Übung Nr. 7

Diskussionsthemen:

- Wie werden die Energieniveaus eines Nukleons in einem mittleren Potential (z.B.: Kastenpotential) hergeleitet? Wie wird der Entartungsgrad der gefundenen Niveaus bestimmt?
- (Besprechung am 4.-5. Dezember) Informieren Sie sich über die Anwendungen der Kernspinresonanz, insbesondere die Magnetresonanztomographie.

Aufgabe 21. (Wiederholung QM) Spin-System

Der Hamilton-Operator eines Systems aus zwei Spin-1-Teilchen mit Spins \vec{S} und \vec{S}' sei

$$\hat{H} = A + B\,\hat{\vec{S}}\cdot\hat{\vec{S}}' + C(\hat{S}_z + \hat{S}_z'),$$

mit reellen Konstanten A, B, C. Finden Sie die Energie-Eigenwerte des Systems. Gibt es Entartung? Hinweis: Bestimmen Sie zuerst die Menge von Operatoren, die mit \hat{H} vertauschen.

Aufgabe 22. Teilchen in einem endlichen Kastenpotential

- i. Präambel Bekannterweise kann ein Zwei-Körper-Problem mit zentraler Kraft nach Einführung der Relativkoordinate und der reduzierten Masse $m_{\rm red.}$ als Ein-Körper-Problem beschrieben werden. Wie lautet aber $m_{\rm red.}$ in Abhängigkeit von den Massen m_1 , m_2 der zwei Körper? Was ergibt sich falls $m_1 = m_2 \equiv m_N$?
- ii. Ein Teilchen mit Masse $m_N/2$ sei in einem kugelsymmetrischen Kastenpotential

$$V(\vec{r}) = \begin{cases} -V_0 & \text{für } |\vec{r}| < R_0 \\ 0 & \text{für } |\vec{r}| > R_0, \end{cases}$$

wobei $V_0 > 0$. Mit einer passenden Wahl der Parameter V_0 und R_0 kann es nur einen einzigen gebundenen Zustand geben. Sei $-E_B$ mit $E_B > 0$ die Energie dieses Zustands.

a) Bei verschwindendem Bahndrehimpuls vereinfacht sich das Problem zu einem eindimensionalen radialen Problem. Sei R(r) der radiale Anteil der Wellenfunktion mit $r = |\vec{r}|$. Zeigen Sie, dass die Schrödinger-Gleichung für $u(r) \equiv rR(r)$ zu den Differentialgleichungen

$$\frac{\mathrm{d}^2 u(r)}{\mathrm{d}r^2} + k^2 u(r) = 0 \quad \text{für } r < R_0 \quad \text{und} \quad \frac{\mathrm{d}^2 u(r)}{\mathrm{d}r^2} - K^2 u(r) = 0 \quad \text{für } r > R_0$$
 (1)

führt, wobei k und K von m_N , \hbar , V_0 und E_B abhängen.

b) Für die Lösung dieser Gleichungen macht man den Ansatz $u(r) = A\sin(kr)$ für $r < R_0$ [zusätzliche Frage: warum nicht mit cos?] und $u(r) = Be^{-K(r-R_0)}$ für $r > R_0$. Prüfen Sie, dass die Stetigkeit dieser Lösung und deren Ableitung in $r = R_0$ zu den Bedingungen $A\sin(kR_0) = B$ und $k\cot(kR_0) = -K$ führt, die wiederum die Bedingung

$$k^2 A^2 = (k^2 + K^2) B^2 (2)$$

geben.

c) Die Lösung der Schrödinger-Gleichung soll auf 1 normiert werden. Zeigen Sie, dass daraus die folgende Bedingung folgt [einige wichtigen "Details" sollten Sie dabei nicht vergessen!]

$$\frac{A^2}{2k}[2kR_0 - \sin(2kR_0)] + \frac{B^2}{K} = \frac{1}{2\pi}.$$
 (3)

d) Löst man die Gleichungen (2)–(3) nach A und B unter Berücksichtigung von $K \ll k$, so findet man

$$A \simeq B \simeq \sqrt{\frac{K}{2\pi}} \, \mathrm{e}^{-KR_0/2}$$

und daher
$$u(r) = \sqrt{\frac{K}{2\pi}} e^{-KR_0/2} \sin(kr)$$
 für $r < R_0$ und $u(r) = \sqrt{\frac{K}{2\pi}} e^{K(R_0/2 - r)}$ für $r > R_0$.

Sei $m_N = 939 \, \mathrm{MeV}/c^2$, $V_0 = 38,5 \, \mathrm{MeV}$, $E_B = 2,225 \, \mathrm{MeV}$. Zeigen Sie, dass diese numerischen Werte zu $k = 0,938 \, \mathrm{fm}^{-1}$ und $K = 0,232 \, \mathrm{fm}^{-1}$ führen. Sei dazu $R_0 = 1,93 \, \mathrm{fm}$. Plotten Sie u(r) und berechnen Sie (Mathematica?) den mit der Wellenfunktion quadratisch gemittelten Radius $\sqrt{\langle r^2 \rangle}$.

e) Schauen Sie sich die oben angegebenen Werte von m_N und E_B an. Welchen Atomkern haben Sie gerade modelliert?

Aufgabe 23. Einteilchen-Schalenmodell des Atomkerns

Nach Berücksichtigung der Spin-Bahn-Kopplung ergibt sich für die ersten Schalen in einem realistischen Potentialtopf das Termschema

$$1s_{1/2}, 1p_{3/2}, 1p_{1/2}, 1d_{5/2}, 2s_{1/2}, 1d_{3/2}, 1f_{7/2}, 2p_{3/2}, 1f_{5/2}, 2p_{1/2}, 1g_{9/2}, \dots$$
 (4)

Dann sind bei Protonen bzw. Neutronen die zwei nächsten Schalen $1g_{7/2}$, $2d_{5/2}$ bzw. $2d_{5/2}$, $1g_{7/2}$. Geben Sie die Paritäten und Entartungsgrade der verschiedenen Niveaus an.