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Übung Nr. 12

Diskussionsthema: Welche wichtigen Unterschiede existieren zwischen den häufigsten Uran-
Isotopen 235

92U und 238
92U bezüglich der durch ein Neutron induzierten Spaltung?

Aufgabe 41. „Exotische“ Zerfallsarten

i. Suchen Sie auf einer Nuklidkarte den schwersten Kern, der hauptsächlich über Neutronenemission
zerfallen kann, und den schwersten Kern, der hauptsächlich über Protonenemission zerfallen kann.
Wie lauten die entsprechenden Prozesse? Was können Sie ohne Berechnung über die kinetische
Energie des emittierten Neutrons bzw. Protons sagen?

ii. Entnehmen Sie einer Nuklidkarte die Bindungsenergien (pro Nukleon) von 54Zn, 53Cu und 52Ni.
Berechnen Sie die Separationsenergien eines Protons Sp (vgl. Aufgabe 11.) für 54Zn und 53Cu,
sowie die Separationsenergie S2p(

54Zn) für die Abspaltung zweier Protonen (wie definieren Sie S2p

überhaupt?). Diskutieren Sie Ihre Ergebnisse: Stabilität / Zerfallsart von 54Zn und 53Cu. Finden
Sie eine plausible Erklärung für den Unterschied zwischen Sp(

54Zn) und Sp(
53Cu).

Aufgabe 42. Elektrische Dipolstrahlung
In dieser Übung wollen wir einige Elemente der Theorie des γ-Zerfalls ohne Herleitung ein-

führen und untersuchen. Sei Eγ = ℏω die Energie des emittierten γ-Quants, und Ψi bzw. Ψf die
Wellenfunktion des Kerns im Anfangs- bzw. Endzustand, d.h. vor bzw. nach dem Zerfall.

Die Zerfallsrate für die Emission elektrischer Dipolstrahlung (ℓγ = 1) lautet
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mit einem Matrixelement ME1, das von den Wellenfunktionen Ψi, Ψf und von den Positionen r⃗p
der Protonen im Kern abhängt:1
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i. Warum müssen die Wellenfunktionen Ψi, Ψf entgegengesetzte Paritäten haben?

ii. Das Matrixelement ME1 hat die Dimension einer Länge (warum?), d.h. es kann in fm ausgedrückt
werden. Berechnen Sie die Zerfallsrate (in s−1) für ein γ-Quant der Energie Eγ = 1 MeV unter der
Annahme |ME1| = 1 fm.

Aufgabe 43. Bindungsenergie eines deformierten Kerns
In dieser Übung wollen wir die Bindungsenergie eines prolaten (= zigarrenförmigen) Atomkerns

anhand der Bethe–Weizsäcker-Formel berechnen und damit die Stabilität von Kernen gegen Defor-
mationen abschätzen.

Der Kern sei durch einen prolaten Rotationsellipsoid mit den Halbachsen a = R(1 + ε) und
b = R/

√
1 + ε modelliert: sein Volumen ist gegeben durch
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und ε ≪ 1 bestimmt die Größe der Deformation. Wie gewöhnlich ist der „Radius“ R ∝ A1/3.
1Streng genommen ist ME1 — wie die Summe der Ortsvektoren r⃗p — vektoriell! Eigentlich kommt in der Be-

rechnung das Skalarprodukt ME1 · E⃗0 aus diesem Vektor mit einem elektrischen Feld, dessen Betrag proportional zu
(ℏω)1/2 ist, vor.
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i. Oberflächenenergie
Berechnen Sie die Oberfläche
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)
des Ellipsoids in Abhängigkeit von R und ε bis einschließlich zur Ordnung ε2.

Was ist dann die Differenz zwischen der Oberflächenenergie BO(ε) des deformierten Kerns und
der Oberflächenenergie BO(0) des sphärischen Kerns mit demselben Volumen? Was bedeutet phy-
sikalisch das Vorzeichen dieser Differenz?

ii. Coulomb-Energie
Man kann zeigen, dass die Coulomb-Energie des deformierten Kerns lautet
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.

Was ist die Differenz zwischen dieser Coulomb-Energie und jener des kugelförmigen Kerns mit
demselben Volumen?

iii. Gesamte Bindungsenergie
Berechnen Sie die gesamte Bindungsenergie B(ε) des deformierten Atomkerns, sowie die Dif-

ferenz ∆B(ε) ≡ B(ε) − B(0). Diskutieren Sie, in Abhängigkeit von ∆B(ε), wann der Kern stabil
gegenüber (kleinen) Deformationen ist. Für welche Werte vom Spaltungsparameter Z2/A wird der
Kern instabil? Was kann dann mit dem Kern passieren?
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