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Foreword

The following pages were originally not designed to fall under your eyes. They grew up from
handwritten notes for myself, listing the important points which I should not forget in the lecture
room. As time went by, more and more remarks or developments were added, which is why I
started to replace the growingly dirty sheets of paper by an electronic version—that could then also
be easily uploaded on the web page of my lecture, for the benefit(?) of the students.

Again, additional results, calculations, comments, paragraphs or even whole chapters accumu-
lated, leading to the temporary outcome which you are reading now: a not necessarily optimal
overall outline; at times, unfinished sentences; not fully detailed proofs or calculations—because the
missing steps are obvious to me—; insufficient discussions of the physics of some results—which
I hopefully provide in the classroom—; not-so-good-looking figures; incomplete bibliography; etc.
You may also expect a few solecisms, inconsistent notations, and the usual, unavoidable typos.(∗)

Eventually, you will have to cope with the many idiosyncrasies in my writing, as for instance my
immoderate use of footnotes, dashes or parentheses, quotation marks, which are not considered as
“good practice”.

In short: the following chapters may barely be called “lecture notes”; they cannot replace a
textbook(†) and the active participation in a course and in the corresponding tutorial/exercise
sessions.

(∗)Comments and corrections are welcome!
(†)... which is one of several good reasons why you should think at least twice before printing a hard copy!
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Introduction

General introduction and outline.
Notations, conventions, etc.

General references
(in alphabetical order)

• Faber, Fluid dynamics for physicists [1]

• Guyon, Hulin, Petit & Mitescu, Physical hydrodynamics [2]

• Greiner & Stock, Hydrodynamik [3]

• Landau & Lifshitz, Course of theoretical physics. Vol. 6: Fluid mechanics [4]
= Landau & Lifschitz, Lehrbuch der theoretischen Physik. Band VI: Hydrodynamik [5]

• Rieutord, Fluid dynamics — An introduction [6]

• Sommerfeld, Lectures on theoretical physics. Vol. II: Mechanics of deformable bodies [7]
= Vorlesungen über theoretische Physik. Band II: Mechanik der deformierbaren Medien [8]
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A system of many microscopic degrees of freedom is often more conveniently described as a
material body that fills some region of space continuously, rather than as a collection of discrete
point particles (Sec. I.1). This theoretical approach, which is especially suited to represent systems
whose internal deformations are relevant, is an instance of physical modeling , originally motivated
by the agreement of its predictions with experimental observations. Like every model, that of a
continuous medium is valid only in some range of physical conditions, in particular on macroscopic
scales.

Mathematically, a classical continuous medium at a given instant is described as a volume—or
more generally a manifold—in usual Euclidean space. The infinitesimal elements of this volume
constitute the elementary “material points”, which are entirely characterized by their position.

To describe the time evolution of the physical system modeled as a continuous medium, two
equivalent approaches are available. The first one consists in following the trajectories of the material
points as time passes by (Sec. I.2). The physical picture of continuousness is then enforced by
requesting that the mapping between the position of a given point at some reference initial time
and its position at any later instant is continuous.

The second point of view, which will mostly be adopted in the remainder of these notes, focuses
on the change in the various physical quantities at a fixed position as time elapses (Sec. I.3).
The reference for the medium evolution between successive instants t and t + dt is the “current”
configuration of the material points, i.e. at time t, instead of their positions in the (far) past. In that
description, the spatial variables are no longer dynamical, but only labels for the position at which
some observable is considered. Accordingly, the dynamical quantities in the system are now time-
dependent fields; the desired continuousness of the medium translates into continuity conditions on
those fields.
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Eventually, the mathematical object that models internal forces in a continuous medium, i.e.
the influence from neighboring material points on each other, is shortly introduced (Sec. I.4). This
allows the classification of deformable continuous media into two traditional large classes, and in
particular the definition of fluids.

I.1 Continuous medium: a model for many-body systems
In this Section, we first spell out a few arguments which lead to the introduction of the model
of a continuous medium (§ I.1.1). The basic ingredients of the mathematical implementation of
the model are then presented and a few notions are defined (§ I.1.2). Eventually, the physical
assumptions underlying the modeling are reexamined in greater detail, and some more or less
obvious limitations of the continuous description are indicated (§ I.1.3).

I.1.1 Basic ideas and concepts

The actual structure of matter at the microscopic scale is discrete, and involves finite “elemen-
tary” entities: electrons, atoms, ions, molecules, . . . , which in the remainder of these notes will be
collectively referred to as “atoms”. Any macroscopic sample of matter contains a large amount of
these atoms. For instance, the number density in an ideal gas under normal conditions is about
2.7× 1025 m−3, so that one cubic millimeter still contains 2.7× 1016 atoms. Similarly, even though
the number density in the interstellar medium might be as low as 102 m−3, any volume relevant for
astrophysics, i.e. with at least a kilometer-long linear size, involves a large number of atoms.

Additionally, these atoms are in constant chaotic motion, with individual velocities of order
102–103 m · s−1 for a system at thermal equilibrium at temperature T ≃ 300 K. Given a mean free
path(i) of order 10−7 m in a gas under normal conditions, each atom undergoes 109–1010 times per
second, i.e. its trajectory changes direction constantly.

As in Statistical Mechanics, it is in general unnecessary to know the details of the motion
of each atom in a macroscopic system: as a matter of fact, there emerge global characteristics,
which can be predicted to a high degree of accuracy thanks to the large number of degrees of
freedom involved in their definition (mostly as averages), despite the chaoticity of the individual
atomic behaviors. The macroscopic properties of systems at (global) thermodynamic equilibrium
are thus entirely determined by a handful of collective variables, either extensive—like entropy,
internal energy, volume, particle number, total momentum. . . —, or intensive—as e.g. the respective
densities of the various extensive variables, or temperature, pressure, chemical potential, average
velocity. . . —, where the latter take the same value throughout the system.

When thermodynamic equilibrium does not hold globally in a system, there is still the possibility
that one may consider that it is valid locally, “at each point” in space. In that situation—whose un-
derlying assumptions will be specified in greater detail in § I.1.3—the intensive thermodynamic vari-
ables characterizing the system macroscopically become fields, which can vary from point to point.
More generally, experience shows that it is fruitful to describe a large amount of characteristics—not
only thermodynamic, but also of mechanical nature, like forces and the displacements or deforma-
tions they induce—of macroscopic bodies as fields. A “continuous medium” is then intuitively a
system described by such fields, which should satisfy some (mathematical) continuity property with
respect to the spatial variables that parameterize the representation of the physical system as a
geometrical quantity. This picture will be better specified in Secs. I.2 and I.3.

Assuming the relevance of the model of a medium whose properties are described by continuous
fields is often referred to as continuum hypothesis(ii).

The reader should keep in mind that the modeling of a given macroscopic system as a continuous
medium does not invalidate the existence of its underlying discrete atomic structure. Specific
(i)mittlere freie Weglänge (ii)Kontinuumshypothese
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phenomena will still directly probe the latter, as e.g. X-ray scattering experiments for the gases or
liquids of our everyday life. That is, the model has limitations to its validity, especially at small
wavelengths or high frequencies, where “small” or “high” implies a comparison to some microscopic
physical scale characteristic of the system under consideration. Turning the reasoning the other
way around, the continuous-medium picture is often referred to as a long-wavelength, low-frequency
approximation to a more microscopic description—from which it can actually be shown to emerge
in the corresponding limits.

It is important to realize that the model itself is blind to its own limitations, i.e. there is
no a priori criterion within the mathematical continuous-medium description that signals the
breakdown of the relevance of the picture to actual physics. In practice, there might be hints
that the equations of the continuous model are being applied in a regime where they should not,
as for instance if they yield negative values for a quantity which should be positive, but such
occurrences are not the general rule.

Remarks:
∗ The model of a continuous model is not only applicable—and applied—to obvious cases like

gases, liquids or (deformable) solids, it may also be used to describe the behaviors of large crowds,
fish schools, car traffic. . . provided the number of “elementary” constituents is large and the system
is studied on a large enough scale.

∗ Even if the continuous description is valid on “long wavelengths”, it remains obvious that any
physical system, viewed on a scale much larger than its spatial extent, is to first approximation best
described as pointlike.
Consider for instance a molecular cloud of interstellar medium with a 10 parsec radius and about
1010 H2 molecules per cubic meter. For a star forming at its core, it behaves a continuous medium;
1 kpc away, however, the inner degrees of the cloud are most likely already irrelevant and it is best
described as a mere point.

I.1.2 General mathematical framework

Consider a non-relativistic classical macroscopic physical system Σ, described by Newtonian
physics. The positions of its individual atoms, viewed as pointlike, at a given instant t—which is
the same for all observers—are points in a three-dimensional Euclidean spaceE 3.

In the description as a continuous medium, the system Σ is represented by a geometrical manifold
inE 3, which for the sake of simplicity will be referred to as a “volume” and denoted by V . The
basic constituents of V are its infinitesimal elements d3V , called material points(iii) or continuous
medium particles(iv)—which explains a posteriori our designating the discrete constituents of matter
as “atoms”—, or, in the specific case of the elementary subdivisions of a fluid, fluid particles(v). As
we shall state more explicitly in § I.1.3, these infinitesimal elements are assumed to have the same
physical properties as a finite macroscopic piece.

Associated with the physical picture attached to the notion of continuousness is the requirement
that neighboring material points in the medium remain close to each other throughout the system
evolution. We shall see below how this picture is implemented in the mathematical description.

Remark: The volume V —with the topology inherited fromE 3—need not be simply connected. For
instance, one may want to describe the flow of a river around a bridge pier: the latter represents a
physical region which water cannot penetrate, which is modeled as a hole throughout the volume
V occupied by fluid particles.

To characterize the position of a given material point, as well as some of the observables relative
to the physical system Σ, one still needs to specify the reference frame in which the system is
(iii)Materielle Punkte (iv)Mediumteilchen (v)Fluidteilchen
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studied, corresponding to the point of view of a given observer, and to choose a coordinate system
in that reference frame. This choice allows one to define vectors—like position vectors, velocities,
or forces—and tensors.

The basis vectors of the coordinate system will generically be designated as e⃗1, e⃗2, e⃗3, while the
components of a given vector will be denoted with upper (“contravariant”) indices, as e.g. c⃗ = ci e⃗i,
where the summation convention over repeated upper and lower indices was used.

Once the reference frame and coordinate system are determined, the macroscopic state of the
physical system at time t is mapped onto a corresponding configuration κt of the medium, consisting
of the continuous set of the position vectors r⃗ = xi e⃗i of its constituting material points. Since the
volume occupied by the latter may also depends on time, it will also be labeled by t: Vt.

To be able to formalize the necessary continuity conditions in the following Sections, one also
introduces a reference time t0—conveniently taken as the origin of the time axis, t0 = 0—and the
corresponding reference configuration κ0 of the medium, which occupies a volume V0. The generic
position vector of a material point in this reference configuration will be denoted as R⃗ = Xi e⃗i.

Remark: In so-called “classical” continuous media, as have been introduced here, the material points
are entirely characterized by their position vector. In particular, they have no intrinsic angular
momentum.

I.1.3 Local thermodynamic equilibrium

In a more bottom-up approach to the modeling of a system Σ of discrete constituents as a con-
tinuous medium, one should first divide Σ (in thought) into small cells of fixed—yet not necessarily
universal—size fulfilling two conditions:

(i) each individual cell can meaningfully be treated as a thermodynamic system, i.e. it must be
large enough that the relative fluctuations of the usual extensive thermodynamic quantities
computed for the content of the cell are negligible;

(ii) the thermodynamic properties vary little over the cell scale, i.e. cells cannot be too large, so
that (approximate) homogeneity is ensured.

The rationale behind these two requirements is illustrated by Fig. I.1, which represents schematically
how the value of a local macroscopic quantity, e.g. a density, depends on the resolution of the
apparatus with which it is measured, i.e. equivalently on the length scale on which it is defined. If the
apparatus probes too small a length scale, so that the discrete degrees of freedom become relevant,
the measured value strongly fluctuates from one observation to the next one, as hinted at by the
displayed envelope of possible results of measurements: this is the issue addressed by condition (i).
Simultaneously, a small change in the measurement resolution, even with the apparatus still centered
on the same point in the system, can lead to a large variation in the measured value of the observable,
corresponding to the erratic behavior of the curve at small scales shown in Fig. I.1. This fluctuating
pattern decreases with increasing size of the observation scale, since this increase leads to a growth
in the number of atoms inside the probed volume, and thus a drop in the size of relative fluctuations.
At the other end of the curve, one reaches a regime where the low resolution of the observation
leads to encompassing domains with enough atoms to be rid of fluctuations, yet with inhomogeneous
macroscopic properties, in a single probed region—in violation of condition (ii). As a result, the
measured value of the density under consideration slowly evolves with the observation scale.

In between these two domains of strong statistical fluctuations and slow macroscopic variations
lies a regime where the value measured for an observable barely depends on the scale over which it is
determined. This represents the appropriate regime for meaningfully defining—and measuring—a
local density, and more general local quantities.

It is important to note that this intermediate “mesoscopic” interval may not always exist. There
are physical systems in which strong macroscopic variations are already present in a range of scales
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Figure I.1 – Typical variation of the measured value for a “local” macroscopic observable as
a function of the size scale over which it is determined.

where microscopic fluctuations are still sizable. For such systems, one cannot find scale-independent
local variables. That is, the proper definition of local quantities implicitly relies on the existence
of a clear separation of scales in the physical system under consideration, which is what will be
assumed in the remainder of these notes.

Remark: The smallest volume over which meaningful local quantities can be defined is sometimes
called representative volume element (RVE), or representative elementary volume.

When conditions (i) and (ii) hold, one may in particular define local thermodynamic variables,
corresponding to the values taken in each intermediate-size cell—labeled by its position r⃗—by the
usual extensive parameters: internal energy, number of atoms. . . Since the separation between
cells is immaterial, nothing prevents energy or matter from being transported from a cell to its
neighbors, even if the global system is isolated. Accordingly, the local extensive variables in any
given cell are actually time-dependent in the general case. In addition, it becomes important to
add linear momentum—with respect to some reference frame—to the set of local extensive variables
characterizing the content of a cell.

The size of each cell is physically irrelevant, as long as it satisfies the two key requirements; there
is thus no meaningful local variable corresponding to volume. Similarly, the values of the extensive
variables in a given cell, which are by definition proportional to the cell size, are as arbitrary as
the latter. They are thus conveniently replaced by the respective local densities: internal energy
density e(t, r⃗), number density n(t, r⃗), linear momentum density ρ(t, r⃗)⃗v(t, r⃗), where ρ denotes the
mass density, entropy density s(t, r⃗). . .

Remark: Rather than considering the densities of extensive quantities, some authors—in particular
Landau & Lifshitz [4, 5]—prefer to work with specific quantities, i.e. their respective amounts per
unit mass, instead of per unit volume. The relation between densities and specific quantities is
trivial: denoting by x j resp. x j,m a generic local density resp. specific amount for the same physical
quantity, one has the identity

x j(t, r⃗) = ρ(t, r⃗) x j,m(t, r⃗) (I.1)

in every cell—labeled by r⃗—and at every time t.
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Once the local extensive variables have been meaningfully defined, one can develop the usual
formalism of thermodynamics in each cell. In particular, one introduces the conjugate intensive
variables, as e.g. local temperature T (t, r⃗) and pressure P (t, r⃗). The underlying, important hypoth-
esis is the assumption of a local thermodynamic equilibrium. According to the latter, the equation(s)
of state of the system inside the small cell, expressed with local thermodynamic quantities, is the
same as for a macroscopic system in the actual thermodynamic limit of infinitely large volume and
particle number.

Consider for instance a non-relativistic classical ideal gas: its (mechanical) equation of state
reads PV = NkBT , with N the number of atoms, which occupy a volume V at uniform pressure P
and temperature T , while kB is the Boltzmann(a) constant. This is trivially recast as P = nkBT ,
with n the number density of atoms. The local thermodynamic equilibrium assumption then states
that under non-uniform conditions of temperature and pressure, the equation of state in a local cell
at position r⃗ is given by

P (t, r⃗) = n(t, r⃗)kBT (t, r⃗) (I.2)

at every time t.

The last step towards the continuous-medium model is to promote r⃗, which till now was simply
the discrete label attached to a given cell, to be a continuous variable taking its values in R3—
or rather, in the volume Vt attached to the system at the corresponding instant t. Accordingly,
taking into account the time-dependence of physical quantities, the local variables, in particular the
thermodynamic parameters, become fields on R×R3.

The replacement of the fine-resolution description, in which atoms are the relevant degrees of
freedom, by the lower-resolution model which assimilates small finite volumes of the former to
structureless points is called coarse graining(vi).

This is a quite generic procedure in theoretical physics, whereby the finer degrees of freedom of a
more fundamental description are smoothed away—technically, this is often done by performing
averages or integrals, so that these degrees of freedom are “integrated out”—and replaced by
novel, effective variables in a theory with a more limited range of applicability, but which is
more tractable for “long-range” phenomena.

Coming back to condition (ii), we already stated that it implicitly involves the existence of at
least one large length scale L, over which the macroscopic physical properties of the system may
vary. This scale can be a characteristic dimension of the system under consideration, as e.g. the
diameter of the tube in which a liquid is flowing. In the case of periodic waves propagating in
the continuous medium, L also corresponds to their wavelength. More generally, if G denotes a
macroscopic physical quantity, one may consider

L ∼=

[∣∣∇⃗G(t, r⃗)
∣∣

|G(t, r⃗)|

]−1

, (I.3)

where ∇⃗ denotes the (spatial) gradient.
Condition (i) in particular implies that the typical size of the cells which are later coarse grained

should be significantly larger than the mean free path ℓmfp of atoms, so that thermodynamic equi-
librium holds in the local cells. Since on the other hand this same typical size should be significantly
smaller than the scale L of macroscopic variations, one deduces the condition

Kn ≡
ℓmfp

L
≪ 1 (I.4)

on the dimensionless Knudsen number Kn.(b)

(vi)Vergröberung
(a)L. Boltzmann, 1844–1906 (b)M. Knudsen, 1871–1949
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In air under normal conditions P = 105 Pa and T = 300 K, the mean free path is ℓmfp ≈ 0.1 µm.
In the study of phenomena with variations on a characteristic scale L ≈ 10 cm, one finds Kn ≈ 10−6,
so that air can be meaningfully treated as a continuous medium.

The opposite regime Kn > 1 is that of a rarefied medium, as for instance of the so-called
Knudsen gas, in which the collisions between atoms are negligible—and in particular insufficient
to ensure thermal equilibrium as an ideal gas. The flow of such systems is not well described by
hydrodynamics, but necessitates alternative descriptions like molecular dynamics, in which the
degrees of freedom are explicitly atoms.

I.2 Lagrangian description
The Lagrangian(c) perspective, which generalizes the approach usually adopted in the description of
the motion of a (few) point particle(s), focuses on the trajectories of the material points, where the
latter are labeled by their position in the reference configuration. Accordingly, physical quantities
are expressed as functions of time t and initial position vectors R⃗, and any continuity condition has
to be formulated with respect to these variables.

I.2.1 Lagrangian coordinates

Consider a material point M in a continuous medium. Given a reference frame R, which
allows the definition of its position vector at any time t, one can follow its trajectory r⃗(t). With a
choice of coordinate system, that trajectory is equivalently characterized by the functions {xi(t)}
for i = 1, 2, 3.

Let R⃗ resp. {Xi} denote the position resp. coordinates of the material point M at t0. The
trajectory obviously depends on this “initial” position, and r⃗ can thus be viewed as a function of t
and R⃗, where the latter refers to the reference configuration κ0:

r⃗ = r⃗(t, R⃗) (I.5a)

with the consistency condition
r⃗(t= t0, R⃗) = R⃗. (I.5b)

In the Lagrangian description, also referred to as material description or particle description,
this point of view is generalized, and the various physical quantities G characterizing a continuous
medium are viewed at any time as mathematical functions of the variables t and R⃗:

G = G(t, R⃗), (I.6)

where the mapping G—which as often in physics will be denoted with the same notation as the
physical quantity represented by its value—is defined for every t on the initial volume V0 occupied
by the reference configuration κ0.

Together with the time t, the position vector R⃗—or equivalently its coordinates X1, X2, X3 in
a given system—are called Lagrangian coordinates.

I.2.2 Continuity assumptions

An important example of physical quantity, function of t and R⃗, is simply the (vector) position
in the reference frame R of material points at time t, i.e. r⃗ or equivalently its coordinates {xi}, as
given by relation (I.5a), which thus relates the configurations κ0 and κt.

(c)J.-L. Lagrange, 1736–1813



I.3 Eulerian description 9

More precisely, r⃗(t, R⃗) maps for every t the initial volume V0 onto Vt. To implement mathe-
matically the physical picture of continuity, it will be assumed that the mapping r⃗(t, · ) : V0 → Vt

is also one-to-one for every t—i.e. all in all bijective—, and that the function r⃗ and its inverse

R⃗ = R⃗(t, r⃗) (I.7)

are continuous with respect to both time and space variables. This requirement in particular
ensures that neighboring points remain close to each other as time elapses. It also preserves the
connectedness of volumes, (closed) surfaces or curves along the evolution: one may then define
material domains, i.e. connected sets of material points which are transported together in the
evolution of the continuous medium.

For the sake of simplicity, it will be assumed that the mapping r⃗ and its inverse, and more
generally every mathematical function G representing a physical quantity, is at least twice continu-
ously differentiable (i.e. of class C2). To be able to accommodate for important phenomena that are
better modeled with discontinuities, like shock waves in fluids (Sec. ??) or ruptures in solids—for
instance, in the Earth’s crust—, the C2-character of functions under consideration may hold only
piecewise.

I.2.3 Velocity and acceleration of a material point

As mentioned above, for a fixed reference position R⃗ the function t 7→ r⃗(t, R⃗) is the trajectory of
the material point which passes through R⃗ at the reference time t0. As a consequence, the velocity
at time t of this material point, measured in the reference frame R, is simply

v⃗(t, R⃗) =
∂r⃗(t, R⃗)

∂t
. (I.8)

Since the variable R⃗ is independent of t, one could actually also write v⃗(t, R⃗) = d⃗r(t, R⃗)/dt.
In turn, the acceleration of the material point in R is given at time t by

a⃗(t, R⃗) =
∂v⃗(t, R⃗)

∂t
. (I.9)

Remark: The trajectory (or pathline(vii)) of a material point can be visualized, by tagging the point
at its position R⃗ at time t0, for instance with a fluorescent or radioactive marker, and then imaging
the positions at later times t > t0.

On the other hand, if one regularly—say for every instant t0 ≤ t′ ≤ t—injects some marker at
a fixed geometrical point P , the resulting tagged curve at time t is the locus of the geometrical
points occupied by medium particles which passed through P in the past. This locus is referred
to as streakline.(viii) Denoting by r⃗P the position vector of point P , the streakline is the set of
geometrical points with position vectors

r⃗ = r⃗
(
t, R⃗(t′, r⃗P )

)
for t0 ≤ t′ ≤ t. (I.10)

I.3 Eulerian description
The Lagrangian approach introduced in the previous Section is actually not commonly used in fluid
dynamics, at least not in its original form, except for specific problems.

One reason is that physical quantities at a given time are expressed in terms of a reference
configuration in the (far) past: a small uncertainty on this initial condition may actually yield

(vii)Bahnlinie (viii)Streichlinie
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after a finite duration a large uncertainty on the present state of the system, which is problematic.
On the other hand, this line of argument explains why the Lagrangian point of view is adopted
to investigate chaos in many-body systems!

The more usual description is the so-called Eulerian(d) perspective, in which the evolution between
instants t and t+ dt takes the system configuration at time t as a reference.

I.3.1 Eulerian coordinates. Velocity field

In contrast to the “material” Lagrangian point of view, which identifies the medium particles in
a reference configuration and follows them in their motion, in the Eulerian description the emphasis
is placed on the geometrical points. Thus, the Eulerian coordinates are time t and a spatial vector
r⃗, where the latter does not label the position of a material point, but rather that of a geometrical
point. Accordingly, the physical quantities in the Eulerian specification are described by fields on
space-time.

Thus, the fundamental field that entirely characterizes the motion of a continuous medium in
a given reference frame R is the velocity field v⃗t(t, r⃗). The latter is defined such that it gives the
value of the Lagrangian velocity v⃗ [Eq. (I.8)] of a material point passing through r⃗ at time t:

v⃗ = v⃗t(t, r⃗) ∀t, ∀⃗r ∈ Vt. (I.11)

More generally, the value taken at given time and position by a physical quantity G , whether
attached to a material point or not, is expressed as a mathematical function Gt of the same Eulerian
variables:

G = Gt(t, r⃗) ∀t, ∀⃗r ∈ Vt. (I.12)

Note that the mappings (t, R⃗) 7→ G(t, R⃗) in the Lagrangian approach and (t, r⃗) 7→ Gt(t, r⃗) in the
Eulerian description are in general different. For instance, the domains in R3 over which their spatial
variables take their values differ: constant (V0) in the Lagrangian specification, time-dependent (Vt)
in the case of the Eulerian quantities. Accordingly the latter will be denoted with a subscript t in
the next subsection.

I.3.2 Equivalence between the Eulerian and Lagrangian viewpoints

Despite the different choices of variables, the Lagrangian and Eulerian descriptions are fully
equivalent. Accordingly, the prevalence in practice of the one over the other is more a technical
issue than a conceptual one.

Thus, it is rather clear that the knowledge of the Lagrangian specification can be used to obtain
the Eulerian formulation at once, using the mapping r⃗ 7→ R⃗(t, r⃗) between present and reference
positions of a material point. For instance, the Eulerian velocity field can be expressed as

v⃗t(t, r⃗) = v⃗
(
t, R⃗(t, r⃗)

)
. (I.13a)

This identity in particular shows that v⃗t automatically inherits the smoothness properties of v⃗: if
the mapping (t, R⃗) 7→ r⃗(t, R⃗) and its inverse are piecewise C2 (cf. § I.2.2), then v⃗t is (at least)
piecewise C1 in both its variables.

For a generic physical quantity, the transition from the Lagrangian to the Eulerian point of view
similarly reads

Gt(t, r⃗) = G
(
t, R⃗(t, r⃗)

)
. (I.13b)

Reciprocally, given a (well-enough behaved) Eulerian velocity field v⃗t on a continuous medium,
one can uniquely obtain the Lagrangian description of the medium motion by solving the initial
(d)L. Euler, 1707–1783
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value problem 
∂r⃗(t, R⃗)

∂t
= v⃗t

(
t, r⃗(t, R⃗)

)
r⃗(t0, R⃗) = R⃗,

(I.14a)

where the second line represents the initial condition. That is, one actually reconstructs the pathline
of every material point of the continuous medium. Introducing differential notations, the above
system can also be rewritten as

d⃗r = v⃗t(t, r⃗) dt with r⃗(t0, R⃗) = R⃗. (I.14b)

Once the pathlines r⃗(t, R⃗) are known, one obtains the Lagrangian function G(t, R⃗) for a given
physical quantity G by writing

G(t, R⃗) = Gt

(
t, r⃗(t, R⃗)

)
. (I.14c)

Since both Lagrangian and Eulerian descriptions are equivalent, we shall from now on drop the
subscript t on the mathematical functions representing physical quantities in the Eulerian point of
view.

I.3.3 Streamlines

At a given time t, the streamlines(ix) of the motion are defined as the field lines of v⃗. That is,
these are curves whose tangent is everywhere parallel to the instantaneous velocity field at the same
geometrical point.

Let x⃗(λ) denote a streamline, parameterized by λ. The definition can be formulated as

dx⃗(λ)

dλ
= α(λ)⃗v

(
t, x⃗(λ)

)
(I.15a)

with α(λ) a scalar function. Equivalently, denoting by dx⃗(λ) a differential line element tangent to
the streamline, one has the condition

dx⃗× v⃗
(
t, x⃗(λ)

)
= 0⃗. (I.15b)

Introducing a Cartesian system of coordinates, the equation for a streamline is conveniently
rewritten as

dx1(λ)

v1
(
t, x⃗(λ)

) =
dx2(λ)

v2
(
t, x⃗(λ)

) =
dx3(λ)

v3
(
t, x⃗(λ)

) (I.15c)

at a point where none of the component vi of the velocity field vanishes—if one of the vi is zero,
then so is the corresponding dxi, thanks to Eq. (I.15b).

Remark: Since the velocity field v⃗ depends on the choice of reference frame, this is also the case of
its streamlines at a given instant!

Consider now a closed geometrical curve in the volume Vt occupied by the continuous medium
at time t. The streamlines tangent to this curve form in the generic case a tube-like surface, called
stream tube.(x)

Let us introduce two further definitions related to properties of the velocity field:

• If v⃗(t, r⃗) has at some t the same value at every geometrical point r⃗ of a (connected) domain
D ⊂ Vt, then the velocity field is said to be uniform across D.
In that case, the streamlines are parallel to each other over D.

(ix)Stromlinien (x)Stromröhre
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• If v⃗(t, r⃗) only depends on the position, not on time, then the velocity field and the correspond-
ing motion of the continuous medium are said to be steady or equivalently stationary .
In that case, the streamlines coincide with the pathlines and the streaklines.

Indeed, one checks that Eq. (I.14b) for the pathlines, in which the velocity becomes time-
independent, can then be recast (at a point where all vi are non-zero) as

dx1

v1(t, r⃗)
=

dx2

v2(t, r⃗)
=

dx3

v3(t, r⃗)
,

where the variable t plays no role: this is exactly the system (I.15c) defining the streamlines
at time t. The equivalence between pathlines and streaklines is also trivial. □

I.3.4 Material derivative

Consider a material point M in a continuous medium, described in a reference frame R. Let r⃗
resp. r⃗ + d⃗r denote its position vectors at successive instants t resp. t + dt. The velocity of M at
time t resp. t + dt is by definition equal to the value of the velocity field at that time and at the
respective position, namely v⃗(t, r⃗) resp. v⃗(t+ dt, r⃗+ d⃗r). For small enough dt, the displacement d⃗r
of the material point between t and t+ dt is related to its velocity at time t by d⃗r = v⃗(t, r⃗) dt.

Let d⃗v ≡ v⃗(t+dt, r⃗+d⃗r)− v⃗(t, r⃗) denote the change in the material point velocity between t and
t+ dt. Assuming that v⃗(t, r⃗) is differentiable (cf. § I.3.2) and introducing for simplicity a system of
Cartesian coordinates, a Taylor expansion to lowest order yields

d⃗v ≃ ∂ v⃗(t, r⃗)

∂t
dt+

∂ v⃗(t, r⃗)

∂x1
dx1 +

∂ v⃗(t, r⃗)

∂x2
dx2 +

∂ v⃗(t, r⃗)

∂x3
dx3,

up to terms of higher order in dt or d⃗r. Introducing the differential operator

d⃗r · ∇⃗ ≡ dx1
∂

∂x1
+ dx2

∂

∂x2
+ dx3

∂

∂x3
,

this can be recast in the more compact form

d⃗v ≃ ∂ v⃗(t, r⃗)

∂t
dt+

(
d⃗r · ∇⃗

)⃗
v(t, r⃗). (I.16)

In the second term on the right-hand side, d⃗r can be replaced by v⃗(t, r⃗) dt. On the other hand,
the change in velocity of the material point between t and t + dt is simply the product of its
acceleration a⃗(t) at time t by the length dt of the time interval, at least to lowest order in dt.
Dividing both sides of Eq. (I.16) by dt and taking the limit dt → 0, in particular in the ratio d⃗v/dt,
yield

a⃗(t) =
∂ v⃗(t, r⃗)

∂t
+
[⃗
v(t, r⃗) · ∇⃗

]⃗
v(t, r⃗). (I.17)

That is, the acceleration of the material point consists of two terms:

• the local acceleration
∂⃗v

∂t
, which follows from the non-stationarity of the velocity field;

• the convective acceleration
(⃗
v · ∇⃗

)⃗
v, due to the non-uniformity of the motion.

More generally, one finds by repeating the same derivation as above that the time derivative of
a physical quantity G attached to a material point or domain, expressed in terms of Eulerian fields,
is the sum of a local (∂G/∂t) and a convective [(⃗v · ∇⃗)G ] part, irrespective of the tensorial nature
of G . Accordingly, one introduces the operator

D

Dt
≡ ∂

∂t
+ v⃗(t, r⃗) · ∇⃗ (I.18)
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called material derivative(xi) or (between others) substantial derivative,(xii) derivative following the
motion, hydrodynamic derivative. Relation (I.17) can thus be recast as

a⃗(t) =
D⃗v(t, r⃗)

Dt
. (I.19)

Remarks:
∗ Equation (I.17) shows that even in the case of a steady motion, the acceleration of a material

point may be non-vanishing, thanks to the convective part.

∗ The material derivative (I.18) is also often denoted (and referred to) as total derivative d/dt.

∗ One also finds in the literature the denomination convective derivative.(xiii) To the eyes and ears
of the author of these lines, that name has the drawback that it does not naturally evoke the local
part, but only. . . the convective one, which comes from the fact that matter is being transported,
“conveyed”, with a non-vanishing velocity field v⃗(t, r⃗).

∗ The two terms in Eq. (I.18) actually “merge” together when considering the motion of a material
point in Galilean space-time R×R3. As a matter of fact, one easily shows that D/Dt is the (Lie(e))
derivative along the world-line of the material point

The world-line element corresponding to the motion between t and t+dt goes from (t, x1, x2, x3) to
(t+dt, x1+v1 dt, x2+v2 dt, x3+v3 dt). The tangent vector to this world-line thus has components
(1, v1, v2, v3), i.e. the derivative along the direction of this vector is ∂t + v1∂1 + v2∂2 + v3∂3, with
the usual shorthand notations ∂t ≡ ∂/∂t and ∂i ≡ ∂/∂xi. □

I.4 Mechanical stress

I.4.1 Forces in a continuous medium

Consider a closed material domain V inside the volume Vt occupied by a continuous medium,
and let S denote the (geometric) surface enclosing V. One distinguishes between two classes of
forces acting on this domain:

• Volume or body forces,(xiv) which act at each point of the bulk volume of V.
Examples are weight, long-range electromagnetic forces or, in non-inertial reference frames,
fictitious forces (Coriolis, centrifugal).
For such forces, which tend to be proportional to the volume they act on, it will later be more
convenient to introduce the corresponding volumic force density.

• Surface or contact forces,(xv) which act on the surface S, like friction. These will be now
discussed in further detail.

Consider an infinitesimally small geometrical surface element d2S at point P . Let d2F⃗s denote
the surface force through d2S. That is, d2F⃗s is the contact force, due to the medium exterior to V,
that a “test” material surface coinciding with d2S would experience. The vector

T⃗s ≡
d2F⃗s
d2S

, (I.20)

representing the surface density of contact forces, is called (mechanical) stress vector (xvi) on d2S.
(xi)Materielle Ableitung (xii)Substantielle Ableitung (xiii)Konvektive Ableitung (xiv)Volumenkräfte
(xv)Oberflächenkräfte
(e)S. Lie, 1842–1899
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V

S

d2S e⃗n

d2F⃗s

Figure I.2

The corresponding unit in the SI system is the Pascal, with 1 Pa = 1 N ·m−2.

Purely geometrically, the stress vector T⃗s on a given surface element d2S at a given point can
be decomposed into two components, namely

• a vector orthogonal to the plane tangent at P to d2S, the so-called normal stress(xvii); when
it is directed towards the interior resp. exterior of the medium domain being acted on, it is
also referred to as compression(xviii) resp. tension(xix);

• a vector in the tangent plane at P , called shear stress(xx) and often denoted as τ⃗ .

Despite the short notation adopted in Eq. (I.20), the stress vector depends not only on the
position of the geometrical point P where the infinitesimal surface element d2S lies, but also on the
orientation of the surface. Let e⃗n denote the normal unit vector to the surface element, directed
towards the exterior of the volume V (cf. Fig. I.2), and let r⃗ denote the position vector of P in a
given reference frame. The relation between e⃗n and the stress vector T⃗s on d2S is then linear:

T⃗s = σσσ(⃗r) · e⃗n, (I.21a)

with σσσ(⃗r) a symmetric tensor of rank 2, the so-called (Cauchy(f)) stress tensor .(xxi)

In a given coordinate system, relation (I.21a) yields

T i
s =

3∑
j=1

σσσi
j e

j
n (I.21b)

with T i
s resp. ejn the coordinates of the vectors T⃗s resp. e⃗n, and σσσi

j the
(
1
1

)
-components of the stress

tensor.

While valid in the case of a three-dimensional position space, Eq. (I.21a) should actually be
better formulated to become valid in arbitrary dimension. Thus, the unit-length “normal vector”
to a surface element at point P is rather a 1-form acting on the vectors of the tangent space to
the surface at P . As such, it should be represented as the transposed of a vector [(⃗en)T], which
multiplies the stress tensor from the left:

T⃗s = (⃗en)
T ·σσσ(⃗r). (I.21c)

(xvi)Mechanischer Spannungsvektor (xvii)Normalspannung (xviii)Druckspannung (xix)Zugsspannung (xx)Scher-,
Tangential- oder Schubspannung (xxi)(Cauchy’scher) Spannungstensor

(f)A.L. Cauchy, 1789–1857
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This shows that the Cauchy stress tensor is a
(
2
0

)
-tensor (a “bivector”), which maps 1-forms onto

vectors. In terms of coordinates, this gives, using Einstein’s summation convention

T j
s = en,iσσσ

ij , (I.21d)

which thanks to the symmetry of σσσ is equivalent to the relation given above.

Remark: The symmetry property of the Cauchy stress tensor is intimately linked to the assumption
that the material points constituting the continuous medium have no intrinsic angular momentum.

I.4.2 Fluids

With the help of the notion of mechanical stress, we may now introduce the definition of a fluid ,
which is the class of continuous media whose motion is described by hydrodynamics:

A fluid is a continuous medium that deforms itself as long as it is submitted to shear stresses.

(I.22)
Turning this definition around, one sees that in a fluid at rest—or, to be more accurate, studied

in a reference frame with respect to which it is at rest—the mechanical stresses are necessarily
normal. That is, the stress tensor is in each point diagonal.

More precisely, for a locally isotropic fluid—which means that the material points are isotropic,
which is the case throughout these notes—the stress

(
2
0

)
-tensor is everywhere proportional to the

inverse metric tensor:

σσσ(t, r⃗) = −P (t, r⃗)g−1(t, r⃗) (I.23)

with P (t, r⃗) the hydrostatic pressure at position r⃗ at time t.

Going back to relation (I.21b), the stress vector will be parallel to the “unit normal vector” in
any coordinate system if the square matrix of the

(
1
1

)
-components σσσi

j is proportional to the
identity matrix, i.e. σσσi

j ∝ δij , where we have introduced the Kronecker symbol. To obtain the(
2
0

)
-components σσσik, one has to multiply σσσi

j by the component gjk of the inverse metric tensor,
summing over k, which precisely gives Eq. (I.23).

Remarks:

∗ Definition (I.22), as well as the two remarks hereafter, rely on an intuitive picture of “deforma-
tions” in a continuous medium. To support this picture with some mathematical background, we
shall introduce in Sec. II.A an appropriate strain tensor, which quantifies these deformations, at
least as long as they remain small.

∗ A deformable solid will also deform itself when submitted to shear stress! However, for a given
fixed amount of tangential stress, the solid will after some time reach a new, deformed equilibrium
position—otherwise, it is not a solid, but a fluid.

∗ The previous remark is actually a simplification, valid on the typical time scale of human beings. Thus,
materials which in our everyday experience are solids—as for instance those forming the mantle of the Earth—
will behave on a longer time scale as fluids—in the previous example, on geological time scales. Whether
a given substance behaves as a fluid or a deformable solid is sometimes characterized by the dimensionless
Deborah number [9], which compares the typical time scale for the response of the substance to a mechanical
stress and the observation time.

∗ Even nicer, the fluid vs. deformable solid behavior may actually depend on the intensity of the
applied shear stress: ketchup!
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Bibliography for Chapter I
• National Committee for Fluid Mechanics films & film notes on Eulerian Lagrangian description

and on Flow visualization;(1)

• Faber [1] Chapter 1.1–1.3;

• Feynman [10, 11] Chapter 31–6;

• Guyon et al. [2] Chapter 1.1;

• Sedov [12] Chapters 1 & 2.1–2.2;

• Sommerfeld [7, 8] beginning of Chapter II.5.

(1)The visualization techniques have evolved since the 1960s, yet pathlines, streaklines or streamlines are still defined
in the same way.
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The goal of fluid dynamics is to investigate the motion of fluids under consideration of the forces
at play, as well as to study the mechanical stresses exerted by moving fluids on bodies with which
they are in contact. The description of the motion itself, irrespective of the forces, is the object of
kinematics.

The possibilities for the motion of a deformable continuous medium, in particular of a fluid, are
richer than for a mere point particle or a rigid body: besides translations and global rotations, a
deformable medium may also rotate locally and undergo. . . deformations! The latter term actually
encompasses two different yet non-exclusive possibilities, namely either a change of shape or a
variation of the volume. All these various types of motion are encoded in the local properties of
the velocity field at each instant (Sec. II.1). Generic fluid motions are then classified according to
several criteria, especially taking into account kinematics (Sec. II.2).

For the sake of reference, the characterization of deformations themselves, complementing that
of their rate of change, is briefly presented in Sec. II.A. That formalism is not needed within fluid
dynamics, but rather for the study of deformable solids, like elastic ones.

II.1 Generic motion of a continuous medium
Let v⃗(t, r⃗) denote the velocity field in a continuous medium, measured with respect to some reference
frame R. To illustrate (some of) the possible motions that occur in a deformable body, Fig. II.1
shows the positions at successive instants t and t + δt of a small “material vector” δℓ⃗(t), that is,
a continuous set of material points distributed along the straight line element stretching between
two neighboring geometrical points. Let r⃗ and r⃗ + δℓ⃗(t) denote the geometrical endpoints of this
material vector at time t.

Thanks to the continuity of the mappings R⃗ 7→ r⃗(t, r⃗) and its inverse r⃗ 7→ R⃗(t, r⃗), the material
vector defined at instant t remains a connected set of material points as time evolves, in particular
at t + δt. Assuming that both the initial length |δℓ⃗(t)| as well as δt are small enough, the evolved
set at t + δt remains approximately along a straight line, and constitutes a new material vector,
denoted δℓ⃗(t + dt). The position vectors of its endpoints simply follow from the initial positions
of the corresponding material points: r⃗ resp. r⃗ + δℓ⃗(t), to which should be added the respective
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x1

x2

x3

r⃗

δℓ⃗(t)

δℓ⃗(t+ δt)

v⃗
(
t, r⃗ + δℓ⃗(t)

)

v⃗(t, r⃗)

Figure II.1 – Positions of a material line element δℓ⃗ at successive times t and t+ δt.

displacement vectors between t and t+δt, namely the product by δt of the initial velocity v⃗
(
t, r⃗

)
resp. v⃗

(
t, r⃗ + δℓ⃗(t)

)
. That is, one finds

δ ℓ⃗(t+ δt) = δℓ⃗(t) +
[⃗
v
(
t, r⃗ + δℓ⃗(t)

)
− v⃗

(
t, r⃗

)]
δt+O

(
δt2

)
. (II.1)

Figure II.1 already suggests that the motion of the material vector consists not only of a translation,
but also of a rotation, as well as an “expansion”—the change in length of the vector.

II.1.1 Local distribution of velocities in a continuous medium

Considering first a fixed time t, let v⃗(t, r⃗) resp. v⃗(t, r⃗)+ δ⃗v be the velocity at the geometric point
situated at position r⃗ resp. at r⃗ + δ⃗r in R.

Introducing for simplicity a system of Cartesian coordinates (x1, x2, x3) in R, the Taylor expan-
sion of the i-th component of the velocity field—which is at least piecewise C1 in its variables, see
§ I.3.2—gives to first order

δvi ≃
3∑

j=1

∂vi(t, r⃗)

∂xj
δxj , (II.2a)

where {δxj} denote the components of δ⃗r. Introducing the
(
1
1

)
-tensor ∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗) whose components

in the coordinate system used here are the partial derivatives ∂vi(t, r⃗)/∂xj , the above relation can
be recast in the coordinate-independent form

δ⃗v ≃ ∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗) · δ⃗r. (II.2b)

Like every rank 2 tensor, the velocity gradient tensor ∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗) at time t and position r⃗ can be
decomposed into the sum of the symmetric and an antisymmetric part:

∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗) =DDD(t, r⃗) +RRR(t, r⃗), (II.3a)

where one conventionally writes

DDD(t, r⃗) ≡ 1

2

(
∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗) +

[
∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗)

]T)
, RRR(t, r⃗) ≡ 1

2

(
∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗)−

[
∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗)

]T) (II.3b)

with
[
∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗)

]T the transposed tensor to ∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗). These definitions are to be understood as follows:
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Using the same Cartesian coordinate system as above, the components of the two tensors DDD, RRR,
viewed for simplicity as

(
0
2

)
-tensors, respectively read

DDDij(t, r⃗) =
1

2

[
∂vi(t, r⃗)

∂xj
+

∂vj(t, r⃗)

∂xi

]
, RRRij(t, r⃗) =

1

2

[
∂vi(t, r⃗)

∂xj
− ∂vj(t, r⃗)

∂xi

]
. (II.3c)

Note that here we have silently used the fact that for Cartesian coordinates, the position—subscript
or superscript—of the index does not change the value of the component, i.e. numerically vi = vi

for every i ∈ {1, 2, 3}.

Relations (II.3c) clearly represent the desired symmetric and antisymmetric parts. However,
one sees that the definitions would not appear to fulfill their task if the indices were not both
either up or down, as e.g.

DDDi
j(t, r⃗) =

1

2

[
∂vi(t, r⃗)

∂xj
+

∂vj(t, r⃗)

∂xi

]
,

in which the symmetry is no longer obvious. The trick is to rewrite the previous identity as

DDDi
j(t, r⃗) =

1

2
δikδlj

[
∂vk(t, r⃗)

∂xl
+

∂vl(t, r⃗)

∂xk

]
=

1

2
gik(t, r⃗)glj(t, r⃗)

[
∂vk(t, r⃗)

∂xl
+

∂vl(t, r⃗)

∂xk

]
,

where we have used the fact that the metric tensor of Cartesian coordinates coincides with
the Kronecker symbol. To fully generalize to curvilinear coordinates, the partial derivatives in
the rightmost term should be replaced by the covariant derivatives discussed in Appendix ??,
leading eventually to

DDDi
j(t, r⃗) =

1

2
gik(t, r⃗)glj(t, r⃗)

[
dvk(t, r⃗)

dxl
+

dvl(t, r⃗)

dxk

]
(II.4a)

RRRi
j(t, r⃗) =

1

2
gik(t, r⃗)glj(t, r⃗)

[
dvk(t, r⃗)

dxl
− dvl(t, r⃗)

dxk

]
(II.4b)

With these new forms, which are valid in any coordinate system, the raising or lowering of
indices does not affect the visual symmetric or antisymmetric aspect of the tensor.

Using the tensors DDD and RRR we just introduced, whose physical meaning will be discussed at
length in § II.1.2–II.1.3, relation (II.2b) can be recast as

v⃗
(
t, r⃗ + δ⃗r

)
= v⃗

(
t, r⃗

)
+DDD(t, r⃗) · δ⃗r +RRR(t, r⃗) · δ⃗r +O

(
|δ⃗r|2

)
(II.5)

where as stated at the beginning every field is considered at the same time.

Under consideration of relation (II.5) with δ⃗r = δℓ⃗(t), Eq. (II.1) for the time evolution of the
material line element becomes

δℓ⃗(t+ δt) = δℓ⃗(t) +
[
DDD(t, r⃗) · δℓ⃗(t) +RRR(t, r⃗) · δℓ⃗(t)

]
δt+O

(
δt2

)
.

Subtracting δℓ⃗(t) from both sides, dividing by δt and taking the limit δt → 0, one finds for the rate
of change of the material vector:

d

dt
δℓ⃗(t) =DDD(t, r⃗) · δℓ⃗(t) +RRR(t, r⃗) · δℓ⃗(t) (II.6)

In the following two subsections, we shall investigate the physical content of each of the tensors
RRR(t, r⃗) and DDD(t, r⃗).
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II.1.2 Rotation rate tensor and vorticity vector

The tensor RRR(t, r⃗) defined by Eq. (II.3b) is called, for reasons that will become clearer below,
rotation rate tensor .(xxii)

By construction, this tensor is antisymmetric. Accordingly, one can naturally associate with it
a dual (pseudo)-vector Ω⃗(t, r⃗), such that for any vector V⃗

RRR
(
t, r⃗

)
· V⃗ = Ω⃗

(
t, r⃗

)
× V⃗ ∀V⃗ ∈ R3. (II.7)

In Cartesian coordinates, the components of Ω⃗(t, r⃗) are related to those of the rotation rate tensor
by

Ωi(t, r⃗) ≡ −1

2

3∑
j,k=1

ϵijkRRRjk(t, r⃗) (II.8a)

with ϵijk the totally antisymmetric Levi-Civita symbol. Using the antisymmetry of RRR
(
t, r⃗

)
, this

equivalently reads

Ω1(t, r⃗) ≡ −RRR23(t, r⃗), Ω2(t, r⃗) ≡ −RRR31(t, r⃗), Ω3(t, r⃗) ≡ −RRR12(t, r⃗). (II.8b)

Comparing with Eq. (II.3c), one finds

Ω⃗(t, r⃗) =
1

2
∇⃗ × v⃗(t, r⃗). (II.9)

Proof of Eqs. (II.7), (II.9): introducing the Cartesian components {V j} of V⃗ and dropping for
brevity the (t, r⃗)-dependence of fields, the i-th component of RRR · V⃗ reads

RRRijV
j =

1

2

(
∂jvi − ∂ivj

)
V j ,

where we used the summation convention over the repeated index j and the shorthand notation
∂i for the partial derivative with respect to xi. This may further be rewritten as

RRRijV
j = −1

2

(
δki δ

l
j − δkj δ

l
i

)
(∂kvl)V

j ,

which now involves three sums. The term with the four Kronecker symbols is in fact the sum
(over a fifth index m) of the product ϵijmϵmkl of Levi-Civita symbols:

RRRijV
j = −1

2
ϵijmϵmkl(∂kvl)V

j .

On the right hand side of this identity, ϵmkl∂kvl is the m-th component of the curl ∇⃗ × v⃗, i.e.
using definition (II.9):

RRRijV
j = −ϵijmΩmV j = ϵimjΩmV j ,

which is precisely the i-th component of Ω× v⃗. □

Let us now rewrite relation (II.6) with the help of the vector Ω⃗(t, r⃗), assuming that DDD(t, r⃗)
vanishes so as to isolate the effect of the remaining term. Under this assumption, the rate of change
of the material vector between two neighboring points reads

d

dt
δℓ⃗(t) = RRR(t, r⃗) · δℓ⃗(t) = Ω⃗(t, r⃗)× δℓ⃗(t). (II.10)

The term on the right hand side is then exactly the rate of rotation of a vector δℓ⃗(t) in the motion
of a rigid body with instantaneous angular velocity Ω⃗(t, r⃗). Accordingly, the pseudovector Ω⃗(t, r⃗) is
referred to as local angular velocity .(xxiii) This a posteriori justifies the denomination rotation rate
tensor for the antisymmetric tensor RRR(t, r⃗).

(xxii)Wirbeltensor (xxiii)Wirbelvektor
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Remarks:
∗ Besides the local angular velocity Ω⃗(t, r⃗), one also defines the vorticity vector (xxiv) as the curl of

the velocity field

ω⃗(t, r⃗) ≡ ∇⃗ × v⃗(t, r⃗) = 2Ω⃗(t, r⃗). (II.11)

In fluid mechanics, the vorticity is actually more often used than the local angular velocity.

∗ The local angular velocity Ω⃗(t, r⃗) or equivalently the vorticity vector ω⃗(t, r⃗) define, at fixed t,
divergence-free (pseudo)vector fields, since obviously ∇⃗ · (∇⃗ × v⃗) = 0. The corresponding field lines
are called vorticity lines(xxv) and are given by [cf. Eq. (I.15)]

dx⃗× ω⃗(t, r⃗) = 0⃗ (II.12a)

or equivalently, at a point where none of the components of the vorticity vector vanishes,
dx1

ω1(t, r⃗)
=

dx2
ω2(t, r⃗)

=
dx3

ω3(t, r⃗)
. (II.12b)

II.1.3 Strain rate tensor

According to the previous subsection, the local rotational motion of a material vector is governed
by the (local and instantaneous) rotation rate tensor RRR(t, r⃗). In turn, the translational motion is
simply the displacement—which must be described in an affine space, not a vector one—of one of
the endpoints of δℓ⃗ by an amount given by the product of velocity and length of time interval. That
is, both components of the motion of a rigid body are already accounted for without invoking the
symmetric tensor DDD(t, r⃗).

In other words, the tensor DDD(t, r⃗) characterizes the local deviation between the velocity fields in
a deformable body, in particular a fluid, and in a rigid body rotating with angular velocity Ω⃗(t, r⃗).
Accordingly, it is called strain rate tensor or deformation rate tensor .(xxvi)

As we shall now see, the diagonal and off-diagonal components of DDD(t, r⃗) actually describe
the rates of change of different kinds of deformation. For simplicity, we assume throughout this
subsection that Ω⃗(t, r⃗) = 0⃗.

::::::
II.1.3 a

::::::::::::::::::::::::
Diagonal components

We first assume that all off-diagonal terms in the strain rate tensor vanish: DDDij(t, r⃗) = 0 for
i ̸= j, so as to isolate the meaning of the diagonal components.

Going back to Eq. (II.1), let us simply project it along one of the axes of the coordinate system,
say along direction i. Denoting δℓi the i-th component of δℓ⃗, one thus finds

δℓi(t+ δt) = δℓi(t) +
[
vi
(
t, r⃗ + δℓ⃗(t)

)
− vi

(
t, r⃗

)]
δt+O

(
δt2

)
.

Taylor-expanding the term between square brackets to first order then yields

δℓi(t+ δt)− δℓi(t) ≃
3∑

j=1

∂vi(t, r⃗)

∂xj
δℓj(t) δt,

up to terms of higher order in |δℓ⃗(t)| or δt. Since we have assumed that both Ω⃗(t, r⃗)—or equivalently
the componentsRRRij(t, r⃗) of the rotation rate tensor—and the off-diagonalDDDij(t, r⃗) with i ̸= j vanish,
one checks that the partial derivative ∂vi(t, r⃗)/∂xj vanishes for i ̸= j. That is, the only non-zero
term in the sum is that with j = i, so that the equation simplifies to

δℓi(t+ δt)− δℓi(t) ≃ ∂vi(t, r⃗)

∂xi
δℓi(t) δt =DDDi

i(t, r⃗) δℓ
i(t) δt.

(xxiv)Wirbligkeit (xxv)Wirbellinien (xxvi)Verzerrungsgeschwindigkeitstensor, Deformationsgeschwindigkeitstensor
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Thus, the relative elongation in δt of the i-th component—remember that there is no local rotation,
so that the change in δℓi is entirely due to a variation of the length of the material vector—is given
by

δℓi(t+ δt)− δℓi(t)

δℓi(t)
=DDDi

i(t, r⃗) δt (II.13)

or alternatively, taking the limit δt → 0

1

δℓi(t)

d

dt
δℓi(t) =DDDi

i(t, r⃗). (II.14)

This equation means that the diagonal component DDDi
i(t, r⃗) represents the local rate of linear elon-

gation in direction i.

Volume expansion rate
Instead of considering a one-dimensional material vector, one can study the evolution of a small

“material rectangular parallelepiped” of continuous medium, situated at time t at position r⃗ with
instantaneous edge lengths δL1(t), δL2(t), δL3(t)—where for simplicity the coordinate axes are taken
along the parallelepiped edges—, so that its volume at time t is simply δV(t) = δL1(t) δL2(t) δL3(t).

Taking into account Eq. (II.13) for the relative elongation of each edge length, one finds that
the relative change in volume between t and t+ δt is

δV(t+δt)− δV(t)
δV(t)

=
δL1(t+δt)− δL1(t)

δL1(t)
+

δL2(t+δt)− δL2(t)

δL2(t)
+

δL3(t+δt)− δL3(t)

δL3(t)

=
[
DDD1

1(t, r⃗) +DDD2
2(t, r⃗) +DDD3

3(t, r⃗)
]
δt.

In the second line, one recognizes the trace of the tensor DDD(t, r⃗), which going back to the definition
of the latter is equal to the divergence of the velocity fluid:

DDD1
1(t, r⃗) +DDD2

2(t, r⃗) +DDD3
3(t, r⃗) =

∂v1(t, r⃗)

∂x1
+

∂v2(t, r⃗)

∂x2
+

∂v3(t, r⃗)

∂x3
= ∇⃗ · v⃗(t, r⃗).

That is, this divergence represents the local and instantaneous volume expansion rate of the conti-
nuous medium. Accordingly, the flow of a fluid is referred to as incompressible in some region when
the velocity field in that region is divergence-free:

incompressible flow ⇔ ∇⃗ · v⃗(t, r⃗) = 0. (II.15)

We shall comment on this definition in § II.2.3.

::::::
II.1.3 b

:::::::::::::::::::::::::::
Off-diagonal components

Let us now assume that DDD12(t, r⃗), and thereby automatically DDD21(t, r⃗), is the only non-vanishing
component of the strain rate tensor. To see the influence of that component, we need to consider
the time evolution of a different object than a material vector, since anything that can affect the
latter—translation, rotation, dilatation—has already been described above.

Accordingly, we now look at the change between successive instants t and t+δt of an elementary
“material rectangle”, as pictured in Fig. II.2. We denote by v⃗ resp. v⃗ + δ⃗v the velocity at time t at
the lower left resp. upper right corner of the rectangle. Taylor expansions give for the Cartesian
components of the shift δ⃗v

δv1 =
∂v1(t, r⃗)

∂x2
δℓ2, δv2 =

∂v2(t, r⃗)

∂x1
dℓ1.

Figure II.2 shows that what is a right angle at time t becomes an angle π/2−δα at t+dt, where
δα = δα1 − δα2. In the limit of small δt, both δα1 and δα2 will be small and thus approximately
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Figure II.2 – Evolution of a material rectangle caught in the motion of a continuous medium
between times t (left) and t+ δt (right).

equal to their respective tangents. Using the fact that the parallelogram still has the same area—
since the diagonal components of DDD vanish—the projection of any side of the deformed rectangle at
time t+ δt on its original direction at time t keeps approximately the same length, up to corrections
of order δt. One thus finds for the oriented angles

δα1 ≃
δv2 δt

δℓ1
and δα2 ≃ −δv1 δt

δℓ2
.

With the Taylor expansions given above, this leads to

δα1 ≃
∂v2(t, r⃗)

∂x1
δt, δα2 ≃ −∂v1(t, r⃗)

∂x2
δt.

Gathering all pieces, one finds

δα

δt
≃ ∂v2(t, r⃗)

∂x1
+

∂v1(t, r⃗)

∂x2
= 2DDD12(t, r⃗). (II.16)

In the limit δt → 0, one sees that the off-diagonal component DDD12(t, r⃗) represents half the local
velocity of the “angular deformation”—the shear—around direction x3.

Remark: To separate the two physical effects present in the strain rate tensor, the latter is often
written as the sum of a diagonal rate-of-expansion tensor proportional to the identity 111—which is
in fact the

(
1
1

)
-form of the metric tensor g of Cartesian coordinates—and a traceless rate-of-shear

tensor SSS:
DDD(t, r⃗) =

1

3

[
∇⃗ · v⃗(t, r⃗)

]
111+SSS(t, r⃗) (II.17a)

with
SSS(t, r⃗) ≡ 1

2

(
∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗) +

[
∇⃗⃗v∇⃗⃗v∇⃗⃗v(t, r⃗)

]T − 2

3

[
∇⃗ · v⃗(t, r⃗)

]
111

)
. (II.17b)

Component-wise, and generalizing to curvilinear coordinates, this reads

DDDij(t, r⃗) =
1

3

[
∇⃗ · v⃗(t, r⃗)

]
gij(t, r⃗) +SSSij(t, r⃗) (II.17c)

with [cf. Eq. (II.4a)]

SSSij(t, r⃗) ≡
1

2

[
gki(t, r⃗)g

l
j(t, r⃗)

(
dvk(t, r⃗)

dxl
+

dvl(t, r⃗)

dxk

)
− 2

3

[
∇⃗ · v⃗(t, r⃗)

]
gij(t, r⃗)

]
. (II.17d)

::::::::::
Summary

Gathering the findings of this Section, the most general motion of a material volume element
inside a continuous medium, in particular in a fluid, can be decomposed in four elements:
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• a translation;

• a rotation, with a local angular velocity Ω⃗(t, r⃗) given by Eq. (II.9)—i.e. related to the anti-
symmetric part RRR(t, r⃗) of the velocity gradient—and equal to twice the (local) vorticity vector
ω⃗(t, r⃗);

• a local dilatation or contraction, in which the geometric form of the material volume element
remains unchanged, whose rate is given by the divergence of the velocity field ∇⃗ · v⃗(t, r⃗), i.e.
encoded in the diagonal elements of the strain rate tensor DDD(t, r⃗);

• a change of shape (“deformation”) of the material volume element at constant volume, con-
trolled by the rate-of-shear tensor SSS(t, r⃗) [Eqs. (II.17b), (II.17d)], obtained by taking the
traceless symmetric part of the velocity gradient.

Remark: In the case of a uniform motion, all spatial derivatives are by definition zero, so that the
vorticity ω⃗(t, r⃗), the expansion rate ∇⃗ · v⃗(t, r⃗) and the rate-of-shear tensor SSS(t, r⃗) actually vanish
everywhere in the flow. Accordingly, the motion of a material element in that case is simply a pure
translation, without deformation or rotation.

II.2 Classification of fluid flows
The motion, or flow (xxvii), of a fluid can be characterized according to several criteria, either purely
geometrical (§ II.2.1), kinematic (§ II.2.2), or of a more physical nature (§ II.2.3), that takes into
account the physical behavior of the flowing fluid in its evolution.

II.2.1 Geometrical criteria

In the general case, the quantities characterizing the properties of a fluid flow will depend on
time as well as on three spatial coordinates.

For some more or less idealized models of actual flows, it may turn out that only two spatial
coordinates play a role, in which case one talks of a two-dimensional flow . An example is the flow of
air around the wing of an airplane, which in first approximation is “infinitely” long compared to its
transverse profile: the (important!) effects at the ends of the wing, which introduce the dependence
on the spatial dimension along the wing, may be left aside in a first approach, then considered in a
second, more detailed step.

In some cases, e.g. for fluid flows in pipes, one may even assume that the properties only depend
on a single spatial coordinate, so that the flow is one-dimensional . In that approximation, the
physical local quantities are actually often replaced by their average value over the cross section of
the pipe.

On a different level, one also distinguishes between internal und external fluid flows, according
to whether the fluid is enclosed inside solid walls—e.g. in a pipe—or flowing around a body—e.g.
around an airplane wing.

II.2.2 Kinematic criteria

The notions of uniform—that is independent of position—and steady—independent of time—
motions were already introduced at the end of § I.3.3. Accordingly, there are non-uniform and
unsteady fluids flows.

If the vorticity vector ω⃗(t, r⃗) vanishes at every point r⃗ of a flowing fluid, then the corresponding
motion is referred to as an irrotational flow (xxviii) or, for reasons that will be clarified in Sec. ??,
potential flow . The opposite case is that of a vortical or rotational flow .(xxix)

(xxvii)Strömung (xxviii)wirbelfreie Strömung (xxix)Wirbelströmung
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According to whether the flow velocity v is smaller or larger than the (local) speed of sound
cs in the fluid, one talks of subsonic or supersonic motion(xxx), corresponding respectively to a
dimensionless Mach number (g)

Ma ≡ v

cs
(II.18)

smaller or larger than 1. Note that the Mach number can a priori be defined, and take different
values Ma(t, r⃗), at every point in a flow.

When the fluid flows in layers that do not mix with each other, so that the streamlines remain
parallel, the flow is referred to as laminar . In the opposite case the flow is turbulent .

II.2.3 Physical criteria

All fluids are compressible, more or less according to the substance and its thermodynamic state.
Nevertheless, this compressibility is sometimes irrelevant for a given motion, in which case it may
be fruitful to consider that the fluid flow is incompressible, which, as seen in § II.1.3 a, technically
means that its volume expansion rate vanishes, ∇⃗ · v⃗ = 0. In the opposite case (∇⃗ · v⃗ ̸= 0), the flow
is said to be compressible. It is however important to realize that the statement is more a kinematic
one, than really reflecting the thermodynamic compressibility of the fluid.

In practice, flows are compressible in regions where the fluid velocity is “large”, namely where
the Mach number (II.18) is not much smaller than 1, i.e. roughly speaking Ma ≳ 0.2.

In an analogous manner, one speaks of viscous resp. non-viscous flows to express the fact that the
fluid under consideration is modeled as viscous resp. inviscid—which leads to different equations of
motion—, irrespective of the fact that every real fluid has a non-zero viscosity.

Other thermodynamic criteria are also used to characterize possible fluid motions: isothermal
flows—i.e. in which the temperature is uniform and remains constant—, isentropic flows—i.e. with-
out production of entropy—, and so on.

Bibliography for Chapter II
• National Committee for Fluid Mechanics film & film notes on Deformation of Continuous

Media;

• Faber [1] Chapter 2.4;

• Feynman [10, 11] Chapter 39–1;

• Guyon et al. [2] Chapters 3.1, 3.2;

• Sommerfeld [7, 8] Chapter I.

(xxx)Unterschall- bzw. Überschallströmung
(g)E. Mach, 1838–1916
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