Übung Nr. 4

Diskussionsthema: Bindungsenergie eines Atomkerns; Bethe-Weizsäcker Massenformel

Aufgabe 10. Kern- und Atommassen

In manchen Lehrbüchern wird die Bindungsenergie des Kerns anders definiert als in der Vorlesung. Statt der Kernmasse m(Z, A) wird die Masse m'(Z, A) des Atoms benutzt:

$$m'(Z, A) = m(Z, A) + Zm_e - \frac{B'_e(Z, A)}{c^2},$$

wobei $B'_e(Z,A)$ die Bindungsenergie der Z Elektronen bezeichnet. Dementsprechend wird als Bindungsenergie des Kerns die Größe

$$B'(Z,A) \equiv \left[Zm_H + (A-Z)m_n - m'(Z,A) \right] c^2$$

definiert, wobei m_H die Masse des ¹H-Atoms im Grundzustand ist.

Wie lautet der Unterschied zwischen B'(Z, A) und der in der Vorlesung definierten Bindungsenergie B(Z, A)? Warum ist dieser Unterschied in den meisten Fällen unwesentlich?

Aufgabe 11. Separationsenergie

Zur Bestimmung der Stabilität von Atomkernen werden sog. Separationsenergien für die Abspaltung verschiedener Teilchen eingeführt, wie z.B. die Separationsenergie für die Abspaltung eines Neutrons

$$S_n(Z, N) \equiv [m(Z, N - 1) + m_n - m(Z, N)] c^2,$$

wobei m_n die Neutronenmasse ist.

- i. Schreiben Sie diese Separationsenergie mithilfe der Kernbindungsenergien um.
- ii. Definieren Sie eine Separationsenergie $S_{\alpha}(Z, N)$ für die Abspaltung eines α -Teilchens (Masse m_{α}). Was bedeutet ein negativer Wert von S_{α} ?

Aufgabe 12. Separationsenergie (2)

In einem Kernreaktor findet die Reaktion n + $^{235}_{92}$ U \rightarrow $^{236}_{92}$ U* statt, wobei die *-Schreibweise bedeutet, dass der 236 U-Kern in einem angeregten Zustand ist. Es sei $E^* = [m(^{236}\text{U}^*) - m(^{236}\text{U})]c^2$ seine Energie im Bezug auf den Grundzustand.

Falls die relative Geschwindigkeit von Neutron und 235 U-Kern sehr klein ist, wie lautet die Erhaltung der Energie in der Reaktion im Schwerpunktsystem der Reaktionspartner? Was ist dann der Zusammenhang zwischen E^* und der Separationsenergie $S_n(^{236}\text{U})$?

Aufgabe 13. Bethe-Weizsäcker Massenformel (1)

Die Masse eines Atomkerns ist näherungsweise gegeben durch

$$m(Z,A) = Zm_p + (A-Z)m_n - \frac{a_V A - a_S A^{2/3} - a_C Z^2 A^{-1/3} - a_A (Z - \frac{A}{2})^2 A^{-1} + B_{\delta}}{c^2},$$

mit dem Paarungsterm $B_\delta=\left\{ egin{array}{ll} +a_\delta A^{-1/2} & \mbox{für gg-Kerne} \\ 0 & \mbox{für ug- und gu-Kerne} \\ -a_\delta A^{-1/2} & \mbox{für uu-Kerne} \end{array} \right.$

und $a_V = 15,85$ MeV, $a_S = 18,34$ MeV, $a_C = 0,71$ MeV, $a_A = 92,86$ MeV, $a_\delta = 11,46$ MeV.

i. Berechnen Sie hieraus die Bindungsenergie pro Nukleon B(Z,A)/A für ${}^{12}_{6}$ C, ${}^{56}_{26}$ Fe, ${}^{62}_{28}$ Ni.

- ii. Zeigen Sie, dass der Zerfall $^{240}_{94} Pu \rightarrow \, ^{128}_{50} Sn + \, ^{110}_{44} Ru \, + \, 2n$ energetisch möglich ist.
- iii. Für fix gewählte Z, für welche N=A-Z hat die Bindungsenergie pro Nukleon (unter Auslassung des Paarungsterms B_{δ}) ihr Maximum? Vergleichen Sie Ihr Ergebnis für Nickel (Z=28) und Zinn (Z=50) mit der Nuklidkarte.
- iv. In der Bindungsenergie B(Z,A) hängen nur der Coulomb-Term und der Asymmetrie-Term explizit von Z ab. Es sei A ungerade. Für welche Z ist es energetisch günstiger, dass sich ein Proton in ein Neutron verwandelt? Testen Sie ihren Ausdruck für A=125.