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More precisely, ~r(t, ~R) maps for every t the initial volume V0 onto Vt. To implement mathe-
matically the physical picture of continuity, it will be assumed that the mapping ~r(t, · ) : V0 ! Vt

is also one-to-one for every t—i.e. all in all bijective—, and that the function ~r and its inverse

~R = ~R(t,~r) (I.7)

are continuous with respect to both time and space variables. This requirement in particular
ensures that neighboring points remain close to each other as time elapses. It also preserves the
connectedness of volumes, (closed) surfaces or curves along the evolution: one may then define
material domains, i.e. connected sets of material points which are transported together in the
evolution of the continuous medium.

For the sake of simplicity, it will be assumed that the mapping ~r and its inverse, and more
generally every mathematical function G representing a physical quantity, is at least twice continu-
ously differentiable (i.e. of class C2). To be able to accommodate for important phenomena that are
better modeled with discontinuities, like shock waves in fluids (Sec. ??) or ruptures in solids—for
instance, in the Earth’s crust—, the C2-character of functions under consideration may hold only
piecewise.

I.2.3 Velocity and acceleration of a material point

As mentioned above, for a fixed reference position ~R the function t 7! ~r(t, ~R) is the trajectory of
the material point which passes through ~R at the reference time t0. As a consequence, the velocity
at time t of this material point, measured in the reference frame R, is simply

~v(t, ~R) =
@~r(t, ~R)

@t
. (I.8)

Since the variable ~R is independent of t, one could actually also write ~v(t, ~R) = d~r(t, ~R)/dt.
In turn, the acceleration of the material point in R is given at time t by

~a(t, ~R) =
@~v(t, ~R)

@t
. (I.9)

Remark: The trajectory (or pathline
(vii)) of a material point can be visualized, by tagging the point

at its position ~R at time t0, for instance with a fluorescent or radioactive marker, and then imaging
the positions at later times t > t0.

On the other hand, if one regularly—say for every instant t0  t0  t—injects some marker at
a fixed geometrical point P , the resulting tagged curve at time t is the locus of the geometrical
points occupied by medium particles which passed through P in the past. This locus is referred
to as streakline.(viii) Denoting by ~rP the position vector of point P , the streakline is the set of
geometrical points with position vectors

~r = ~r
�
t, ~R(t0,~rP )

�
for t0  t0  t. (I.10)

I.3 Eulerian description
The Lagrangian approach introduced in the previous Section is actually not commonly used in fluid
dynamics, at least not in its original form, except for specific problems.

One reason is that physical quantities at a given time are expressed in terms of a reference
configuration in the (far) past: a small uncertainty on this initial condition may actually yield

(vii)
Bahnlinie

(viii)
Streichlinie

Nicolas Borghini



10 Basic notions on continuous media

after a finite duration a large uncertainty on the present state of the system, which is problematic.
On the other hand, this line of argument explains why the Lagrangian point of view is adopted
to investigate chaos in many-body systems!

The more usual description is the so-called Eulerian
(d) perspective, in which the evolution between

instants t and t+ dt takes the system configuration at time t as a reference.

I.3.1 Eulerian coordinates. Velocity field
In contrast to the “material” Lagrangian point of view, which identifies the medium particles in

a reference configuration and follows them in their motion, in the Eulerian description the emphasis
is placed on the geometrical points. Thus, the Eulerian coordinates are time t and a spatial vector
~r, where the latter does not label the position of a material point, but rather that of a geometrical
point. Accordingly, the physical quantities in the Eulerian specification are described by fields on
space-time.

Thus, the fundamental field that entirely characterizes the motion of a continuous medium in
a given reference frame R is the velocity field ~vt(t,~r). The latter is defined such that it gives the
value of the Lagrangian velocity ~v [Eq. (I.8)] of a material point passing through ~r at time t:

~v =~vt(t,~r) 8t, 8~r 2 Vt. (I.11)

More generally, the value taken at given time and position by a physical quantity G , whether
attached to a material point or not, is expressed as a mathematical function Gt of the same Eulerian
variables:

G = Gt(t,~r) 8t, 8~r 2 Vt. (I.12)

Note that the mappings (t, ~R) 7! G(t, ~R) in the Lagrangian approach and (t,~r) 7! Gt(t,~r) in the
Eulerian description are in general different. For instance, the domains in R3 over which their spatial
variables take their values differ: constant (V0) in the Lagrangian specification, time-dependent (Vt)
in the case of the Eulerian quantities. Accordingly the latter will be denoted with a subscript t in
the next subsection.

I.3.2 Equivalence between the Eulerian and Lagrangian viewpoints
Despite the different choices of variables, the Lagrangian and Eulerian descriptions are fully

equivalent. Accordingly, the prevalence in practice of the one over the other is more a technical
issue than a conceptual one.

Thus, it is rather clear that the knowledge of the Lagrangian specification can be used to obtain
the Eulerian formulation at once, using the mapping ~r 7! ~R(t,~r) between present and reference
positions of a material point. For instance, the Eulerian velocity field can be expressed as

~vt(t,~r) = ~v
�
t, ~R(t,~r)

�
. (I.13a)

This identity in particular shows that ~vt automatically inherits the smoothness properties of ~v: if
the mapping (t, ~R) 7! ~r(t, ~R) and its inverse are piecewise C2 (cf. § I.2.2), then ~vt is (at least)
piecewise C1 in both its variables.

For a generic physical quantity, the transition from the Lagrangian to the Eulerian point of view
similarly reads

Gt(t,~r) = G
�
t, ~R(t,~r)

�
. (I.13b)

Reciprocally, given a (well-enough behaved) Eulerian velocity field~vt on a continuous medium,
one can uniquely obtain the Lagrangian description of the medium motion by solving the initial

(d)L. Euler, 1707–1783
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value problem 8
><

>:

@~r(t, ~R)

@t
=~vt

�
t,~r(t, ~R)

�

~r(t0, ~R) = ~R,

(I.14a)

where the second line represents the initial condition. That is, one actually reconstructs the pathline
of every material point of the continuous medium. Introducing differential notations, the above
system can also be rewritten as

d~r =~vt(t,~r) dt with ~r(t0, ~R) = ~R. (I.14b)

Once the pathlines ~r(t, ~R) are known, one obtains the Lagrangian function G(t, ~R) for a given
physical quantity G by writing

G(t, ~R) = Gt

�
t,~r(t, ~R)

�
. (I.14c)

Since both Lagrangian and Eulerian descriptions are equivalent, we shall from now on drop the
subscript t on the mathematical functions representing physical quantities in the Eulerian point of
view.

I.3.3 Streamlines
At a given time t, the streamlines

(ix) of the motion are defined as the field lines of ~v. That is,
these are curves whose tangent is everywhere parallel to the instantaneous velocity field at the same
geometrical point.

Let ~x(�) denote a streamline, parameterized by �. The definition can be formulated as

d~x(�)

d�
= ↵(�)~v

�
t, ~x(�)

�
(I.15a)

with ↵(�) a scalar function. Equivalently, denoting by d~x(�) a differential line element tangent to
the streamline, one has the condition

d~x⇥~v
�
t, ~x(�)

�
= ~0. (I.15b)

Introducing a Cartesian system of coordinates, the equation for a streamline is conveniently
rewritten as

dx1(�)

v1
�
t, ~x(�)

� =
dx2(�)

v2
�
t, ~x(�)

� =
dx3(�)

v3
�
t, ~x(�)

� (I.15c)

at a point where none of the component vi of the velocity field vanishes—if one of the vi is zero,
then so is the corresponding dxi, thanks to Eq. (I.15b).

Remark: Since the velocity field ~v depends on the choice of reference frame, this is also the case of
its streamlines at a given instant!

Consider now a closed geometrical curve in the volume Vt occupied by the continuous medium
at time t. The streamlines tangent to this curve form in the generic case a tube-like surface, called
stream tube.(x)

Let us introduce two further definitions related to properties of the velocity field:

• If ~v(t,~r) has at some t the same value at every geometrical point ~r of a (connected) domain
D ⇢ Vt, then the velocity field is said to be uniform across D.
In that case, the streamlines are parallel to each other over D.

(ix)
Stromlinien

(x)
Stromröhre
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• If~v(t,~r) only depends on the position, not on time, then the velocity field and the correspond-
ing motion of the continuous medium are said to be steady or equivalently stationary .
In that case, the streamlines coincide with the pathlines and the streaklines.

Indeed, one checks that Eq. (I.14b) for the pathlines, in which the velocity becomes time-
independent, can then be recast (at a point where all vi are non-zero) as

dx1

v1(t,~r)
=

dx2

v2(t,~r)
=

dx3

v3(t,~r)
,

where the variable t plays no role: this is exactly the system (I.15c) defining the streamlines
at time t. The equivalence between pathlines and streaklines is also trivial. ⇤

I.3.4 Material derivative
Consider a material point M in a continuous medium, described in a reference frame R. Let ~r

resp. ~r + d~r denote its position vectors at successive instants t resp. t + dt. The velocity of M at
time t resp. t + dt is by definition equal to the value of the velocity field at that time and at the
respective position, namely~v(t,~r) resp.~v(t+ dt,~r+ d~r). For small enough dt, the displacement d~r
of the material point between t and t+ dt is related to its velocity at time t by d~r =~v(t,~r) dt.

Let d~v ⌘~v(t+dt,~r+d~r)�~v(t,~r) denote the change in the material point velocity between t and
t+ dt. Assuming that~v(t,~r) is differentiable (cf. § I.3.2) and introducing for simplicity a system of
Cartesian coordinates, a Taylor expansion to lowest order yields

d~v '
@~v(t,~r)

@t
dt+

@~v(t,~r)

@x1
dx1 +

@~v(t,~r)

@x2
dx2 +

@~v(t,~r)

@x3
dx3,

up to terms of higher order in dt or d~r. Introducing the differential operator

d~r · ~r ⌘ dx1
@

@x1
+ dx2

@

@x2
+ dx3

@

@x3
,

this can be recast in the more compact form

d~v '
@~v(t,~r)

@t
dt+

�
d~r · ~r

�
~v(t,~r). (I.16)

In the second term on the right-hand side, d~r can be replaced by~v(t,~r) dt. On the other hand,
the change in velocity of the material point between t and t + dt is simply the product of its
acceleration ~a(t) at time t by the length dt of the time interval, at least to lowest order in dt.
Dividing both sides of Eq. (I.16) by dt and taking the limit dt ! 0, in particular in the ratio d~v/dt,
yield

~a(t) =
@~v(t,~r)

@t
+
⇥
~v(t,~r) · ~r

⇤
~v(t,~r). (I.17)

That is, the acceleration of the material point consists of two terms:

• the local acceleration
@~v

@t
, which follows from the non-stationarity of the velocity field;

• the convective acceleration
�
~v · ~r

�
~v, due to the non-uniformity of the motion.

More generally, one finds by repeating the same derivation as above that the time derivative of
a physical quantity G attached to a material point or domain, expressed in terms of Eulerian fields,
is the sum of a local (@G/@t) and a convective [(~v · ~r)G ] part, irrespective of the tensorial nature
of G . Accordingly, one introduces the operator

D

Dt
⌘

@

@t
+~v(t,~r) · ~r (I.18)
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called material derivative
(xi) or (between others) substantial derivative,(xii)

derivative following the

motion, hydrodynamic derivative. Relation (I.17) can thus be recast as

~a(t) =
D~v(t,~r)

Dt
. (I.19)

Remarks:
⇤ Equation (I.17) shows that even in the case of a steady motion, the acceleration of a material

point may be non-vanishing, thanks to the convective part.

⇤ The material derivative (I.18) is also often denoted (and referred to) as total derivative d/dt.

⇤ One also finds in the literature the denomination convective derivative.(xiii) To the eyes and ears
of the author of these lines, that name has the drawback that it does not naturally evoke the local
part, but only. . . the convective one, which comes from the fact that matter is being transported,
“conveyed”, with a non-vanishing velocity field~v(t,~r).

⇤ The two terms in Eq. (I.18) actually “merge” together when considering the motion of a material
point in Galilean space-time R⇥R3. As a matter of fact, one easily shows that D/Dt is the (Lie(e))
derivative along the world-line of the material point

The world-line element corresponding to the motion between t and t+dt goes from (t, x1, x2, x3) to
(t+dt, x1+v1 dt, x2+v2 dt, x3+v3 dt). The tangent vector to this world-line thus has components
(1, v1, v2, v3), i.e. the derivative along the direction of this vector is @t + v1@1 + v2@2 + v3@3, with
the usual shorthand notations @t ⌘ @/@t and @i ⌘ @/@xi. ⇤

I.4 Mechanical stress

I.4.1 Forces in a continuous medium
Consider a closed material domain V inside the volume Vt occupied by a continuous medium,

and let S denote the (geometric) surface enclosing V . One distinguishes between two classes of
forces acting on this domain:

• Volume or body forces,(xiv) which act at each point of the bulk volume of V .
Examples are weight, long-range electromagnetic forces or, in non-inertial reference frames,
fictitious forces (Coriolis, centrifugal).
For such forces, which tend to be proportional to the volume they act on, it will later be more
convenient to introduce the corresponding volumic force density.

• Surface or contact forces,(xv) which act on the surface S, like friction. These will be now
discussed in further detail.

Consider an infinitesimally small geometrical surface element d2S at point P . Let d2 ~Fs denote
the surface force through d2S. That is, d2 ~Fs is the contact force, due to the medium exterior to V ,
that a “test” material surface coinciding with d2S would experience. The vector

~Ts ⌘
d2 ~Fs
d2S

, (I.20)

representing the surface density of contact forces, is called (mechanical) stress vector
(xvi) on d2S.

(xi)
Materielle Ableitung

(xii)
Substantielle Ableitung

(xiii)
Konvektive Ableitung

(xiv)
Volumenkräfte

(xv)
Oberflächenkräfte

(e)S. Lie, 1842–1899
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V

S

d2S ~en

d2 ~Fs

Figure I.2

The corresponding unit in the SI system is the Pascal, with 1 Pa = 1 N ·m�2.

Purely geometrically, the stress vector ~Ts on a given surface element d2S at a given point can
be decomposed into two components, namely

• a vector orthogonal to the plane tangent at P to d2S, the so-called normal stress
(xvii); when

it is directed towards the interior resp. exterior of the medium domain being acted on, it is
also referred to as compression

(xviii) resp. tension
(xix);

• a vector in the tangent plane at P , called shear stress
(xx) and often denoted as ~⌧ .

Despite the short notation adopted in Eq. (I.20), the stress vector depends not only on the
position of the geometrical point P where the infinitesimal surface element d2S lies, but also on the
orientation of the surface. Let ~en denote the normal unit vector to the surface element, directed
towards the exterior of the volume V (cf. Fig. I.2), and let ~r denote the position vector of P in a
given reference frame. The relation between ~en and the stress vector ~Ts on d2S is then linear:

~Ts = ���(~r) ·~en, (I.21a)

with ���(~r) a symmetric tensor of rank 2, the so-called (Cauchy
(f)) stress tensor .(xxi)

In a given coordinate system, relation (I.21a) yields

T i
s =

3X

j=1

���i
j e

j
n (I.21b)

with T i
s resp. ejn the coordinates of the vectors ~Ts resp. ~en, and ���i

j the
�
1
1

�
-components of the stress

tensor.

While valid in the case of a three-dimensional position space, Eq. (I.21a) should actually be
better formulated to become valid in arbitrary dimension. Thus, the unit-length “normal vector”
to a surface element at point P is rather a 1-form acting on the vectors of the tangent space to
the surface at P . As such, it should be represented as the transposed of a vector [(~en)T], which
multiplies the stress tensor from the left:

~Ts = (~en)
T
·���(~r). (I.21c)

(xvi)
Mechanischer Spannungsvektor

(xvii)
Normalspannung

(xviii)
Druckspannung

(xix)
Zugsspannung

(xx)
Scher-,

Tangential- oder Schubspannung
(xxi)(Cauchy’scher) Spannungstensor

(f)A.L. Cauchy, 1789–1857
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This shows that the Cauchy stress tensor is a
�
2
0

�
-tensor (a “bivector”), which maps 1-forms onto

vectors. In terms of coordinates, this gives, using Einstein’s summation convention

T j
s = en,i���

ij , (I.21d)

which thanks to the symmetry of ��� is equivalent to the relation given above.

Remark: The symmetry property of the Cauchy stress tensor is intimately linked to the assumption
that the material points constituting the continuous medium have no intrinsic angular momentum.

I.4.2 Fluids
With the help of the notion of mechanical stress, we may now introduce the definition of a fluid ,

which is the class of continuous media whose motion is described by hydrodynamics:

A fluid is a continuous medium that deforms itself as long as it is submitted to shear stresses.

(I.22)
Turning this definition around, one sees that in a fluid at rest—or, to be more accurate, studied

in a reference frame with respect to which it is at rest—the mechanical stresses are necessarily
normal. That is, the stress tensor is in each point diagonal.

More precisely, for a locally isotropic fluid—which means that the material points are isotropic,
which is the case throughout these notes—the stress

�
2
0

�
-tensor is everywhere proportional to the

inverse metric tensor:
���(t,~r) = �P (t,~r)g�1(t,~r) (I.23)

with P (t,~r) the hydrostatic pressure at position ~r at time t.

Going back to relation (I.21b), the stress vector will be parallel to the “unit normal vector” in
any coordinate system if the square matrix of the

�
1
1

�
-components ���i

j is proportional to the
identity matrix, i.e. ���i

j / �ij , where we have introduced the Kronecker symbol. To obtain the�
2
0

�
-components ���ik, one has to multiply ���i

j by the component gjk of the inverse metric tensor,
summing over k, which precisely gives Eq. (I.23).

Remarks:

⇤ Definition (I.22), as well as the two remarks hereafter, rely on an intuitive picture of “deforma-
tions” in a continuous medium. To support this picture with some mathematical background, we
shall introduce in Sec. II.A an appropriate strain tensor, which quantifies these deformations, at
least as long as they remain small.

⇤ A deformable solid will also deform itself when submitted to shear stress! However, for a given
fixed amount of tangential stress, the solid will after some time reach a new, deformed equilibrium
position—otherwise, it is not a solid, but a fluid.

⇤ The previous remark is actually a simplification, valid on the typical time scale of human beings. Thus,
materials which in our everyday experience are solids—as for instance those forming the mantle of the Earth—
will behave on a longer time scale as fluids—in the previous example, on geological time scales. Whether
a given substance behaves as a fluid or a deformable solid is sometimes characterized by the dimensionless
Deborah number [9], which compares the typical time scale for the response of the substance to a mechanical
stress and the observation time.

⇤ Even nicer, the fluid vs. deformable solid behavior may actually depend on the intensity of the
applied shear stress: ketchup!
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