
CHAPTER VIII

Convective heat transfer

The previous two Chapters were devoted to flows dominated by viscosity (Chap. VI) of by convective
motion (Chap. VII). In either case, the energy-conservation equation (III.35), and in particular the
term representing heat conduction, was never taken into account, with the exception of a brief
mention in the study of static Newtonian fluids (Sec. VI.1.1).

The purpose of this Chapter is to shift the focus, and to discuss motions of Newtonian fluids in
which heat is transfered from one region of the fluid to another. A first such type of transfer is heat
conduction, which was already encountered in the static case. Under the generic term “convection”,
or “convective heat transfer”, one encompasses flows in which heat is also transported by the moving
fluid, not only conductively.

Heat transfer will be caused by differences in temperature in a fluid. Going back to the equations
of motion, one can make a few assumptions so as to eliminate or at least suppress other effects,
and emphasize the role of temperature gradients in moving fluids (Sec VIII.1). A specific instance
of fluid motion driven by a temperature difference, yet also controlled by the fluid viscosity, which
allows for a richer phenomenology, is then presented in Sec. VIII.2.

VIII.1 Equations of convective heat transfer
The fundamental equations of the dynamics of Newtonian fluids seen in Chap. III include heat
conduction, in the form of a term involving the gradient of temperature, yet the change in time
of temperature does not explicitly appear. To obtain an equation involving the time derivative of
temperature, some rewriting of the basic equations is thus needed, which will be done together with
a few simplifications (Sec. VIII.1.1). Conduction in a static fluid is then recovered as a limiting
case.

In many instances, the main effect of temperature differences is however rather to lead to varia-
tions of the mass density, which in turn trigger the fluid motion. To have a more adapted description
of such phenomena, a few extra simplifying assumptions are made, leading to a new, closed set of
coupled equations (Sec. VIII.1.2).

VIII.1.1 Basic equations of heat transfer

Consider a Newtonian fluid submitted to conservative volume forces ~fV = −ρ~∇Φ. Its motion is
governed by the laws established in Chap. III, namely by the continuity equation, the Navier–Stokes
equation, and the energy-conservation equation or equivalently the entropy-balance equation, which
we now recall.

Expanding the divergence of the mass flux density, the continuity equation (III.9) becomes

Dρ(t,~r)

Dt
= −ρ(t,~r)~∇ ·~v(t,~r). (VIII.1a)

In turn, the Navier–Stokes equation (III.30a) may be written in the form

ρ(t,~r)
D~v(t,~r)

Dt
= −~∇P (t,~r)− ρ(t,~r)~∇Φ(t,~r) + 2~∇·

[
η(t,~r)SSS(t,~r)

]
+ ~∇

[
ζ(t,~r)~∇·~v(t,~r)

]
. (VIII.1b)
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Eventually, straightforward algebra using the continuity equation allows one to rewrite the entropy
balance equation (III.40b) as

ρ(t,~r)
D

Dt

[
s(t,~r)

ρ(t,~r)

]
= ~∇ ·

[
κ(t,~r)~∇T (t,~r)

]
+

2η(t,~r)

T (t,~r)
SSS(t,~r) : SSS(t,~r) +

ζ(t,~r)

T (t,~r)

[
~∇ ·~v(t,~r)

]2
. (VIII.1c)

Since we wish to isolate effects directly related with the transfer of heat, or playing a role in it,
we shall make a few assumptions, so as to simplify the above set of equations.

• The transport coefficients η, ζ, κ depend on the local thermodynamic state of the fluid, i.e.
on its local mass density ρ and temperature T , and thereby indirectly on time and position.
Nevertheless, they will be taken as constant and uniform throughout the fluid, and taken out
of the various derivatives in Eqs. (VIII.1b)–(VIII.1c). This is a reasonable assumption as long
as only small variations of the fluid properties are considered, which is consistent with the
next assumption.

Somewhat abusively, we shall in fact even allow ourselves to consider η resp. κ as uniform in
Eq. (VIII.1b) resp. (VIII.1c), later replace them by related (diffusion) coefficients ν = η/ρ
resp. α = κ/ρcP , and then consider the latter as uniform constant quantities.
The whole procedure is only “justified” in that one can check—by comparing calculations
using this assumption with numerical computations performed without the simplifications—
that it does not lead to omitting a physical phenomenon.

• The fluid motions under consideration will be assumed to be “slow”, i.e. to involve a small flow
velocity, in the following sense:

– The incompressibility condition ~∇·~v(t,~r) = 0 will hold on the right hand sides of each of
Eqs. (VIII.1). Accordingly, Eq. (VIII.1a) simplifies to Dρ(t,~r)/Dt = 0 while Eq. (VIII.1b)
becomes the incompressible Navier–Stokes equation

∂~v(t,~r)

∂t
+
[
~v(t,~r) · ~∇

]
~v(t,~r) = − 1

ρ(t,~r)
~∇P (t,~r)− ~∇Φ(t,~r) + ν4~v(t,~r), (VIII.2)

in which the kinematic viscosity ν is taken to be constant.
– The rate of shear is small, so that its square can be neglected in Eq. (VIII.1c). Accord-

ingly, that equation simplifies to

ρ(t,~r)
D

Dt

[
s(t,~r)

ρ(t,~r)

]
= κ4T (t,~r). (VIII.3)

The left member of that equation can be further rewritten. Dividing the fundamental relation
of thermodynamics dU = T dS − P dV (at constant particle number) by the mass of the atoms of
the fluid yields the relation

d

(
e

ρ

)
= T d

(
s

ρ

)
− P d

(
1

ρ

)
.

In keeping with the assumed incompressibility of the motion, the rightmost term vanishes, while
the change in specific energy can be related to the variation of temperature as d(e/ρ) = cP dT with
cP the specific heat capacity at constant pressure. In a fluid particle, one may thus write

T d

(
s

ρ

)
= cP dT, (VIII.4)

which translates into a relation between material derivatives when the fluid particles are followed
in their motion. The left member of Eq. (VIII.3) may then be expressed in terms of the substantial
derivative of the temperature. Introducing the thermal diffusivity(lxxvi)

α ≡ κ

ρcP
, (VIII.5)

(lxxvi)Temperaturleitfähigkeit
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which will be assumed to be constant and uniform in the fluid, where ρcP is the volumetric heat
capacity at constant pressure, one eventually obtains

DT (t,~r)

Dt
=
∂T (t,~r)

∂t
+
[
~v(t,~r) · ~∇

]
T (t,~r) = α4T (t,~r) (VIII.6)

which is sometimes referred to as (convective) heat transfer equation.
If the fluid is at rest or if its velocity is “small” enough that the convective part ~v · ~∇T be

negligible, Eq. (VIII.6) simplifies to the classical heat diffusion equation, with diffusion constant α.
The thermal diffusivity α thus measures the ability of a medium to transfer heat diffusively, just

like the kinematic shear viscosity ν quantifies the diffusive transfer of momentum. Accordingly, both
have the same dimension L2T−1, and their relative strength can be measured by the dimensionless
Prandtl number

Pr ≡ ν

χ
=
ηcP

κ
(VIII.7)

which in contrast to the Mach, Reynolds, Froude, Ekman, Rossby. . . numbers encountered in the
previous Chapters is entirely determined by the fluid, independent of any flow characteristics.

VIII.1.2 Boussinesq approximation

If there is a temperature gradient in a fluid, it will lead to a heat flux density, and thereby to a
transfer of heat, thus influencing the fluid motion. However, heat exchange by conduction are often
slow—except in metals—, so that another effect due to temperature differences is often the first
to play a significant role, namely thermal expansion (or contraction), which will lead to buoyancy
(Sec. IV.1.4) when a fluid particle acquires a mass density different from that of its surroundings.

The simplest approach to account for this effect, due to Boussinesq,(46) consists in considering
that even though the fluid mass density changes, nevertheless the motion can be to a very good
approximation viewed as incompressible—which is what was assumed in Sec. VIII.1.1:

~∇·~v(t,~r) ' 0, (VIII.8)

where ' is used to allow for small relative variations in the mass density, which is directly related
to the expansion rate [Eq. (VIII.1a)].

Denoting by T0 a typical temperature in the fluid and ρ0 the corresponding mass density (strictly
speaking, at a given pressure), the effect of thermal expansion on the latter reads

ρ(Θ) = ρ0(1− α(V )Θ), (VIII.9)

with
Θ ≡ T − T0 (VIII.10)

the temperature difference measured with respect to the reference value, and

α(V ) ≡ −
1

ρ

(
∂ρ

∂T

)
P ,N

(VIII.11)

the thermal expansion coefficient for volume, where the derivative is taken at the thermodynamic
point corresponding to the reference value ρ0. Strictly speaking, the linear regime (VIII.9) only
holds when α(V )Θ� 1, which will be assumed hereafter.

(46)Hence its denomination Boussinesq approximation (for buoyancy).
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Consistent with relation (VIII.9), the pressure term in the incompressible Navier–Stokes equation
can be approximated as

− 1

ρ(t,~r)
~∇P (t,~r) ' −

~∇P (t,~r)

ρ0

[
1 + α(V )Θ(t,~r)

]
.

Introducing an effective pressure P eff which accounts for the leading effect of the potential from
which the volume forces derive,

P eff.(t,~r) ≡ P (t,~r) + ρ0Φ(t,~r),

one finds

− 1

ρ(t,~r)
~∇P (t,~r)− ~∇Φ(t,~r) ' −

~∇P eff.(t,~r)

ρ0
+ α(V )Θ(t,~r)~∇Φ(t,~r),

where a term of subleading order α(V )Θ~∇P eff. has been dropped. To this level of approximation,
the incompressible Navier–Stokes equation (VIII.2) becomes

∂~v(t,~r)

∂t
+
[
~v(t,~r) · ~∇

]
~v(t,~r) = −

~∇P eff.(t,~r)

ρ0
+ α(V )Θ(t,~r)~∇Φ(t,~r) + ν4~v(t,~r). (VIII.12)

This form of the Navier–Stokes equation emphasizes the role of a finite temperature difference Θ
in providing an extra force density which contributes to the buoyancy, supplementing the effective
pressure term.

Eventually, definition (VIII.10) together with the convective heat transfer equation (VIII.6) lead
at once to

∂Θ(t,~r)

∂t
+
[
~v(t,~r) · ~∇

]
Θ(t,~r) = α4Θ(t,~r). (VIII.13)

The (Oberbeck (an)–)Boussinesq equations (VIII.8), (VIII.12), and (VIII.13) represent a closed
system of five coupled scalar equations for the dynamical fields~v, Θ—which in turn yields the whole
variation of the mass density—and P eff..

VIII.2 Rayleigh–Bénard convection
A relatively simple example of flow in which thermal effects play a major role is that of a fluid
between two horizontal plates at constant but different temperatures, the lower plate being at the
higher temperature, in a uniform gravitational potential −~∇Φ(t,~r) = ~g, in the absence of horizontal
pressure gradient.

The distance between the two plates will be denoted by d, and the temperature difference
between them by ∆T , where ∆T > 0 when the lower plate is warmer. When needed, a system of
Cartesian coordinates will be used, with the (x, y)-plane midway between the plates and a vertical
z-axis, with the acceleration of gravity pointing towards negative values of z.

VIII.2.1 Phenomenology of the Rayleigh–Bénard convection

::::::::
VIII.2.1 a

::::::::::::::::::::::::
Experimental findings

If both plates are at the same temperature or if the upper one is the warmer (∆T < 0), the fluid
between them can simply be at rest, with a stationary linear temperature profile.

As a matter of fact, denoting by T0 resp. P 0 the temperature resp. pressure at a point at z = 0
and ρ0 the corresponding mass density, one easily checks that equations (VIII.8), (VIII.12), (VIII.13)
admit the static solution

~vst.(t,~r) = ~0, Θst.(t,~r) = −z
d

∆T, P eff.,st.(t,~r) = P 0 − ρ0g
z2

2d
α(V )∆T, (VIII.14)

(an)A. Oberbeck, 1849–1900
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with the pressure given by P st.(t,~r) = P eff.,st.(t,~r) − ρ0gz. Since |z/d| < 1
2 and α(V )∆T � 1, one

sees that the main part of the pressure variation due to gravity is already absorbed in the definition
of the effective pressure.

If ∆T = 0, one recognizes the usual linear pressure profile of a static fluid at constant tempera-
ture in a uniform gravity field.

One can check that the fluid state defined by the profile (VIII.14) is stable against small per-
turbations of any of the dynamical fields. To account for that property, that state (for a given
temperature difference ∆T ) will be referred to as “equilibrium state”.

Increasing now the temperature of the lower plate with respect to that of the upper plate, for
small positive temperature differences ∆T nothing happens, and the static solution (VIII.14) still
holds—and is still stable.

When ∆T reaches a critical value ∆Tc, the fluid starts developing a pattern of somewhat regular
cylindrical domains rotating around their longitudinal, horizontal axes, two neighboring regions
rotating in opposite directions. These domains in which warmer and thus less dense fluid rises on
the one side while colder, denser fluid descends on the other side, are called Bénard cells.(ao)

6

?

d

Figure VIII.1 – Schematic representation of Bénard cells between two horizontal plates.

The transition from a situation in which the static fluid is a stable state, to that in which motion
develops—i.e. the static case is no longer stable—, is referred to as (onset of the) Rayleigh–Bénard
instability . Since the motion of the fluid appears spontaneously, without the need to impose any
external pressure gradient, it is an instance of free convection or natural convection—in opposition
to forced convection).

Remarks:

∗ Such convection cells are omnipresent in Nature, as e.g. in the Earth mantle, in the Earth
atmosphere, or in the Sun convective zone.

∗ When ∆T further increases, the structure of the convection pattern becomes more complicated,
eventually becoming chaotic.

In a series of experiments with liquid helium or mercury, A. Libchaber(ap) and his collaborators
observed the following features [36, 37, 38]: Shortly above ∆Tc, the stable fluid state involve
cylindrical convective cells with a constant profile. Above a second threshold, “oscillatory convec-
tion” develops: that is, undulatory waves start to propagate along the “surface” of the convective
cells, at first at a unique (angular) frequency ω1, then—as ∆T further increases—also at higher
harmonics n1ω1, n1 ∈ N. As the temperature difference ∆T reaches a third threshold, a second
undulation frequency ω2 appears, incommensurate with ω1, later accompanied by the combina-
tions n1ω1 +n2ω2, with n1, n2 ∈ N. At higher ∆T , the oscillator with frequency ω2 experiences a
shift from its proper frequency to a neighboring submultiple of ω1—e.g. , ω1/2 in the experiments
with He—, illustrating the phenomenon of frequency locking . For even higher ∆T , submultiples of
ω1 appear (“frequency demultiplication”), then a low-frequency continuum, and eventually chaos.

(ao)H. Bénard, 1874–1939. (ap)A. Libchaber, born 1934
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Each appearance of a new frequency may be seen as a bifurcation. The ratios of the experimentally
measured lengths of consecutive intervals between successive bifurcations provide an estimate of
the (first) Feigenbaum constant (aq) in agreement with its theoretical value—thereby providing the
first empirical confirmation of Feigenbaum’s theory.

:::::::::
VIII.2.1 b

:::::::::::::::::::::::
Qualitative discussion

Consider the fluid in its “equilibrium” state of rest, in the presence of a positive temperature
difference ∆T , so that the lower layers of the fluid are warmer than the upper ones.

If a fluid particle at altitude z acquires, for some reason, a temperature that differs from the
equilibrium temperature—measured with respect to some reference value—Θ(z), then its mass
density given by Eq. (VIII.9) will differ from that of its environment. As a result, the Archimedes
force acting on it no longer exactly balances its weight, so that it will experience a buoyancy force.
For instance, if the fluid particle is warmer that its surroundings, it will be less dense and experience
a force directed upwards. Consequently, the fluid particle should start to move in that direction, in
which case it encounters fluid which is even colder and denser, resulting in an increased buoyancy
and a continued motion. According to that reasoning, any vertical temperature gradient should
result in a convective motion.

There are however two effects that counteract the action of buoyancy, and explain why the
Rayleigh–Bénard instability necessitates a temperature difference larger than a given threshold.
First, the rising particle fluid will also experience a viscous friction force from the other fluid regions
it passes through, which slows its motion. Secondly, if the rise of the particle is too slow, heat has
time to diffuse—by heat conduction—through its surface: this tends to equilibrate the temperature
of the fluid particle with that of its surroundings, thereby suppressing the buoyancy.

Accordingly, we can expect to find that the Rayleigh–Bénard instability will be facilitated when
α(V )∆Tg—i.e. the buoyancy per unit mass—increases, as well as when the thermal diffusivity α and
the shear viscosity ν decrease.

Translating the previous argumentation in formulas, let us consider a spherical fluid particle
with radius R, and assume that it has some vertically directed velocity v, while its temperature
initially equals that of its surroundings.

With the fluid particle surface area, proportional to R2, and the thermal diffusivity κ, one can
estimate the characteristic time for heat exchanges between the particle and the neighboring fluid,
namely

τQ = C
R2

α
with C a geometrical factor. If the fluid particle moves with constant velocity v during that du-
ration τQ, while staying at almost constant temperature since heat exchanges remain limited, the
temperature difference δΘ it acquires with respect to the neighboring fluid is

δΘ =
∂Θ

∂z
δz =

∂Θ

∂z
vτQ = C

∆T

d

R2

α
v,

where ∆T/d is the temperature gradient imposed by the two plates in the fluid. This temperature
difference gives rise to a mass density difference

δρ = −ρ0α(V )δΘ = −Cρ0v
R2

α

α(V )∆T

d
,

between the particle and its surroundings. As a result, fluid particle experiences an upwards directed
buoyancy

− 4π

3
R3δρg =

4πC

3
ρ0gv

R5

α

α(V )∆T

d
. (VIII.15)

(aq)M. Feigenbaum, born 1944
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On the other hand, the fluid particle is slowed in its vertical motion by the downwards oriented
Stokes friction force acting on it, namely, in projection on the z-axis

FStokes = −6πRηv. (VIII.16)

Note that assuming that the velocity v remains constant, with a counteracting Stokes force that is
automatically the “good” one, relies on the picture that viscous effects adapt instantaneously, i.e.
that momentum diffusion is fast. That is, the above reasoning actually assumes that the Prandtl
number (VIII.7) is much larger than 1; yet its result is independent from that assumption.

Comparing Eqs. (VIII.15) and (VIII.16), buoyancy will overcome friction, and thus the Rayleigh–
Bénard instability take place, when

4πC

3
ρ0gv

R5

α

α(V )∆T

d
> 6πRρ0νv ⇔

α(V )∆T gR
4

ανd
>

9

2C
.

Note that the velocity v which was invoked in the reasoning actually drops out from this condition.
Taking for instance R = d/2—which maximizes the left member of the inequality—, this becomes

Ra ≡
α(V )∆T g d

3

να
>

72

C
= Rac.

Ra is the so-called Rayleigh number and Rac its critical value, above which the static-fluid state is
instable against perturbation and convection takes place. The “value” 72/C found with the above
simple reasoning on force equilibrium is totally irrelevant—both careful experiments and theoretical
calculations agree with Rac = 1708 for a fluid between two very large plates—, the important lesson
is the existence of a threshold.

VIII.2.2 Toy model for the Rayleigh–Bénard instability

A more refined—although still crude—toy model of the transition to convection consists in
considering small perturbations ~v, δΘ, δP eff. around a static state ~vst. = ~0, Θst., P eff.,st., and to
linearize the Boussinesq equations to first order in these perturbations. As shown by Eq. (VIII.14),
the effective pressure P eff.,st. actually already includes a small correction, due to α(V )∆T being much
smaller than 1, so that we may from the start neglect δP eff..

To first order in the perturbations, Eqs. (VIII.12), projected on the z-axis, and (VIII.13) give,
after subtraction of the contributions from the static solution

∂vz
∂t

= ν4vz + α(V )δΘg, (VIII.17a)

∂δΘ

∂t
− ∆T

d
vz = α4δΘ. (VIII.17b)

Moving the second term of the latter equation to the right hand side increases the parallelism of
this set of coupled equations. In addition, there is also the projection of Eq. (VIII.12) along the
x-axis, and the velocity field must obey the incompressibility condition (VIII.8).

The proper approach would now be to specify the boundary conditions, namely: the vanish-
ing of vz at both plates—impermeability condition—, the vanishing of vx at both plates—no-slip
condition—, and the identity of the fluid temperature at each plate with that of the corresponding
plate; that is, all in all, 6 conditions. By manipulating the set of equations, it can be turned into
a 6th-order linear partial differential equation for δΘ, on which the boundary conditions can be
imposed.

Instead of following this long road,(47) we refrain from trying to really solve the equations,
but rather make a simple ansatz, namely vz(t,~r) = v0 eγt cos(kx)—which automatically fulfills the
(47)The reader may find details in Ref. [39, Chap. II].
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incompressibility equation, but clearly violates the impermeability conditions—, and a similar one
for δΘ, with γ a constant. Substituting these forms in Eqs. (VIII.17) yield the linear system

γv0 = −k2νv0 + α(V )δΘ0g ⇔
(
γ + νk2

)
v0 − gα(V )δΘ0 = 0,

γδΘ0 = −k2αδΘ0 +
∆T

d
v0 ⇔ ∆T

d
v0 −

(
γ + αk2

)
δΘ0 = 0

for the amplitudes v0, δΘ0. This admits a non-trivial solution only if(
γ + νk2

)(
γ + αk2

)
−
α(V )∆T

d
g = 0. (VIII.18)

This is a straightforward quadratic equation for γ. It always has two real solutions, one of which
is negative—corresponding to a dampened perturbation—since their sum is −(α + ν)k2 < 0; the
other solution may change sign since their product

ανk4 −
α(V )∆T

d
g

is positive for ∆T = 0, yielding a second negative solution, yet changes sign as ∆T increases. The
vanishing of this product thus signals the onset of instability. Taking for instance k = π/d to fix
ideas, this occurs at a critical Rayleigh number

Rac =
α(V )∆T g d

3

αν
= π4,

where the precise value (here π4) is irrelevant.
From Eq. (VIII.18) also follows that the growth rate of the instability is given in the neighborhood

of the threshold by
γ =

Ra− Rac
Rac

αν

α+ ν
k2,

i.e. it is infinitely slow at Rac. This is reminiscent of a similar behavior in the vicinity of the critical
point associated with a thermodynamic phase transition.

By performing a more rigorous calculation including non-linear effects, one can show that the
velocity amplitude at a given point behaves like

v ∝
(

Ra− Rac
Rac

)β
with β =

1

2
(VIII.19)

in the vicinity of the critical value, and this prediction is borne out by experiments [40]. Such
a power law behavior is again reminiscent of the thermodynamics of phase transitions, more
specifically here—since v vanishes below Rac and is finite above—of the behavior of the order
parameter in the vicinity of a critical point. Accordingly the notation β used for the exponent
in relation (VIII.19) is the traditional choice for the critical exponent associated with the order
parameter of phase transitions.

Eventually, a last analogy with phase transitions regards the breaking of a symmetry at the threshold
for the Rayleigh–Bénard instability. Below Rac, the system is invariant under translations parallel
to the plates, while above Rac that symmetry is spontaneously broken.
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