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Tutorial sheet 12

The exercises marked with a star are homework.

Discussion topic: Boltzmann equation: relaxation time approximation and its application to the
computation of transport coefficients

31. Boltzmann gas in a harmonic trap
Consider a system of N neutral particles of mass m and let f̄(t,~r,~p) denote its phase-space density.

i. Balance equation
Let g(~r,~p) denote a dynamical quantity.
a) Denoting by Icoll. the collision integral of the Boltzmann transport equation, show that the latter
leads to the generic balance equation

d〈g〉
dt
−
〈
~v · ~∇~rg

〉
−
〈
~F · ~∇~pg

〉
=
〈
g f̄−1 Icoll.

〉
, (1)

where the angular brackets denote an average over position and momenta:

〈g〉 ≡ 1

N

∫
g(~r,~p) f̄(t,~r,~p) d6V .

Hint : You may use the fact that f̄ vanishes at “the edges” of phase space.
b) Explain why

〈
g f̄−1 Icoll.

〉
vanishes when g is of the form g(~r,~p) = a(~r) +~b(~r) ·~p+ c(~r)~p2 with a, ~b,

c arbitrary functions of ~r.

ii. Let the system be trapped in a harmonic potential, namely ~F = −~∇V with V (~r) = 1
2mω

2
0~r

2.
a) Derive using Eq. (1) the coupled system of equations

d〈~r2〉
dt

= 2
〈
~r ·~v

〉
,

d〈~r ·~v〉
dt

=
〈
~v2
〉
− ω2

0

〈
~r2
〉

,
d〈~v2〉

dt
= −2ω2

0

〈
~r ·~v

〉
. (2)

b) Find and discuss the solutions of the system (2) evolving in time like eiωt.
The non-trivial behavior, referred to as “monopole oscillation” or “breathing mode”, was observed

for the first time a few years ago, in a gas of cold atoms.1 Note that the collision integral does not
appear in the equations (2), which means that they hold irrespective of whether there are inter-particle
collisions or not. This is no longer true if the confining potential is not spherically symmetric—in which
case the monopole oscillation couples to higher multipolar modes, which are damped by the collisions.2

∗∗∗32. Electrical conductivity in a magnetic field3

We consider the problem of electric conduction in a metal subject to a constant and uniform elec-
tromagnetic field ( ~E, ~B). The conduction electrons (mass me, charge −e) form a non-relativistic, highly
degenerate ideal Fermi gas obeying the kinetic Lorentz equation (cf. Tutorial sheet 10) in the presence
of an external force ~F , which is here simply the Lorentz force. We assume that the various densities are
uniform and stationary: f̄(t,~r,~p) = f̄(~p), where ~p denotes the linear momentum, and n(t,~r) = n , which

1D. S. Lobser et al., Observation of a persistent non-equilibrium state in cold atoms, Nature Phys. 11 (2015) 1009.
2The interested reader may have a look at D. Guéry-Odelin et al., Collective oscillations of a classical gas confined in

harmonic traps, Phys. Rev. A 60 (1999) 4851—note that there is a typo in Eq. (9). Further, very recent developments on
the topic (requiring some knowledge of hydrodynamics) are reported in M. I. García de Soria et al., Fate of Boltzmann’s
Breathers: Stokes Hypothesis and Anomalous Thermalization, Phys. Rev. Lett. 132 (2024) 027101.

3This exercise was shamelessly stolen from the textbook Equilibrium and non-equilibrium statistical thermodynamics
by M. Le Bellac et al.
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leads to simplifications on the left-hand side of the Lorentz equation. In addition, we assume that the
local equilibrium distribution is a function of energy only: f̄(0)(~p) = f̄(0)(ε) with ε ≡~p 2/2me.

i. We first take ~B = ~0. Calculate δ f̄ ≡ f̄ − f̄(0) and show that the electric current density ~Jel. is given
in the relaxation time approximation by

~Jel. = −e2
∫
τr(ε)(~v · ~E )~v

d f̄(0)

dε

d3~p

(2π~)3
,

where τr is assumed to depend only on energy. Show that, if the local equilibrium distribution is the
Fermi distribution (with 2 spin degrees of freedom) at T = 0, f̄(0)(ε) = 2 Θ(εF − ε) with εF the Fermi
energy, then ~Jel. obeys Ohm’s law with the electrical conductivity

σel. =
n e2

me
τF

where τF ≡ τr(εF).

ii. Let now ~B 6= ~0. How is the electrical conductivity modified if ~B is parallel to ~E ?

iii. Consider the case where the electric field is in the xy-plane and the magnetic field along the z-axis,
~B = B~ez with B > 0.
a) Show that the Lorentz equation in the relaxation time approximation becomes

−e~v · ~E d f̄(0)

dε
− e
(
~v × ~B

)
· ~∇~p δ f̄ = − δ f̄

τr(ε)
.

b) We look for a solution of the form

δ f̄ = −~v · ~C d f̄(0)

dε

with ~C a vector, function of ~E and ~B but independent of~v, to be determined. What should ~C be when
~B = ~0? when ~E = ~0? For the latter case, estimate first the average magnetic force on the electrons.
c) Show that ~C satisfies the equation

−e ~E + ~ω × ~C =
~C

τr(ε)
,

with ~ω = ω~ez, where ω ≡ eB/me is the Larmor frequency of the electrons. Explain why ~C is necessarily
of the form ~C = α ~E + δ ~B +γ ~B× ~E , with α, δ, γ real numbers. Find the expression of ~C and show that

δ f̄ =
eτr

1 + ω2τ2r

(
~E + τr ~ω × ~E

)
·~v d f̄(0)

dε
.

d) Calculate the electric current and the components (σel.)ij , i, j = x, y of the electrical conductivity
tensor. Verify that (σel.)xy = −(σel.)yx and comment on this relation.

∗∗∗33. Electrical conductivity in a magnetic field: Hall effect
This exercise is a sequel to the previous one, yet tackles the problem differently. We again consider

the problem of electric conduction in a metal. We now assume that the conductor subject to the electric
and magnetic fields ~E , ~B is a rectangular parallelepiped, with its sides along the coordinate axes. Let
L, l, and d be the respective lengths of the sides parallel to the x-, y and z-directions.

i. Drude–Lorentz model
To model the effect of collisions in a simple way, one introduces an “average equation of motion” for the
conduction electrons—i.e., an evolution equation for their average velocity 〈~v〉

d〈~v〉
dt

= −〈~v〉
τr
− e

me

(
~E + 〈~v〉 × ~B

)
.
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Give a physical interpretation for this equation. Check that in the stationary regime one has

〈vx〉 = −eτr
me

Ex − ωτr〈vy〉 , 〈vy〉 = −eτr
me

Ey + ωτr〈vx〉 ,

with ω the Larmor frequency defined in exercise 32. Show that if one takes τr = τF, one recovers the
same expression for the conductivity tensor as in exercise 32.

ii. Calculate in terms of Ex the value EH of Ey which cancels (Jel.)y. Verify that the transport of
electrons in that situation is the same as in the case ~B = ~0, in other words (Jel.)x = σel.Ex. The field
intensity EH is called Hall field , and the Hall resistance is defined by

RH ≡
VH
I

where VH is the Hall voltage, VH/l = EH, and I the total electric current along the x direction. Show
that RH is given by

RH =
B

nde
,

with n the density of conduction electrons and B ≡ | ~B|. By noting that RH is independent of the
relaxation time, find its expression using an elementary argument.
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