Übungsblatt Nr.14

Diskussionsthemen:

- Welche Methoden kennen Sie, um Residuen zu berechnen?
- Was besagt die Cauchy-Formel?

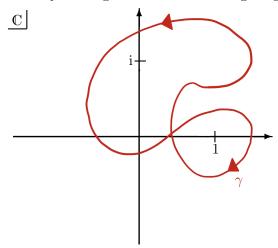
45. Laurent-Reihe und Residuensatz

Betrachten Sie die Funktion $f(z) = \frac{1}{z(z-1)^2}$.

Entwickeln Sie die Funktion in eine Laurent-Reihe um den Punkt $z_0 = 1$. Geben Sie den Konvergenzbereich der Reihe an.

Hinweis:
$$\frac{1}{z} = \frac{1}{1 - (1 - z)}$$
.

- ii. Bestimmen Sie das Residuum von f in $z_0=1$ aus der Laurent-Reihe.
- Bestimmen Sie das Residuum in $z_0 = 1$ mit Hilfe der Grenzwertdefinition für Residuen und überprüfen Sie das Ergebnis aus ii.
- iv. Bestimmen Sie das Residuum von f in $z_1 = 0$.
- \mathbf{v} . Bestimmen Sie das Integral von f entlang der in der Abbildung dargestellten Kontur.



46. Konturintegrale mit Residuensatz

Berechnen Sie für R>0 mit $R\neq 1$ das Konturintegral $\oint_{\partial K_R(0)} \frac{\mathrm{d}z}{z^2-1}$ entlang des Kreises mit lius R dessen Zentrum im Ursprungspunkt liegt. Radius R dessen Zentrum im Ursprungspunkt liegt.

47. Reelle Integrale mit Residuensatz

- a) Berechnen Sie mit Hilfe des Residuensatzes das Integral $\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{x^4 + 1}$.
- **b)** Berechnen Sie mit Hilfe des Residuensatzes das Integral $\int_0^\infty \frac{x^2 dx}{x^4 + 1}$. Hinweis: Berechnen Sie zuerst das Integral über R.

48. Anwendung der Cauchy-Formel

Die Funktionen f(z) und f'(z) seien analytisch auf einem Gebiet $G \in \mathbb{C}$, und γ sei eine Kurve ganz im G, die den Punkt $z_0 \in G$ umläuft. Zeigen Sie, dass folgendes gilt:

$$\oint_{\gamma} \frac{f'(z)}{z - z_0} dz = \oint_{\gamma} \frac{f(z)}{(z - z_0)^2} dz.$$

Hinweis: Eine Möglichkeit ist, den Cauchy-Integralsatz zu benutzen, um die Kontur so nah an z_0 zu bringen, dass die Reihen-Darstellungen von f und f' konvergieren.