Tutorial sheet 12

The exercises marked with a star are homework.
Discussion topic: Boltzmann equation: relaxation time approximation and its application to the computation of transport coefficients

31. Boltzmann gas in a harmonic trap

Consider a system of N neutral particles of mass m and let $\overline{\mathrm{f}}(t, \vec{r}, \vec{p})$ denote its phase-space density.

i. Balance equation

Let $g(\vec{r}, \vec{p})$ denote a dynamical quantity.
a) Denoting by $\mathcal{I}_{\text {coll. }}$ the collision integral of the Boltzmann transport equation, show that the latter leads to the generic balance equation

$$
\begin{equation*}
\frac{\mathrm{d}\langle g\rangle}{\mathrm{d} t}-\left\langle\vec{v} \cdot \vec{\nabla}_{\vec{r}} g\right\rangle-\left\langle\vec{F} \cdot \vec{\nabla}_{\vec{p}} g\right\rangle=\left\langle g \overline{\mathrm{f}}^{-1} \mathcal{I}_{\text {coll. }}\right\rangle \tag{1}
\end{equation*}
$$

where the angular brackets denote an average over position and momenta:

$$
\langle g\rangle \equiv \frac{1}{N} \int g(\vec{r}, \vec{p}) \overline{\mathrm{f}}(t, \vec{r}, \vec{p}) \mathrm{d}^{6} \mathcal{V}
$$

Hint: You may use the fact that $\overline{\mathrm{f}}$ vanishes at "the edges" of phase space.
b) Explain why $\left\langle g \bar{f}^{-1} \mathcal{I}_{\text {coll. }}\right\rangle$ vanishes when g is of the form $g(\vec{r}, \vec{p})=a(\vec{r})+\vec{b}(\vec{r}) \cdot \vec{p}+c(\vec{r}) \vec{p}^{2}$ with a, \vec{b}, c arbitrary functions of \vec{r}.
ii. Let the system be trapped in a harmonic potential, namely $\vec{F}=-\vec{\nabla} V$ with $V(\vec{r})=\frac{1}{2} m \omega_{0}^{2} \vec{r}^{2}$.
a) Derive using Eq. (1) the coupled system of equations

$$
\begin{equation*}
\frac{\mathrm{d}\left\langle\vec{r}^{2}\right\rangle}{\mathrm{d} t}=2\langle\vec{r} \cdot \vec{v}\rangle \quad, \quad \frac{\mathrm{d}\langle\vec{r} \cdot \vec{v}\rangle}{\mathrm{d} t}=\left\langle\vec{v}^{2}\right\rangle-\omega_{0}^{2}\left\langle\vec{r}^{2}\right\rangle \quad, \quad \frac{\mathrm{d}\left\langle\vec{v}^{2}\right\rangle}{\mathrm{d} t}=-2 \omega_{0}^{2}\langle\vec{r} \cdot \vec{v}\rangle . \tag{2}
\end{equation*}
$$

b) Find and discuss the solutions of the system (2) evolving in time like $\mathrm{e}^{\mathrm{i} \omega t}$.

The non-trivial behavior, referred to as "monopole oscillation" or "breathing mode", was observed for the first time a few years ago, in a gas of cold atoms 1 Note that the collision integral does not appear in the equations (2), which means that they hold irrespective of whether there are inter-particle collisions or not. This is no longer true if the confining potential is not spherically symmetric-in which case the monopole oscillation couples to higher multipolar modes, which are damped by the collisions \int^{2}

${ }^{*} 32$. Electrical conductivity in a magnetic field ${ }^{3}$

We consider the problem of electric conduction in a metal subject to a constant and uniform electromagnetic field $(\overrightarrow{\mathscr{E}}, \overrightarrow{\mathscr{B}})$. The conduction electrons (mass m_{e}, charge $-e$) form a non-relativistic, highly degenerate ideal Fermi gas obeying the kinetic Lorentz equation (cf. Tutorial sheet 10) in the presence of an external force \vec{F}, which is here simply the Lorentz force. We assume that the various densities are uniform and stationary: $\overline{\mathrm{f}}(t, \vec{r}, \vec{p})=\overline{\mathrm{f}}(\vec{p})$, where \vec{p} denotes the linear momentum, and $n(t, \vec{r})=n$, which

[^0]leads to simplifications on the left-hand side of the Lorentz equation. In addition, we assume that the local equilibrium distribution is a function of energy only: $\bar{f}^{(0)}(\vec{p})=\overline{\mathrm{f}}^{(0)}(\varepsilon)$ with $\varepsilon \equiv \vec{p}^{2} / 2 m_{\mathrm{e}}$.
i. We first take $\overrightarrow{\mathscr{B}}=\overrightarrow{0}$. Calculate $\delta \overline{\mathrm{f}} \equiv \overline{\mathrm{f}}-\overline{\mathrm{f}}(0)$ and show that the electric current density $\vec{J}_{\text {el. }}$ is given in the relaxation time approximation by
$$
\vec{J}_{\text {el. }}=-e^{2} \int \tau_{\mathrm{r}}(\varepsilon)(\vec{v} \cdot \overrightarrow{\mathscr{E}}) \vec{v} \frac{\mathrm{~d} \overline{\boldsymbol{f}}^{(0)}}{\mathrm{d} \varepsilon} \frac{\mathrm{~d}^{3} \vec{p}}{(2 \pi \hbar)^{3}},
$$
where τ_{r} is assumed to depend only on energy. Show that, if the local equilibrium distribution is the Fermi distribution (with 2 spin degrees of freedom) at $T=0, \bar{f}^{(0)}(\varepsilon)=2 \Theta\left(\varepsilon_{\mathrm{F}}-\varepsilon\right)$ with ε_{F} the Fermi energy, then $\vec{J}_{\text {el }}$. obeys Ohm's law with the electrical conductivity
$$
\sigma_{\mathrm{el} .}=\frac{n e^{2}}{m_{\mathrm{e}}} \tau_{\mathrm{F}}
$$
where $\tau_{\mathrm{F}} \equiv \tau_{\mathrm{r}}\left(\varepsilon_{\mathrm{F}}\right)$.
ii. Let now $\overrightarrow{\mathscr{B}} \neq \overrightarrow{0}$. How is the electrical conductivity modified if $\overrightarrow{\mathscr{B}}$ is parallel to $\overrightarrow{\mathscr{E}}$?
iii. Consider the case where the electric field is in the $x y$-plane and the magnetic field along the z-axis, $\vec{B}=\mathscr{B} \overrightarrow{\mathrm{e}}_{z}$ with $\mathscr{B}>0$.
a) Show that the Lorentz equation in the relaxation time approximation becomes
$$
-e \vec{v} \cdot \overrightarrow{\mathscr{E}} \frac{\mathrm{~d} \overline{\mathrm{f}}(0)}{\mathrm{d} \varepsilon}-e(\vec{v} \times \overrightarrow{\mathscr{B}}) \cdot \vec{\nabla}_{\vec{p}} \delta \overline{\mathrm{f}}=-\frac{\delta \overline{\mathrm{f}}}{\tau_{r}(\varepsilon)}
$$
b) We look for a solution of the form
$$
\delta \bar{f}=-\vec{v} \cdot \vec{C} \frac{\mathrm{~d} \overline{\mathrm{f}}^{(0)}}{\mathrm{d} \varepsilon}
$$
with \vec{C} a vector, function of $\overrightarrow{\mathscr{E}}$ and $\overrightarrow{\mathscr{B}}$ but independent of \vec{v}, to be determined. What should \vec{C} be when $\overrightarrow{\mathscr{B}}=\overrightarrow{0}$? when $\overrightarrow{\mathscr{E}}=\overrightarrow{0}$? For the latter case, estimate first the average magnetic force on the electrons.
c) Show that \vec{C} satisfies the equation
$$
-e \overrightarrow{\mathscr{E}}+\vec{\omega} \times \vec{C}=\frac{\vec{C}}{\tau_{r}(\varepsilon)},
$$
with $\vec{\omega}=\omega \overrightarrow{\mathrm{e}}_{z}$, where $\omega \equiv e \mathscr{B} / m_{\mathrm{e}}$ is the Larmor frequency of the electrons. Explain why \vec{C} is necessarily of the form $\vec{C}=\alpha \overrightarrow{\mathscr{E}}+\delta \overrightarrow{\mathscr{B}}+\gamma \overrightarrow{\mathscr{B}} \times \overrightarrow{\mathscr{E}}$, with α, δ, γ real numbers. Find the expression of \vec{C} and show that
$$
\delta \overline{\mathrm{f}}=\frac{e \tau_{\mathrm{r}}}{1+\omega^{2} \tau_{\mathrm{r}}^{2}}\left(\overrightarrow{\mathscr{E}}+\tau_{\mathrm{r}} \vec{\omega} \times \overrightarrow{\mathscr{E}}\right) \cdot \vec{v} \frac{\mathrm{~d} \overline{\mathrm{f}}(0)}{\mathrm{d} \varepsilon}
$$
d) Calculate the electric current and the components $\left(\sigma_{\mathrm{el} .}\right)_{i j}, i, j=x, y$ of the electrical conductivity tensor. Verify that $\left(\sigma_{\mathrm{el} .}\right)_{x y}=-\left(\sigma_{\mathrm{el} .}\right)_{y x}$ and comment on this relation.

*33. Electrical conductivity in a magnetic field: Hall effect

This exercise is a sequel to the previous one, yet tackles the problem differently. We again consider the problem of electric conduction in a metal. We now assume that the conductor subject to the electric and magnetic fields $\overrightarrow{\mathscr{E}}, \overrightarrow{\mathscr{B}}$ is a rectangular parallelepiped, with its sides along the coordinate axes. Let L, l, and d be the respective lengths of the sides parallel to the x-, y and z-directions.

i. Drude-Lorentz model

To model the effect of collisions in a simple way, one introduces an "average equation of motion" for the conduction electrons-i.e., an evolution equation for their average velocity $\langle\vec{v}\rangle$

$$
\frac{\mathrm{d}\langle\vec{v}\rangle}{\mathrm{d} t}=-\frac{\langle\vec{v}\rangle}{\tau_{\mathrm{r}}}-\frac{e}{m_{\mathrm{e}}}(\overrightarrow{\mathscr{E}}+\langle\vec{v}\rangle \times \overrightarrow{\mathscr{B}})
$$

Give a physical interpretation for this equation. Check that in the stationary regime one has

$$
\left\langle v_{x}\right\rangle=-\frac{e \tau_{\mathrm{r}}}{m_{\mathrm{e}}} \mathscr{E}_{x}-\omega \tau_{\mathrm{r}}\left\langle v_{y}\right\rangle, \quad\left\langle v_{y}\right\rangle=-\frac{e \tau_{\mathrm{r}}}{m_{\mathrm{e}}} \mathscr{E}_{y}+\omega \tau_{\mathrm{r}}\left\langle v_{x}\right\rangle
$$

with ω the Larmor frequency defined in exercise 32. Show that if one takes $\tau_{\mathrm{r}}=\tau_{\mathrm{F}}$, one recovers the same expression for the conductivity tensor as in exercise $\mathbf{3 2}$.
ii. Calculate in terms of \mathscr{E}_{x} the value \mathscr{E}_{H} of \mathscr{E}_{y} which cancels $\left(J_{\mathrm{el} .}\right)_{y}$. Verify that the transport of electrons in that situation is the same as in the case $\overrightarrow{\mathscr{B}}=\overrightarrow{0}$, in other words $\left(J_{\mathrm{el} .}\right)_{x}=\sigma_{\mathrm{el} .} \mathscr{E}_{x}$. The field intensity \mathscr{E}_{H} is called Hall field, and the Hall resistance is defined by

$$
R_{\mathrm{H}} \equiv \frac{V_{\mathrm{H}}}{I}
$$

where V_{H} is the Hall voltage, $V_{\mathrm{H}} / l=\mathscr{E}_{\mathrm{H}}$, and I the total electric current along the x direction. Show that R_{H} is given by

$$
R_{\mathrm{H}}=\frac{\mathscr{B}}{n d e},
$$

with n the density of conduction electrons and $\mathscr{B} \equiv|\overrightarrow{\mathscr{B}}|$. By noting that R_{H} is independent of the relaxation time, find its expression using an elementary argument.

[^0]: ${ }^{1}$ D. S. Lobser et al., Observation of a persistent non-equilibrium state in cold atoms, Nature Phys. 11 (2015) 1009
 ${ }^{2}$ The interested reader may have a look at D. Guéry-Odelin et al., Collective oscillations of a classical gas confined in harmonic traps, Phys. Rev. A 60 (1999) 4851 -note that there is a typo in Eq. (9). Further, very recent developments on the topic (requiring some knowledge of hydrodynamics) are reported in M. I. García de Soria et al., Fate of Boltzmann's Breathers: Stokes Hypothesis and Anomalous Thermalization, Phys. Rev. Lett. 132 (2024) 027101.
 ${ }^{3}$ This exercise was shamelessly stolen from the textbook Equilibrium and non-equilibrium statistical thermodynamics by M. Le Bellac et al.

