Phenomenology of heavy-ion collisions

How can one characterize what is created in a heavy-ion collision?

Focus on “collective phenomena” present in nucleus-nucleus collisions, but absent in pp collisions (“condensed matter physics of QCD”)

Establish a reference, in which collective effects are absent.

Quantify the deviation from these benchmarks in nucleus-nucleus collisions.

Analyze the origin of these deviations.
First measurement: multiplicity

number N_{ch} of charged particles $\propto \frac{(PP_{12} + PN_{12})}{2}$

First measurement: multiplicity

number N_{ch} of charged particles $\propto (PP_{12} + PN_{12})/2$

Nucleon-nucleon cross-section

\[\sigma_{\text{tot}} \]

\[\sigma_{\text{NN inel}}^{\text{PYTHIA}} \]

\[\sigma_{\text{elastic}} \]

\[\sqrt{s_{\text{NN}}} \, (\text{GeV}) \]

Multiplicility distribution

Vary the equivalent number of nucleon-nucleon collisions between $\bar{N}_{\text{part}}^{AB}(b)$ and $\bar{N}_{\text{coll}}^{AB}(b)$:

$$\bar{N}_{AB}(b) = \left(\frac{1 - x}{2} \bar{N}_{\text{part}}^{AB}(b) + x \bar{N}_{\text{coll}}^{AB}(b) \right) \bar{N}_{NN}$$

Probability $P(n,b)$ to find a multiplicity n in a particular A-B collision at impact parameter b:

- Gaussian around $\bar{N}_{AB}(b)$, with some dispersion;
- given by a Monte-Carlo simulation.

Event-multiplicity distribution:

$$\frac{dN_{\text{evts}}}{dn} = \int db \ P(n,b) \left\{ 1 - \left[1 - \sigma_{NN}^{\text{inel}} T_{AB}(b) \right]^{AB} \right\}$$

probability that an inelastic process occur
Multiplicity distribution

Au+Au at $\sqrt{s_{NN}} = 200$ GeV

Multiplicity distribution

\[
\frac{dN_{\text{evts}}}{dn} = \int db \, P(n, b) \left\{ 1 - \left[1 - \sigma_{NN}^{\text{inel}} T_{AB}(b) \right]^{AB} \right\}
\]
Multiplicity vs. geometry
Multiplicity vs. geometry

Cross-checking Glauber theory

Multiplicity at projectile rapidity vs. at midrapidity
Pseudorapidity distributions

Collision centralities: 0–6%, 6–15%, 15–25%, 25–35%, 35–45%, 45–55%
(missing / not shown at the lower two energies)

Rapidity distributions

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 xlabel={y},
 ylabel={dN/dy},
 xmin=0, xmax=5,
 ymin=0, ymax=300,
 xtick={0,1,2,3,4,5},
 ytick={0,100,200,300},
 legend pos=north east,
]
\addlegendimage{only marks, mark=*, color=red, mark size=2pt}
\addlegendentry{π^+}
\addlegendimage{only marks, mark=o, color=orange, mark size=2pt}
\addlegendentry{π^-}
\addlegendimage{only marks, mark=triangle*, color=blue, mark size=2pt}
\addlegendentry{$K^+ (\times 4)$}
\addlegendimage{only marks, mark=triangle, color=blue, mark size=2pt}
\addlegendentry{$K^- (\times 4)$}
\end{axis}
\end{tikzpicture}
\end{center}

Multiplicity at mid-rapidity

Beware: in fact, at $\eta=0$, not $\gamma=0$!
Charged hadron multiplicity

Au-Au collisions 0-6% centrality

The graph shows the charged hadron multiplicity $dN_{ch}/d\eta$ as a function of the pseudorapidity η for different energies (200 GeV, 130 GeV, 62.4 GeV, 19.6 GeV). The data is presented in a plot with error bars for each point.
Charged hadron multiplicity

Au-Au collisions 0-6% centrality

We boost everything to the rest frame of one nucleus ("projectile")

"limiting fragmentation"

Charged hadron multiplicity

We boost everything to the rest frame of one nucleus ("projectile")

“limiting fragmentation”

We boost everything to the rest frame of one nucleus ("projectile")

“limiting fragmentation”
We boost everything to the rest frame of one nucleus ("projectile")

"limiting fragmentation"
We boost everything to the rest frame of one nucleus ("projectile")

\[\ln \sqrt{s_{NN}} \]

Charged hadron multiplicity grows like

\[-y_{\text{beam}} \] at LHC

\(\eta' = \eta - y_{\text{beam}} \)

Charged hadron multiplicity

Au-Au collisions 0-6% centrality

Busza 2004; N.B. & Wiedemann 2008
Charged hadron multiplicity

The naive extrapolation of RHIC data yields \(\frac{dN^{ch}}{d\eta} \approx 1100 \) at \(\eta = 0 \) -increase, in opposition to conventional power-law rise.
Charged hadron multiplicity

The naive extrapolation of RHIC data yields \(\frac{dN^{\text{ch}}}{d\eta} \approx 1100 \) at \(\eta = 0 \)

\[\ln \sqrt{s_{NN}} \] -increase, in opposition to conventional power-law rise

Heavy Ion Collisions at the LHC
Last Call for Predictions
Monday May 14th to Friday June 8th 2007

- Hijing + baryon junctions: 3500
- EPOS (multiple scattering): 2500
- pQCD minijets + saturation (EKRT) of produced gluons: 2570
- AMPT (Hijing+ZPC): \(\approx 2500 \)
- Percolating strings:
 - DMPJET III: \(\approx 1900 \)
 - Pajares et al.: 1500–1600
- 2-component + shadowing: \(\approx 1700 \)
- “Geometric scaling” (Armesto, Salgado, Wiedemann): 1700–1900
- Gluon saturation (Kharzeev, Levin, Nardi 2000–05): 1800–2100
- B-K eq.+ running coupling (Albacete, Kovchegov): \(\approx 1400 \)
- “CGC” (Gelis, Stasto, Venugopalan): 1000–1400
- ALCOR (quark–antiquark plasma + recombination): 1250–1830 = \(\frac{dN^{\text{ch}}}{dy} \)
Net baryon-number density

\[\frac{dN}{dy_{\text{net-protons}}} \]

- AGS (E802, E877, E917)
- SPS (NA49)
- RHIC (BRAHMS)

\(y_{\text{CM}} \)
Transverse-momentum spectrum

\[\sqrt{s_{NN}} = 200 \text{ GeV} \]

Au+Au, p+p

\[\frac{h^+ + h^-}{2} \]

\[1/(2\pi p_T) \frac{d^2 N}{dp_T^2} \big|_{p_T=0} \big((\text{GeV}/c)^2 \big) \]

bulk: "soft particles"

\[\propto \bar{N}_{\text{part}}(b) \]

high-\(p_T\) particles

\[\propto \bar{N}_{\text{coll}}(b) \]