Mode-by-Mode Evolution in Pb-Pb Collisions

<u>Renata Krupczak</u>¹, Nicolas Borghini¹ and Hendrik Roch² ¹Fakultät für Physik, Universität Bielefeld, Germany ²Department of Physics and Astronomy, Wayne State University, USA

1.Objective

Describe the energy profile from heavy-ion collisions as the **average state** of a sample of events plus a linear decomposition into **modes**:

$$\Phi^{(i)}(\boldsymbol{x}) = ar{\Psi}(\boldsymbol{x}) + \sum_{l} c_{l}^{(i)} \Psi_{l}(\boldsymbol{x})$$

with $\langle c_l \rangle = 0$ and $\langle c_l c_{l'} \rangle = \delta_{ll'}$. Our goal is to relate initial-state fluctuation modes to final-state observables, to better

1 - 0 - -1 -	l = 0	l = 1	l = 2 .	<i>l</i> = 3 .	l = 4 .	l = 5		l = 7	l = 8	l = 9	- 0.04
1-	l = 10 .	l = 11.	l = 12 .	l = 13	l = 14 .	l = 15 .	l = 16	l = 17	l = 18	l = 19	- 0.02
											-0.00
1 - 0 -	l = 20	l = 21	l = 22	l = 23 -	l = 24 .	l = 25 .	l = 26	l = 27	l = 28	l = 29	0.02
-1-				-							0.04

 $-1 \quad 0 \quad 1 \quad -1 \quad 0 \quad -1$

pin down the initial-state model.

2. Theory

The modes are extracted from the **density matrix**, which corresponds to the autocorrelation of the fluctuation:

$$\rho = \frac{1}{N_{\text{ev}}} \sum_{i=1}^{N_{\text{ev}}} \Phi^{(i)} \Phi^{(i)\intercal} - \bar{\Psi} \bar{\Psi}^{\intercal}$$

Diagonalize: $\rho \Psi_l = \lambda_l \Psi_l$

The eigenvalues characterize the relative importance of the fluctuation modes.

Some **observables**, both in the initial state and at the end of dynamical evolution, can be expressed by:

$$O_{\alpha}(\Phi) = O_{\alpha}(\bar{\Psi}) + \sum_{l} L_{\alpha;l}c_{l} + \frac{1}{2}\sum_{ll'} Q_{\alpha;ll'}c_{l}c_{l'}$$

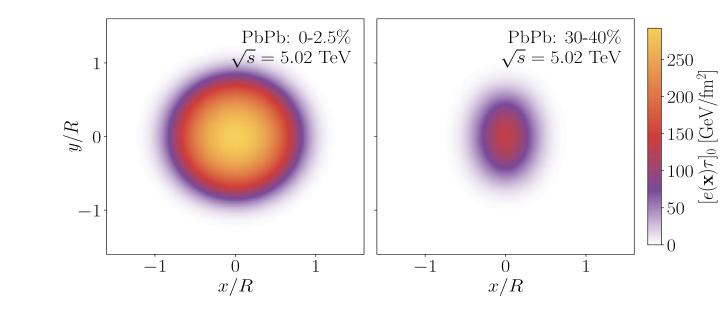
with linear and quadratic response

Modes can be qualitatively described as:

- Same symmetry as the average state, responsible for carrying energy
- **Dipole** structure, generating ε_1
- Quadrupole structure, generating ε_2
- Sextupole structure, generating ε_3
- Other modes involve eccentricities $\varepsilon_{n\gg1}$ or a mix between different eccentricities
- In non-central events, each mode generally contributes to several observables, in particular eccentricities.

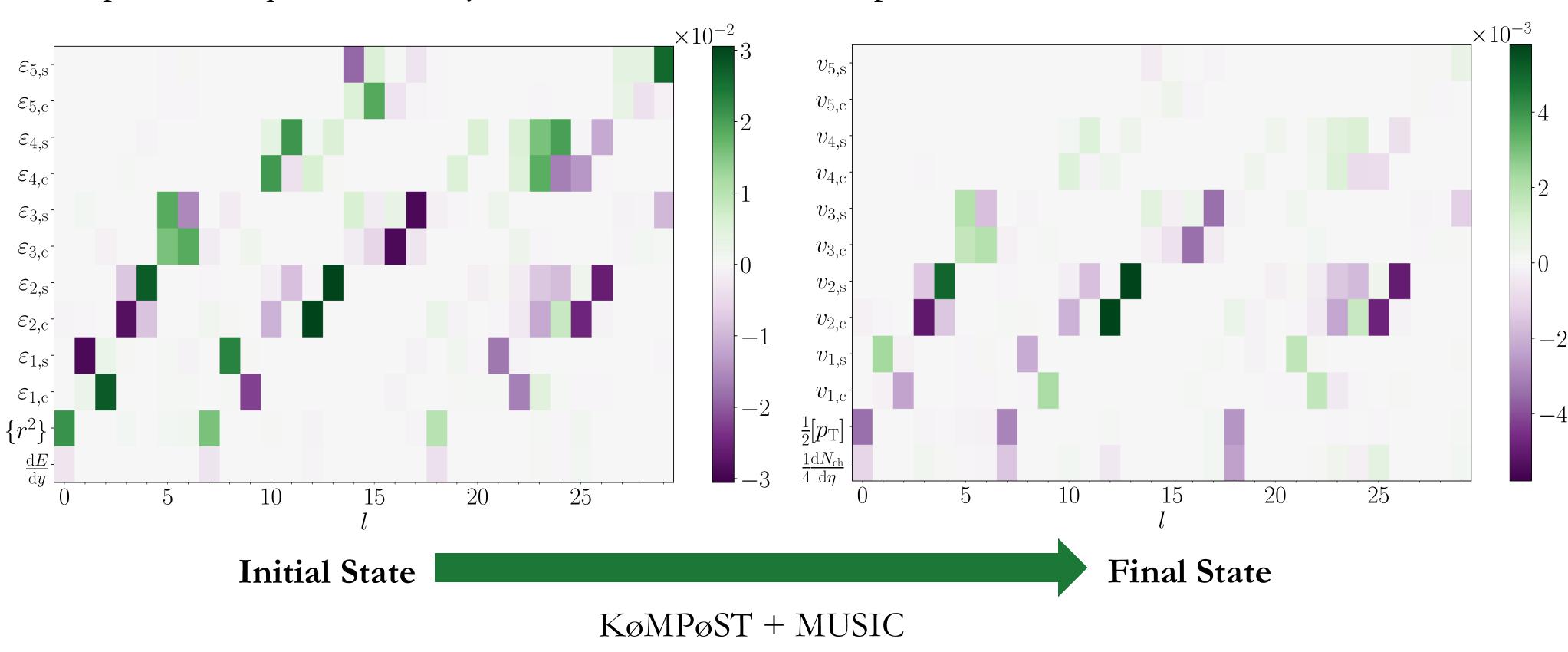
1 - 0 - -1 -	l = 0 -	l = 1	<i>l</i> = 2	<i>l</i> = 3	l = 4	l = 5	l = 6	l = 7	<i>l</i> = 8	<i>l</i> = 9	- 0.04
1 - 0 - -1 -	l = 10	l = 11	l = 12	l = 13.	<i>l</i> = 14 -	<i>l</i> = 15.	<i>l</i> = 16.	l = 17	l = 18.	<i>l</i> = 19	- 0.02
1 - 0 - -1 -	l = 20	l = 21 -	l = 22	<i>l</i> = 23	l = 24.	<i>l</i> = 25.	l = 26.	l = 27.	l = 28.	<i>l</i> = 29	0.02

Modes in the transverse plane for centrality 0-2.5%


Centrality 30-40%

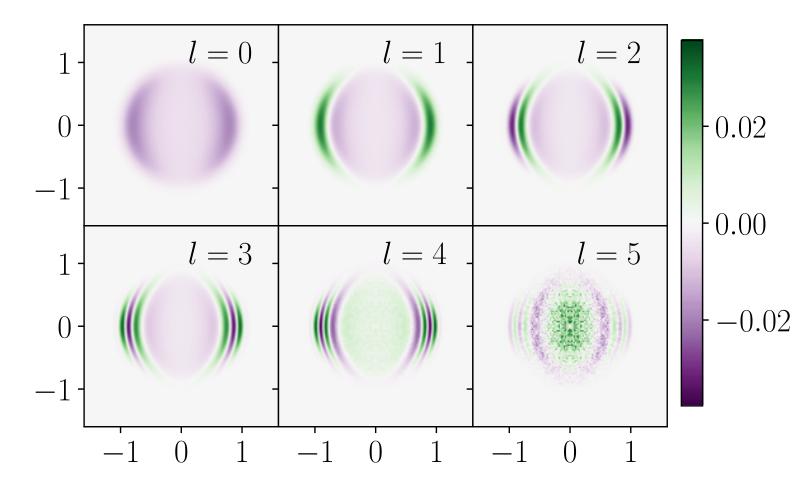
coefficients $L_{\alpha;l}$ and $Q_{\alpha;ll'}$.

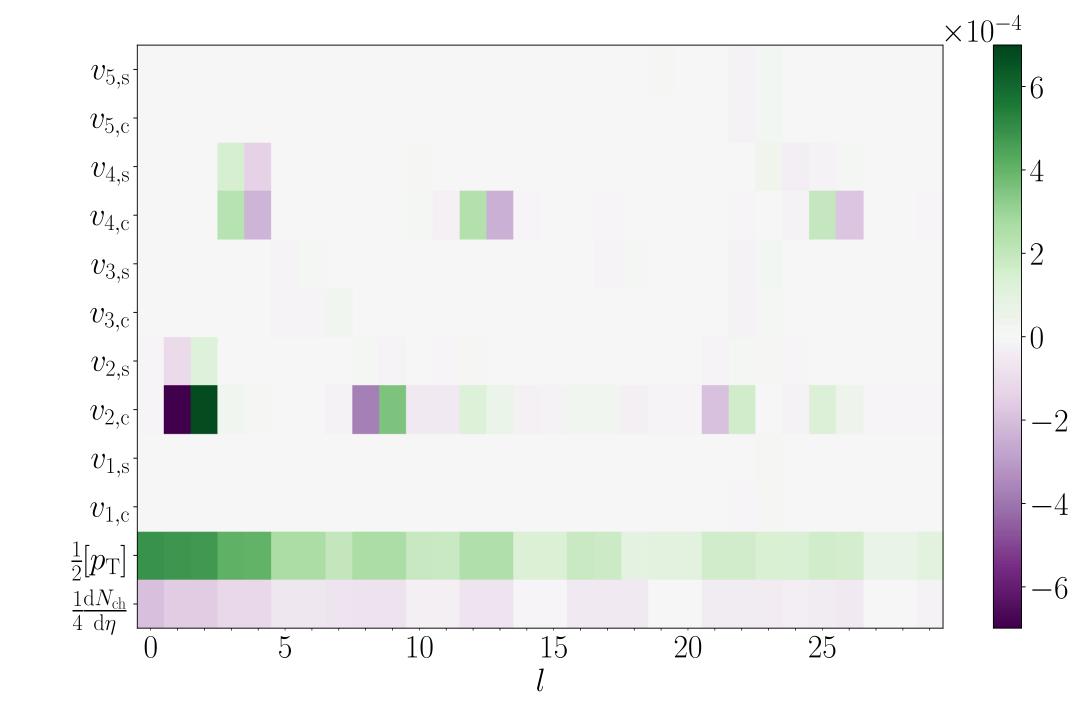
These coefficients can be used to deduce the event-by-event statistics of other observables (not shown here).


3. Results

Monte Carlo Glauber simulations of **Pb-Pb** collisions at **5.02 TeV** were performed at centralities of 0-2.5% and 30-40% (2²¹ events each), with fixed impact parameter direction. The smooth average state:

Linear response coefficients for 0-2.5%, where c and s indices refer to the cosine and sine components, respectively.


This provides a quantitative way to assess which mode is responsible for which observable.


To assess the influence of purely **geometric fluctuations**, optical Glauber simulations were performed (10³ events at each centrality). Only very few modes have a sizeable influence, e.g., only 6 in central events:

Quadratic response coefficient for 0-2.5% for final state. Shows in particular the ϵ_n^2 contribution to $v_{2n, c}$.

- The influence of single modes propagates throughout the hydrodynamic evolution;

These geometric fluctuations carry energy, ε_2 and ε_4 , and arise from impact parameter variations within the centrality range.

Also holds when including a hadronic transport afterburner, yet at the cost of a large oversampling to reduce statistical noise.

4. Conclusions and Outlook

- Systematic approach to relate initial-state fluctuations to final observables.
- Extension to 3D initial-state models and their impact on longitudinal-correlation observables.

References:

N. Borghini et al., Phys. Rev. C 107 (2023) 034905 R. Krupczak et al., arXiv:2504...