' \, \mathrm{d}t''.$$

Hint: It might help to realize that $\hat{\sigma}_x(t) = \frac{1}{2}(\hat{\sigma}_+ e^{-i\omega_0 t} + \hat{\sigma}_- e^{i\omega_0 t})$, from where its matrix elements become trivial, with σ_{\pm} the usual linear combinations of σ_x and σ_y .

b) Check that this leads for the total absorption probability to

$$p_{\rm abs}(t) \simeq \frac{1}{\hbar^2} \int_0^t \int_0^t \left\langle \hat{X}(t') \hat{X}(t'') \right\rangle_{\rm eq.} e^{-\mathrm{i}\omega_0(t'-t'')} \,\mathrm{d}t' \,\mathrm{d}t'',$$

with $\langle \cdot \rangle_{\text{eq.}}$ the usual equilibrium expectation value using the density operator of the macroscopic system. **c)** One recognizes in the integrand the non-symmetrized correlation function $C_{XX}(t' - t'')$ for \hat{X} . Assuming that this function only takes significant values when its argument is close to 0, show how you can approximate the double integral according to

$$\int_0^t \int_0^t \mathrm{d}t' \,\mathrm{d}t'' \simeq t \int_{-\infty}^\infty \mathrm{d}(t' - t'').$$

Deduce from there the absorption rate

$$\Gamma_{g \to e} = \frac{1}{\hbar^2} \tilde{C}_{XX}(-\omega_0),\tag{4}$$

with \tilde{C}_{XX} the Fourier transform of C_{XX} .

iii. Emission rate

Repeating the computation of question ii. (you need not do it explicitly! the only change is that of a matrix element), deduce that the emission rate of the small system is

$$\Gamma_{e \to g} = \frac{1}{\hbar^2} \tilde{C}_{XX}(\omega_0). \tag{5}$$

iv. We let the populations π_g , π_e of the two levels according to the coupled rate equations (do you agree that they make sense if one remains in a linear regime?)

$$\frac{\mathrm{d}\pi_g(t)}{\mathrm{d}t} = -\Gamma_{g\to e}\pi_g(t) + \Gamma_{e\to g}\pi_e(t)$$
$$\frac{\mathrm{d}\pi_e(t)}{\mathrm{d}t} = \Gamma_{g\to e}\pi_g(t) - \Gamma_{e\to g}\pi_e(t).$$

Find the ratio π_e/π_g of these populations in the stationary regime: first in terms of the rates; then, using the **detailed balance relation** [Eq. (III.53) of the lecture notes], in terms of the energy difference between both levels. What do you recognize?

If you want more information on the possible interest of the system modeled above, you may have a look at R. J. Schoelkopf *et al.*, *Qubits as Spectrometers of Quantum Noise*, http://arxiv.org/abs/cond-mat/0210247.