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Anisotropic flow
Non-central collision:

φ

b

y
ΦR
x
−

The particle source is anisotropic
(and around it there is only vacuum)

⇒ the pressure gradient along the
impact parameter direction ❳❳❳③
is stronger than the gradient
perpendicular to the reaction
plane

❳❳❳❳③

⇒ anisotropic particle emission: FLOW
❄

in momentum space
Particles mainly emitted in-plane (φ = ΦR)
rather than out-of-plane (φ − ΦR = 90o).
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Anisotropic flow
Flow is a collective effect

✲ affects (almost) all particles
Measures bulk property of the medium: equation of state

Anisotropy quantified by a Fourier expansion:

dN

dφ
∝ 1 + 2 v1 cos(φ − ΦR) + 2 v2 cos 2(φ − ΦR) + . . .

v1: “directed flow”, v2: “elliptic flow”

A priori, vn(centrality, pT , y, PID)
⇒ differential measurements needed!
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Elliptic flow v2

v2 = ⟨cos 2(φ − ΦR)⟩

Predictions (Jean-Yves OLLITRAULT, 1992):

At ultrarelativistic energies, particles are emitted “in-plane”
(φ − ΦR = 0 or 180o)
⇒ v2 > 0

Hydrodynamical model
(= assuming many collisions and an
equation of state)

⇒ v2 linear function of centrality,
up to very peripheral collisions

Fig.3
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RHIC v2 results [1]
♥ Centrality dependence of elliptic flow in 130 GeV collisions:
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The difference between both
measurements is due to “non-
flow” effects that contaminate
the standard method

♥ v2 sign measured recently (STAR, Oct. 2003): v2 > 0
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RHIC v2 results [2]
Transverse momentum & particle type dependence of elliptic flow
(200 GeV collisions, PHENIX data):

pT (GeV/c)

0

0.1

0.2

0.3

0 1 2 3 4

p  pbar
K+ K−
π+ π−

hydro π
hydro K
hydro p

v 2

pT (GeV/c)

v
/n Hydrodynamical model: (Huovinen et al)

1st order phase transition,
freeze-out temperature 120 MeV

⇒ reproduces the mass-dependent v2

pattern, up to ∼ 2 GeV

For v2 at high transverse momenta (pT ! 2 GeV), see later
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v1: a simple model,
“antiflow”

Assumptions: incomplete baryon stopping
position-momentum correlation
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more stopping here
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≃ pT v1

⇒ Proton v1 negative just above midrapidity
R.J.M. Snellings et al, Phys. Rev. Lett. 84 (2000) 2803

Note: v1 = 0 at midrapidity for identical nuclei (symmetry)!
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v1 at RHIC: first results
STAR Collaboration, Oct. 2003: charged particles, 10–70% centrality

Run 4 statistics... differential measurements of v1 (and smaller error bars)

N. BORGHINI, Anisotropic flow and jet quenching – p.8/23



RHIC France meeting, Etretat, June 15, 2004

v1 at RHIC: first results
STAR Collaboration, Oct. 2003: charged particles, 10–70% centrality

Run 4 statistics... differential measurements of v1 (and smaller error bars)

N. BORGHINI, Anisotropic flow and jet quenching – p.8/23



RHIC France meeting, Etretat, June 15, 2004

A new observable: v4

STAR Collaboration, charged particles, minimum bias, 200 GeV
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Jet quenching
proton-proton vs. nucleus-nucleus: medium effect?

figures courtesy of F. GELIS
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“Jets” in Au-Au collisions at
RHIC

Nuclear modification factor RAA ≡ 1
Ncoll

d2NAA
dpT dy

d2Npp

dpT dy
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“Jets” in Au-Au collisions at
RHIC

Azimuthal correlations:❦1. Choose leading particle (pT max): origin of azimuths❦2. Count associated particles (pT cut < pT < pT max): azimuth φ
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⇒ absence of back jet (∆φ ∼ 180o) in central Au-Au collisions
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Jet quenching

Extreme scenario:

Only the jets formed close to the edge manage
to get out of the medium

Is this supported by QCD?
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Jet quenching
Fast parton energy loss dominated by the emission of soft gluons

Soft gluon formation time
tform ∼ ω

k2
⊥

Model of the medium:
mean free path λ

screening mass µ

Multiple scatterings: λ ≪ tform

ω
E’

E

q⊥
p⊥

Ncoh ∼ tform/λ coherent scatterings
Accumulated k⊥ : k2

⊥ ∼ Ncohµ2

}
Ncoh ∼

√
ω

λµ2
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Jet quenching

Coherence length for soft gluon emission ℓcoh ∼

√
λω

µ2

⇒ spectrum of energy loss, per unit length:
ω dI

dω dz
≈ 1

ℓcoh
αS ∼ αS

√
q̂

ω
with q̂ ∼ µ2/λ

For a path length L:
ω dI

dω
∼ αS

√
q̂

ω
L

Average medium-induced energy loss:

∆E ∼
∫ ωm ω dI

dω
dω ∼ αS q̂ L2
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Jet quenching

∆E ∼ αS q̂ L2

∆E goes like L2: strong attenuation

“Transport coefficient” q̂:
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∫
dq2

⊥ q2
⊥

dσ

dq2
⊥

in cold nuclear matter:
q̂cold ∼ 0.05 GeV2/fm
in a QGP at T = 250MeV:
q̂hot ∼ 1 GeV2/fm
expanding medium: effective q̂

✲ L = 5 fm, k⊥ " 10 GeV: 80–90% quenching: “OK”
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Azimuthally dependent
jet quenching

Let’s come back to non-central collisions

For a given high-pT parton, the amount of jet quenching depends
on the length of the in-medium path:

∆E ∼ αS q̂ L2

⇒ less jet quenching in-plane than out-of-plane
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v2 at high transverse
momentum

A first idea: v2 from jet quenching

For a given high-pT parton, the amount of jet quenching depends
on the length of the in-medium path:

(pT )measured ≈ (pT )emitted − a + b cos 2(φ − ΦR)
⇒ measured momentum larger in-plane than out-of-plane

Detected distribution:
dN

dpT
(pT ) ≈ f0((pT )em.) + f ′

0((pT )em.) [−a + b cos 2(φ − ΦR)]
❍❨ emitted distribution

⇒ v2(pT ) ∝
∫

dN

dpT
cos 2(φ − ΦR) ≈ f ′

0((pT )em.)
f0((pT )em.)

b

v2(pT ) ≈ f ′
0((pT )em.)

f0((pT )em.)
b

f0 exponential→ v2(pT ) constant
f0 (inverse) power law→ v2(pT ) decreasing with pT
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RHIC v2 results [3]
STAR Collaboration, charged particles, 200 GeV

N. BORGHINI, Anisotropic flow and jet quenching – p.19/23



RHIC France meeting, Etretat, June 15, 2004

RHIC v2 results [3 bis]
PHENIX Collaboration, 200 GeV
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v2 at high transverse
momentum

Second idea: hadrons from parton recombination
At hadronization, two quark/antiquark (resp. three quarks) with momentum
pT /2 (resp. pT /3) coalesce into a meson (resp. baryon) with momentum pT

⇒ vmeson
2 (pT ) ≃ 2 vq
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Summary
Runs 1 & 2 (3): beautiful data

Run 4: high statistics? Differential measurements!
non-ambiguous v2, v4(PID), v1

→ Jérôme, il faut qu’on cause...
jet quenching: azimuthal dependence, as a function of PID✏✏✏✏✏✏✏✏✏✮

Omitted topics:
“dead-cone effect” for heavy quarks
varying the cut in jet quenching studies (especially for back
jet: where has momentum gone?)
rapidity dependences
???
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Methods of flow analysis
Measuring anisotropic flow is a complicated issue:

vn = ⟨cosn(φ − ΦR)⟩
)✒lab. frame ❅■ not measured!

“standard” method: extract flow from two-particle correlations
Idea: 2 particles are correlated together because each of them is
correlated to the reaction plane by flow.

Problem: the measurement is contaminated by other sources of
two-particle correlations: quantum (HBT) effects, minijets, etc.

systematic uncertainty

better methods:
cumulants of multiparticle correlations

4-, 6-particle cumulants⇒ nonflow effects reduced
Lee–Yang zeroes: probe collective effects (flow!)

⇔ “infinite-order” cumulant
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