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A system of many microscopic degrees of freedom is often more conveniently described as a
material body that fills some region of space continuously, rather than as a collection of discrete
point particles (Sec. I.1). This theoretical approach, which is especially suited to represent systems
whose internal deformations are relevant, is an instance of physical modeling , originally motivated
by the agreement of its predictions with experimental observations. Like every model, that of a
continuous medium is valid only in some range of physical conditions, in particular on macroscopic
scales.

Mathematically, a classical continuous medium at a given instant is described as a volume—or
more generally a manifold—in usual Euclidean space. The infinitesimal elements of this volume
constitute the elementary “material points”, which are entirely characterized by their position.

To describe the time evolution of the physical system modeled as a continuous medium, two
equivalent approaches are available. The first one consists in following the trajectories of the material
points as time passes by (Sec. I.2). The physical picture of continuousness is then enforced by
requesting that the mapping between the position of a given point at some reference initial time
and its position at any later instant is continuous.

The second point of view, which will mostly be adopted in the remainder of these notes, focuses
on the change in the various physical quantities at a fixed position as time elapses (Sec. I.3).
The reference for the medium evolution between successive instants t and t + dt is the “current”
configuration of the material points, i.e. at time t, instead of their positions in the (far) past. In that
description, the spatial variables are no longer dynamical, but only labels for the position at which
some observable is considered. Accordingly, the dynamical quantities in the system are now time-
dependent fields; the desired continuousness of the medium translates into continuity conditions on
those fields.
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Eventually, the mathematical object that models internal forces in a continuous medium, i.e.
the influence from neighboring material points on each other, is shortly introduced (Sec. I.4). This
allows the classification of deformable continuous media into two traditional large classes, and in
particular the definition of fluids.

I.1 Continuous medium: a model for many-body systems
In this Section, we first spell out a few arguments which lead to the introduction of the model
of a continuous medium (§ I.1.1). The basic ingredients of the mathematical implementation of
the model are then presented and a few notions are defined (§ I.1.2). Eventually, the physical
assumptions underlying the modeling are reexamined in greater detail, and some more or less
obvious limitations of the continuous description are indicated (§ I.1.3).

I.1.1 Basic ideas and concepts
The actual structure of matter at the microscopic scale is discrete, and involves finite “elemen-

tary” entities: electrons, atoms, ions, molecules, . . . , which in the remainder of these notes will be
collectively referred to as “atoms”. Any macroscopic sample of matter contains a large amount of
these atoms. For instance, the number density in an ideal gas under normal conditions is about
2.7⇥ 1025 m�3, so that one cubic millimeter still contains 2.7⇥ 1016 atoms. Similarly, even though
the number density in the interstellar medium might be as low as 102 m�3, any volume relevant for
astrophysics, i.e. with at least a kilometer-long linear size, involves a large number of atoms.

Additionally, these atoms are in constant chaotic motion, with individual velocities of order
102–103 m · s�1 for a system at thermal equilibrium at temperature T ' 300 K. Given a mean free
path(i) of order 10�7 m in a gas under normal conditions, each atom undergoes 109–1010 times per
second, i.e. its trajectory changes direction constantly.

As in Statistical Mechanics, it is in general unnecessary to know the details of the motion
of each atom in a macroscopic system: as a matter of fact, there emerge global characteristics,
which can be predicted to a high degree of accuracy thanks to the large number of degrees of
freedom involved in their definition (mostly as averages), despite the chaoticity of the individual
atomic behaviors. The macroscopic properties of systems at (global) thermodynamic equilibrium
are thus entirely determined by a handful of collective variables, either extensive—like entropy,
internal energy, volume, particle number, total momentum. . . —, or intensive—as e.g. the respective
densities of the various extensive variables, or temperature, pressure, chemical potential, average
velocity. . . —, where the latter take the same value throughout the system.

When thermodynamic equilibrium does not hold globally in a system, there is still the possibility
that one may consider that it is valid locally, “at each point” in space. In that situation—whose un-
derlying assumptions will be specified in greater detail in § I.1.3—the intensive thermodynamic vari-
ables characterizing the system macroscopically become fields, which can vary from point to point.
More generally, experience shows that it is fruitful to describe a large amount of characteristics—not
only thermodynamic, but also of mechanical nature, like forces and the displacements or deforma-
tions they induce—of macroscopic bodies as fields. A “continuous medium” is then intuitively a
system described by such fields, which should satisfy some (mathematical) continuity property with
respect to the spatial variables that parameterize the representation of the physical system as a
geometrical quantity. This picture will be better specified in Secs. I.2 and I.3.

Assuming the relevance of the model of a medium whose properties are described by continuous
fields is often referred to as continuum hypothesis

(ii).
The reader should keep in mind that the modeling of a given macroscopic system as a continuous

medium does not invalidate the existence of its underlying discrete atomic structure. Specific
(i)

mittlere freie Weglänge
(ii)

Kontinuumshypothese
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phenomena will still directly probe the latter, as e.g. X-ray scattering experiments for the gases or
liquids of our everyday life. That is, the model has limitations to its validity, especially at small
wavelengths or high frequencies, where “small” or “high” implies a comparison to some microscopic
physical scale characteristic of the system under consideration. Turning the reasoning the other
way around, the continuous-medium picture is often referred to as a long-wavelength, low-frequency
approximation to a more microscopic description—from which it can actually be shown to emerge
in the corresponding limits.

It is important to realize that the model itself is blind to its own limitations, i.e. there is
no a priori criterion within the mathematical continuous-medium description that signals the
breakdown of the relevance of the picture to actual physics. In practice, there might be hints
that the equations of the continuous model are being applied in a regime where they should not,
as for instance if they yield negative values for a quantity which should be positive, but such
occurrences are not the general rule.

Remarks:
⇤ The model of a continuous model is not only applicable—and applied—to obvious cases like

gases, liquids or (deformable) solids, it may also be used to describe the behaviors of large crowds,
fish schools, car traffic. . . provided the number of “elementary” constituents is large and the system
is studied on a large enough scale.

⇤ Even if the continuous description is valid on “long wavelengths”, it remains obvious that any
physical system, viewed on a scale much larger than its spatial extent, is to first approximation best
described as pointlike.
Consider for instance a molecular cloud of interstellar medium with a 10 parsec radius and about
1010 H2 molecules per cubic meter. For a star forming at its core, it behaves a continuous medium;
1 kpc away, however, the inner degrees of the cloud are most likely already irrelevant and it is best
described as a mere point.

I.1.2 General mathematical framework
Consider a non-relativistic classical macroscopic physical system ⌃, described by Newtonian

physics. The positions of its individual atoms, viewed as pointlike, at a given instant t—which is
the same for all observers—are points in a three-dimensional Euclidean spaceE 3.

In the description as a continuous medium, the system ⌃ is represented by a geometrical manifold
inE 3, which for the sake of simplicity will be referred to as a “volume” and denoted by V . The
basic constituents of V are its infinitesimal elements d3V , called material points

(iii) or continuous

medium particles
(iv)—which explains a posteriori our designating the discrete constituents of matter

as “atoms”—, or, in the specific case of the elementary subdivisions of a fluid, fluid particles
(v). As

we shall state more explicitly in § I.1.3, these infinitesimal elements are assumed to have the same
physical properties as a finite macroscopic piece.

Associated with the physical picture attached to the notion of continuousness is the requirement
that neighboring material points in the medium remain close to each other throughout the system
evolution. We shall see below how this picture is implemented in the mathematical description.

Remark: The volume V —with the topology inherited fromE 3—need not be simply connected. For
instance, one may want to describe the flow of a river around a bridge pier: the latter represents a
physical region which water cannot penetrate, which is modeled as a hole throughout the volume
V occupied by fluid particles.

To characterize the position of a given material point, as well as some of the observables relative
to the physical system ⌃, one still needs to specify the reference frame in which the system is
(iii)

Materielle Punkte
(iv)

Mediumteilchen
(v)

Fluidteilchen



I.1 Continuous medium: a model for many-body systems 5

studied, corresponding to the point of view of a given observer, and to choose a coordinate system

in that reference frame. This choice allows one to define vectors—like position vectors, velocities,
or forces—and tensors.

The basis vectors of the coordinate system will generically be designated as ~e1, ~e2, ~e3, while the
components of a given vector will be denoted with upper (“contravariant”) indices, as e.g. ~c = ci~ei,
where the summation convention over repeated upper and lower indices was used.

Once the reference frame and coordinate system are determined, the macroscopic state of the
physical system at time t is mapped onto a corresponding configuration t of the medium, consisting
of the continuous set of the position vectors ~r = xi~ei of its constituting material points. Since the
volume occupied by the latter may also depends on time, it will also be labeled by t: Vt.

To be able to formalize the necessary continuity conditions in the following Sections, one also
introduces a reference time t0—conveniently taken as the origin of the time axis, t0 = 0—and the
corresponding reference configuration 0 of the medium, which occupies a volume V0. The generic
position vector of a material point in this reference configuration will be denoted as ~R = Xi~ei.
Remark: In so-called “classical” continuous media, as have been introduced here, the material points
are entirely characterized by their position vector. In particular, they have no intrinsic angular
momentum.

I.1.3 Local thermodynamic equilibrium
In a more bottom-up approach to the modeling of a system ⌃ of discrete constituents as a con-

tinuous medium, one should first divide ⌃ (in thought) into small cells of fixed—yet not necessarily
universal—size fulfilling two conditions:

(i) each individual cell can meaningfully be treated as a thermodynamic system, i.e. it must be
large enough that the relative fluctuations of the usual extensive thermodynamic quantities
computed for the content of the cell are negligible;

(ii) the thermodynamic properties vary little over the cell scale, i.e. cells cannot be too large, so
that (approximate) homogeneity is ensured.

The rationale behind these two requirements is illustrated by Fig. I.1, which represents schematically
how the value of a local macroscopic quantity, e.g. a density, depends on the resolution of the
apparatus with which it is measured, i.e. equivalently on the length scale on which it is defined. If the
apparatus probes too small a length scale, so that the discrete degrees of freedom become relevant,
the measured value strongly fluctuates from one observation to the next one, as hinted at by the
displayed envelope of possible results of measurements: this is the issue addressed by condition (i).
Simultaneously, a small change in the measurement resolution, even with the apparatus still centered
on the same point in the system, can lead to a large variation in the measured value of the observable,
corresponding to the erratic behavior of the curve at small scales shown in Fig. I.1. This fluctuating
pattern decreases with increasing size of the observation scale, since this increase leads to a growth
in the number of atoms inside the probed volume, and thus a drop in the size of relative fluctuations.
At the other end of the curve, one reaches a regime where the low resolution of the observation
leads to encompassing domains with enough atoms to be rid of fluctuations, yet with inhomogeneous
macroscopic properties, in a single probed region—in violation of condition (ii). As a result, the
measured value of the density under consideration slowly evolves with the observation scale.

In between these two domains of strong statistical fluctuations and slow macroscopic variations
lies a regime where the value measured for an observable barely depends on the scale over which it is
determined. This represents the appropriate regime for meaningfully defining—and measuring—a
local density, and more general local quantities.

It is important to note that this intermediate “mesoscopic” interval may not always exist. There
are physical systems in which strong macroscopic variations are already present in a range of scales
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Figure I.1 – Typical variation of the measured value for a “local” macroscopic observable as
a function of the size scale over which it is determined.

where microscopic fluctuations are still sizable. For such systems, one cannot find scale-independent
local variables. That is, the proper definition of local quantities implicitly relies on the existence
of a clear separation of scales in the physical system under consideration, which is what will be
assumed in the remainder of these notes.

Remark: The smallest volume over which meaningful local quantities can be defined is sometimes
called representative volume element (RVE), or representative elementary volume.

When conditions (i) and (ii) hold, one may in particular define local thermodynamic variables,
corresponding to the values taken in each intermediate-size cell—labeled by its position ~r—by the
usual extensive parameters: internal energy, number of atoms. . . Since the separation between
cells is immaterial, nothing prevents energy or matter from being transported from a cell to its
neighbors, even if the global system is isolated. Accordingly, the local extensive variables in any
given cell are actually time-dependent in the general case. In addition, it becomes important to
add linear momentum—with respect to some reference frame—to the set of local extensive variables
characterizing the content of a cell.

The size of each cell is physically irrelevant, as long as it satisfies the two key requirements; there
is thus no meaningful local variable corresponding to volume. Similarly, the values of the extensive
variables in a given cell, which are by definition proportional to the cell size, are as arbitrary as
the latter. They are thus conveniently replaced by the respective local densities: internal energy
density e(t,~r), number density n(t,~r), linear momentum density ⇢(t,~r)~v(t,~r), where ⇢ denotes the
mass density, entropy density s(t,~r). . .

Remark: Rather than considering the densities of extensive quantities, some authors—in particular
Landau & Lifshitz [4, 5]—prefer to work with specific quantities, i.e. their respective amounts per
unit mass, instead of per unit volume. The relation between densities and specific quantities is
trivial: denoting by x j resp. x j,m a generic local density resp. specific amount for the same physical
quantity, one has the identity

x j(t,~r) = ⇢(t,~r) x j,m(t,~r) (I.1)

in every cell—labeled by ~r—and at every time t.
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Once the local extensive variables have been meaningfully defined, one can develop the usual
formalism of thermodynamics in each cell. In particular, one introduces the conjugate intensive
variables, as e.g. local temperature T (t,~r) and pressure P (t,~r). The underlying, important hypoth-
esis is the assumption of a local thermodynamic equilibrium. According to the latter, the equation(s)
of state of the system inside the small cell, expressed with local thermodynamic quantities, is the
same as for a macroscopic system in the actual thermodynamic limit of infinitely large volume and
particle number.

Consider for instance a non-relativistic classical ideal gas: its (mechanical) equation of state
reads PV = NkBT , with N the number of atoms, which occupy a volume V at uniform pressure P
and temperature T , while kB is the Boltzmann(a) constant. This is trivially recast as P = nkBT ,
with n the number density of atoms. The local thermodynamic equilibrium assumption then states
that under non-uniform conditions of temperature and pressure, the equation of state in a local cell
at position ~r is given by

P (t,~r) = n(t,~r)kBT (t,~r) (I.2)

at every time t.

The last step towards the continuous-medium model is to promote ~r, which till now was simply
the discrete label attached to a given cell, to be a continuous variable taking its values in R3—
or rather, in the volume Vt attached to the system at the corresponding instant t. Accordingly,
taking into account the time-dependence of physical quantities, the local variables, in particular the
thermodynamic parameters, become fields on R⇥R3.

The replacement of the fine-resolution description, in which atoms are the relevant degrees of
freedom, by the lower-resolution model which assimilates small finite volumes of the former to
structureless points is called coarse graining

(vi).

This is a quite generic procedure in theoretical physics, whereby the finer degrees of freedom of a
more fundamental description are smoothed away—technically, this is often done by performing
averages or integrals, so that these degrees of freedom are “integrated out”—and replaced by
novel, effective variables in a theory with a more limited range of applicability, but which is
more tractable for “long-range” phenomena.

Coming back to condition (ii), we already stated that it implicitly involves the existence of at
least one large length scale L, over which the macroscopic physical properties of the system may
vary. This scale can be a characteristic dimension of the system under consideration, as e.g. the
diameter of the tube in which a liquid is flowing. In the case of periodic waves propagating in
the continuous medium, L also corresponds to their wavelength. More generally, if G denotes a
macroscopic physical quantity, one may consider

L ⇠=

"��~rG(t,~r)
��

|G(t,~r)|

#�1

, (I.3)

where ~r denotes the (spatial) gradient.
Condition (i) in particular implies that the typical size of the cells which are later coarse grained

should be significantly larger than the mean free path `mfp of atoms, so that thermodynamic equi-
librium holds in the local cells. Since on the other hand this same typical size should be significantly
smaller than the scale L of macroscopic variations, one deduces the condition

Kn ⌘
`mfp

L
⌧ 1 (I.4)

on the dimensionless Knudsen number Kn.(b)

(vi)
Vergröberung

(a)L. Boltzmann, 1844–1906 (b)M. Knudsen, 1871–1949
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In air under normal conditions P = 105 Pa and T = 300 K, the mean free path is `mfp ⇡ 0.1 µm.
In the study of phenomena with variations on a characteristic scale L ⇡ 10 cm, one finds Kn ⇡ 10�6,
so that air can be meaningfully treated as a continuous medium.

The opposite regime Kn > 1 is that of a rarefied medium, as for instance of the so-called
Knudsen gas, in which the collisions between atoms are negligible—and in particular insufficient
to ensure thermal equilibrium as an ideal gas. The flow of such systems is not well described by
hydrodynamics, but necessitates alternative descriptions like molecular dynamics, in which the
degrees of freedom are explicitly atoms.

I.2 Lagrangian description
The Lagrangian

(c) perspective, which generalizes the approach usually adopted in the description of
the motion of a (few) point particle(s), focuses on the trajectories of the material points, where the
latter are labeled by their position in the reference configuration. Accordingly, physical quantities
are expressed as functions of time t and initial position vectors ~R, and any continuity condition has
to be formulated with respect to these variables.

I.2.1 Lagrangian coordinates
Consider a material point M in a continuous medium. Given a reference frame R, which

allows the definition of its position vector at any time t, one can follow its trajectory ~r(t). With a
choice of coordinate system, that trajectory is equivalently characterized by the functions {xi(t)}
for i = 1, 2, 3.

Let ~R resp. {Xi
} denote the position resp. coordinates of the material point M at t0. The

trajectory obviously depends on this “initial” position, and ~r can thus be viewed as a function of t
and ~R, where the latter refers to the reference configuration 0:

~r = ~r(t, ~R) (I.5a)

with the consistency condition
~r(t= t0, ~R) = ~R. (I.5b)

In the Lagrangian description, also referred to as material description or particle description,
this point of view is generalized, and the various physical quantities G characterizing a continuous
medium are viewed at any time as mathematical functions of the variables t and ~R:

G = G(t, ~R), (I.6)

where the mapping G—which as often in physics will be denoted with the same notation as the
physical quantity represented by its value—is defined for every t on the initial volume V0 occupied
by the reference configuration 0.

Together with the time t, the position vector ~R—or equivalently its coordinates X1, X2, X3 in
a given system—are called Lagrangian coordinates .

I.2.2 Continuity assumptions

An important example of physical quantity, function of t and ~R, is simply the (vector) position
in the reference frame R of material points at time t, i.e. ~r or equivalently its coordinates {xi}, as
given by relation (I.5a), which thus relates the configurations 0 and t.

(c)J.-L. Lagrange, 1736–1813
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More precisely, ~r(t, ~R) maps for every t the initial volume V0 onto Vt. To implement mathe-
matically the physical picture of continuity, it will be assumed that the mapping ~r(t, · ) : V0 ! Vt

is also one-to-one for every t—i.e. all in all bijective—, and that the function ~r and its inverse

~R = ~R(t,~r) (I.7)

are continuous with respect to both time and space variables. This requirement in particular
ensures that neighboring points remain close to each other as time elapses. It also preserves the
connectedness of volumes, (closed) surfaces or curves along the evolution: one may then define
material domains, i.e. connected sets of material points which are transported together in the
evolution of the continuous medium.

For the sake of simplicity, it will be assumed that the mapping ~r and its inverse, and more
generally every mathematical function G representing a physical quantity, is at least twice continu-
ously differentiable (i.e. of class C2). To be able to accommodate for important phenomena that are
better modeled with discontinuities, like shock waves in fluids (Sec. ??) or ruptures in solids—for
instance, in the Earth’s crust—, the C2-character of functions under consideration may hold only
piecewise.

I.2.3 Velocity and acceleration of a material point

As mentioned above, for a fixed reference position ~R the function t 7! ~r(t, ~R) is the trajectory of
the material point which passes through ~R at the reference time t0. As a consequence, the velocity
at time t of this material point, measured in the reference frame R, is simply

~v(t, ~R) =
@~r(t, ~R)

@t
. (I.8)

Since the variable ~R is independent of t, one could actually also write ~v(t, ~R) = d~r(t, ~R)/dt.
In turn, the acceleration of the material point in R is given at time t by

~a(t, ~R) =
@~v(t, ~R)

@t
. (I.9)

Remark: The trajectory (or pathline
(vii)) of a material point can be visualized, by tagging the point

at its position ~R at time t0, for instance with a fluorescent or radioactive marker, and then imaging
the positions at later times t > t0.

On the other hand, if one regularly—say for every instant t0  t0  t—injects some marker at
a fixed geometrical point P , the resulting tagged curve at time t is the locus of the geometrical
points occupied by medium particles which passed through P in the past. This locus is referred
to as streakline.(viii) Denoting by ~rP the position vector of point P , the streakline is the set of
geometrical points with position vectors

~r = ~r
�
t, ~R(t0,~rP )

�
for t0  t0  t. (I.10)

I.3 Eulerian description
The Lagrangian approach introduced in the previous Section is actually not commonly used in fluid
dynamics, at least not in its original form, except for specific problems.

One reason is that physical quantities at a given time are expressed in terms of a reference
configuration in the (far) past: a small uncertainty on this initial condition may actually yield

(vii)
Bahnlinie

(viii)
Streichlinie

Nicolas Borghini
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