Übung Nr. 8

Diskussionsthemen:

- Vorhersagen des Schalenmodells des Atomkerns (Spin, Parität, elektrische Momente)
- Informieren Sie sich über die Anwendungen der Kernspinresonanz, insbesondere die Magnetresonanztomographie.

Aufgabe 24. Spin und Parität

Bestimmen Sie Spin und Parität $J_{\rm Kern}^{\sf P}$ der folgenden Kerne (im Grundzustand): $^{30}_{14}$ Si, $^{40}_{20}$ Ca, $^{41}_{20}$ Ca, $^{59}_{27}$ Co. 1

Aufgabe 25. Angeregte Zustände im Schalenmodell

In der folgenden Tabelle sind für einige Kerne die experimentell bestimmten Spins und Paritäten des Grundzustands und des ersten angeregten Zustands gegeben:

Geben Sie nach dem Einteilchen-Schalenmodell die Konfiguration der Protonen und Neutronen in nicht abgeschlossenen Unterschalen für diese Kerne an, ¹und machen Sie Voraussagen über die Quantenzahlen der Grundzustände und ersten angeregten Zustände. Vergleichen Sie Ihr Resultat mit den angegebenen Werten.

Aufgabe 26. Elektrisches Quadrupolmoment

- i. Zeigen Sie, dass eine kugelsymmetrische Ladungsverteilung kein elektrisches Quadrupolmoment hat.
- ii. Wir wollen im Folgenden das elektrische Quadrupolmoment eines deformierten Kerns ausrechnen. Hierbei sei die Oberfläche eines prolaten Ellipsoiden beschrieben durch die Funktion

$$r(\theta, \varphi) = R[1 + \beta_{20}Y_{20}(\theta, \varphi)],$$

wobei R der mittlere Radius und β_{20} der Deformationsparameter sind und

$$Y_{20}(\theta, \varphi) = \sqrt{\frac{5}{16\pi}} (3\cos^2 \theta - 1).$$

(Symmetrieachse ist die z-Achse). Berechnen Sie das Quadrupolmoment $Q_{zz} = \int \rho_{\rm el.}(\vec{r})(3z^2 - r^2) \, {\rm d}^3 \vec{r}$ des deformierten Kerns unter der Annahme, dass die Ladung homogen über das Volumen des Ellipsoids verteilt ist. Sie sollten hierbei eine Entwicklung in β_{20} bis einschließlich zur Ordnung $\mathcal{O}(\beta_{20}^2)$ vornehmen.

Aufgabe 27. Kernspinresonanz: Spinpräzession in einem festen Magnetfeld

Das magnetische Dipolmoment $\hat{\vec{\mu}}$ und der Spin-Operator $\hat{\vec{S}}$ eines Teilchens mit dem Spin $\frac{1}{2}$ seien verbunden durch

 $\hat{\vec{\mu}} = \gamma \hat{\vec{S}} = \mu_0 \hat{\vec{\sigma}},\tag{1}$

wobei γ das sog. gyromagnetische Verhältnis und $\mu_0 \equiv \gamma \hbar/2$ ist. Wir wollen hier und in einer späteren Aufgabe das durch Isidor Rabi eingeführte Prinzip der Messung von γ beschreiben.

¹Das Termschema der Energieniveaus können Sie der Aufgabe **23** entnehmen.

Die übliche Darstellung der Pauli-Matrizen ist

$$\hat{\sigma}_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \hat{\sigma}_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \hat{\sigma}_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 (2)

Die Eigenzustände $|+\rangle$, $|-\rangle$ (in der Diracschen Bezeichnungsweise) der Operatoren $\hat{\vec{S}}^2$ und \hat{S}_z bilden gemeinsam eine Basis der Spinzustände; diese Eigenzustände genügen den Gleichungen

$$\hat{S}_z|+\rangle = \frac{\hbar}{2}|+\rangle, \qquad \hat{S}_z|-\rangle = -\frac{\hbar}{2}|-\rangle, \qquad \hat{\vec{S}}^2|\pm\rangle = \frac{3\hbar^2}{4}|\pm\rangle$$

sowie

$$\hat{S}_x|+\rangle = \frac{\hbar}{2}|-\rangle, \qquad \hat{S}_x|-\rangle = \frac{\hbar}{2}|+\rangle, \qquad \hat{S}_y|+\rangle = i\frac{\hbar}{2}|-\rangle, \qquad \hat{S}_y|-\rangle = -i\frac{\hbar}{2}|+\rangle.$$

In dieser Aufgabe betrachten wir die Präzession eines Teilchens mit dem Spin $\frac{1}{2}$ in einem konstanten und homogenen Magnetfeld $\vec{\mathcal{B}}_0$ entlang der z-Achse. Der entsprechende Hamilton-Operator ist²

$$\hat{H} = -\hat{\vec{\mu}} \cdot \vec{\mathcal{B}}_0 = -\mu_0 \mathcal{B}_0 \hat{\sigma}_z. \tag{3}$$

Sei $|\psi(t)\rangle$ ein beliebiger Zustand, der bei t=0 die Bedingung $|\psi(0)\rangle = \alpha|+\rangle + \beta|-\rangle$ erfüllt, wobei α und β zwei komplexe Zahlen sind. Die spätere zeitliche Entwicklung des Zustands wird durch die zeitabhängige Schrödinger-Gleichung mit dem Hamilton-Operator (3) gegeben, so dass³

$$|\psi(t)\rangle = \alpha e^{-i\omega_0 t/2}|+\rangle + \beta e^{i\omega_0 t/2}|-\rangle \quad \text{mit} \quad \omega_0 \equiv -\frac{2\mu_0 \mathcal{B}_0}{\hbar}.$$
 (4)

Zeigen Sie, dass der Erwartungswert $\langle \hat{\vec{\mu}} \rangle$ des magnetischen Dipolmoments (1) im Zustand $|\psi(t)\rangle$ lautet

$$\langle \hat{\mu}_x \rangle = 2\mu_0 \operatorname{Re} (\alpha^* \beta e^{i\omega_0 t}), \qquad \langle \hat{\mu}_y \rangle = 2\mu_0 \operatorname{Im} (\alpha^* \beta e^{i\omega_0 t}), \qquad \langle \hat{\mu}_z \rangle = \mu_0 (|\alpha|^2 - |\beta|^2).$$

Schreiben Sie die x- bzw. y-Komponente mithilfe der Amplitude C und der Phase ϕ der komplexen Zahl $\mu_0 \alpha^* \beta$ um. Was für eine Bewegung hat die Projizierung von $\langle \hat{\vec{\mu}} \rangle$ auf die (x, y)-Ebene? Was für eine Bewegung hat $\langle \hat{\vec{\mu}} \rangle$?

²Die Spin- und Orts- bzw. Impulsfreiheitsgrade des Teilchens sind unabhängig voneinander, sodass wir nur den Spin-Anteil des Hamilton-Operators in Betracht ziehen können.

³Sie können gerne dieses Ergebnis nachprüfen!