Anisotropic flow from Lee–Yang zeroes ...or how to analyze $v_2, v_4 \dots$ at RHIC & LHC

Nicolas Borghini 1 , Rajeev Bhalerao 2 , Jean-Yves Ollitrault 1

¹ CEA Saclay, ² TIFR Mumbai

Anisotropic flow?

Source anisotropy \Rightarrow anisotropic emission of particles: (transverse) FLOW

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\mathbf{v_1}\cos(\phi - \Phi_R) + 2\mathbf{v_2}\cos 2(\phi - \Phi_R) + \dots$$

 v_1 "directed", v_2 "elliptic"

average over particles and events:

$$v_n = \langle \cos n(\phi - \Phi_R) \rangle$$
reaction plane, unknown

How is v_n measured?

- Reminder: analysis of v_n till now
- A new, simple method to analyze anisotropic flow
 - 🗴 a simple recipe 😃
 - a quick justification: generating function, cumulants, zeroes
 - an enlightening analogy: Lee–Yang zeroes
- 👂 Summary

R.S. Bhalerao, N.B., J.-Y. Ollitrault, Nucl. Phys. A727 (2003) 373

Methods used so far (RHIC)

Idea: measure v_n from interparticle correlations

- Two-particle methods:
 - Event-plane method
 - 2-particle correlation function & mixed events IF PHENIX
 - Cumulant of 2-particle correlations

Measured 2-particle correlations plagued by nonflow effects

I PHENIX, PHOBOS, STAR

Methods used so far (RHIC)

Idea: measure v_n from interparticle correlations

- **•** Two-particle methods:
 - Event-plane method
 - 2-particle correlation function & mixed events IF PHENIX
 - Cumulant of 2-particle correlations

Measured 2-particle correlations plagued by nonflow effects

Cumulants of 3-, 4-, 6-particle correlations

Most nonflow effects subtracted

DEPHENIX, STAR

IF STAR

I PHENIX, PHOBOS, STAR

An alternative to cumulants

An alternative to cumulants

Generating function, cumulants [part 1]

 $G(z) \equiv \left\langle \prod_{j=1}^{M} (1 + z \cos n\phi_j) \right\rangle \text{ generating function (of multiparticle averages)}$

Cumulants c_k are defined by $\ln G(z) \equiv \sum_{k=1}^{+\infty} c_k \frac{z^k}{k!}$

Generating function, cumulants [part 1]

 $G(z) \equiv \left\langle \prod_{j=1}^{M} (1 + z \cos n\phi_j) \right\rangle \text{ generating function (of multiparticle averages)}$

Cumulants c_k are defined by $\ln G(z) \equiv \sum_{k=1}^{+\infty} c_k \frac{z^k}{k!}$

ASSUMPTION: no flow = no collective behavior

system made of independent subsystems

$$\Rightarrow \quad G(z) = \prod_{\text{subsyst.}} G_{\text{sub.}}(z)$$

$$\ln G(z) = \sum_{\text{subsyst.}} \ln G_{\text{sub.}}(z) \quad \Rightarrow \quad c_k = \sum_{\text{subsyst.}} (c_k)_{\text{sub.}}$$

If there is no flow, all cumulants scale linearly with the system size M

Generating function, cumulants [part 2]

$$G(z) \equiv \left\langle \prod_{j=1}^{M} (1 + z \cos n\phi_j) \right\rangle, \qquad \ln G(z) \equiv \sum_{k=1}^{+\infty} c_k \frac{z^k}{k!}$$
 cumulant

ASSUMPTION: system with flow

• Then average over Φ_R : $G(z) = (...) I_0(\underbrace{zM}_{v_n} v_n)$ $\Rightarrow z^k$ goes with a factor M^k

Take the logarithm: the cumulant c_k scales like M^k

Generating function, zeroes

nonflow effects $c_k \propto M$ collective flow $c_k \propto M^k$ to isolate flow, compute c_k for large k

Large k?

asymptotic behavior of the coefficients in the expansion of $\ln G(z)$

Entirely determined by the first zero of G(z) in the complex plane!

See, for instance, $\ln\left(1-\frac{z}{z_0}\right) = \sum_{k=1}^{+\infty} \frac{z^k}{k z_0^k}$: large-order coefficients are controlled by z_0

Generating function, zeroes

nonflow effects $c_k \propto M$ collective flow $c_k \propto M^k$ to isolate flow, compute c_k for large k

Large k?

asymptotic behavior of the coefficients in the expansion of $\ln G(z)$

Entirely determined by the first zero of G(z) in the complex plane!

First zero? When there is flow, $G(z) = (...) I_0(zMv_n)$:

The first zero lies at $z_0 = \frac{2.405i}{Mv_{rr}}$: find z_0 , and you get v_n

finite number of events uneven detector acceptance $\begin{cases} \text{if } r \text{ find first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ find first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ find first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ find first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ find first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ first minimum of } |G(\mathbf{i}r)|, \text{ rather than first zero of } G(\mathbf{i}r) \\ \text{if } r \text{ first minimum of } |G(\mathbf{i}r)|, \text{ first minimum of$

no zero

Analogy: Lee-Yang zeroes

Phys. Rev. 87 (1952) 404: a theory of phase transitions

• Grand partition function (*T*, *V* fixed): $Q(\mu) = \sum_{N=0}^{+\infty} Z_N e^{\mu N/kT}$

• Take a reference value μ_c , define $z \equiv (\mu - \mu_c)/kT$

• Let
$$\mathcal{G}(z) \equiv \frac{\mathcal{Q}(\mu)}{\mathcal{Q}(\mu_c)} = \sum_{N=0}^{+\infty} P_N e^{zN}$$
: generating function
probability to have N particles at $\mu = \mu_c$

 \blacksquare Let the volume V (= the system size) increase

- if no phase transition, the zeroes are unchanged
- if <u>phase transition</u> at $\mu = \mu_c$, the zeroes of \mathcal{G} come closer to 0 long-range correlations, collective behavior

Analogy: Lee-Yang zeroes

Phys. Rev. 87 (1952) 404: a theory of phase transitions

• Grand partition function (*T*, *V* fixed): $Q(\mu) = \sum_{N=0}^{+\infty} Z_N e^{\mu N/kT}$

• Take a reference value μ_c , define $z \equiv (\mu - \mu_c)/kT$

• Let
$$\mathcal{G}(z) \equiv \frac{\mathcal{Q}(\mu)}{\mathcal{Q}(\mu_c)} = \sum_{N=0}^{+\infty} P_N e^{zN}$$
: generating function
probability to have N particles at $\mu = \mu_c$

 \blacksquare Let the volume V (= the system size) increase

- if no phase transition, the zeroes are unchanged
- if <u>phase transition</u> at $\mu = \mu_c$, the zeroes of \mathcal{G} come closer to 0

Anisotropic flow-

Anisotropic flow analysis with Lee–Yang zeroes

First application of Lee–Yang theory to experimental data

- Direct study of correlations involving many particles: conceptually, the best way to analyze <u>collective</u> flow
- Very simple implementation
- Various omitted features: (Nucl. Phys. A727, 373: 54 pages!)
 - Differential flow
 - Acceptance corrections
 - Stability with respect to nonflow effects
 - Statistical errors (for STAR, the same as with 4-particle cumulants!)
- If THE method to analyze v_2 and v_4 at LHC

See also Phys. Lett. B580 (2004) 157