Constraining dissipative corrections to particle distributions
at freeze-out from anisotropic flow
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Sudden Freeze-Out Approximation

« Matter produced in heavy-ion collisions follows Cooper-Frye Formula

fluid dynamics (continuous medium) Momentum spectrum for a given particle:
* The detectors observe particles, created

matter is no longer a continuous medium
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— How does this transition proceed? . f is the single particle occupation factor
(e.g. Bose-Einstein-/Fermi-Dirac-distribution)
e Simple, yet promising ansatz:

Sudden Freeze-Out Approximation - Here: Classical ideal fluid (f— f )

« Sharp transition between fluid and particles: fol p-u(x)) o o T
Define a hyper-surface 2 on which the

transition is expected to take place; — Equilibrium thermal distribution f,

at each point of 2 free streaming particles

. . (Maxwell-Boltzmann-distribution)
are emitted according to the thermal

distributions in the rest frame of the fluid
 Remark: (Initial) fluctuations are ignored

Decoupling from an ideal fluid

* Computation of the Cooper-Frye integral via method of steepest descent: [1]

 Results:

Two ,kinds” of particles: slow and fast particles depending on the tranverse momentum p,

p,<m,u,  slow particles

t “"max

p,>m,u,.  fast particles

t “"max

with %, the maximum value for |u,| with a fixed rapidity and azimuth

- Stronger constraints on p are needed to ensure validity of the approximation

From an ideal fluid to a dissipative fluid

« Four-velocity uﬂ(x) IS changed
— uﬂ(x) has to be a solution of the relativistic Navier-Stokes or second-order equations

— This fact can be neglected here, because the focus is on corrections arising at freeze-out

e f, in the Cooper-Frye formula receives correction terms, depending on the dissipative effects: [2]

— First-order corrections Jf,: shear and bulk viscosity
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— &, =C (P T pp, £, (pU)

Ishear shear

— of,, .= C, pu).p’) I(x) fpux)

— Second-order corrections Jf,: only partialy known

- C__and C, :notreally known — Different options for possible models (e.g. Grad prescription)

Decoupling from a dissipative fluid

Slow Particles Fast Particles

* Emitted from point x, where u,ﬁ% * ldea:
Fast particles, emitted in a given direction, all

» The shear tensor must fullfil the Landau come from the same saddle point, where the

relation; 7" (x)u,(x) = 0

. . >
- The factor C, is a function of p~ =m

fluid velocity reaches at its maximum u__

X

= (), since for slow particles: p,cu, At the saddle point:

pul(x) = mA 1+, (@)= p,u,.(@)

shear

— Governs the momentum spectrum:
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— The contribution of 5fum1k IS identical for

particles with the same four-velocity u P i

« u dependence on the azimuth:

max
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 Conclusion:

Same result as in the ideal case [3] — Yield the “ideal” flow coefficients v

3 .
E- 2113]17 =c(m)F(%,y,<I>) v,(p ) = V,1(p,)
p laea
. V3(Pt)d = V3I(Pt) T 0(V1V2)
mass ordering of vn( P,s y) >
ideal __ ZI(pt)
v4(pt) = V4I(pt) + Vz >
with modified ¢ and F compared to the results o
vs(Pt)l o= V2V3I(Pt) T O(Vs)

for the ideal fluid [1]
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Decoupling from a dissipative fluid

Fast particles

» Adding the first-order correction terms:
u —m 1+
dSN Py — M, max
D d325 o« € ! <1+5flbulk+5flshear)
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* An example for the correction terms:

. of,, . Will be neglected for simplicity

. 5f1 remains

shear

— Only the 7" (x)-term contributes: 6 £, = C, nlp,—myv, T(V'u")

Momentum spectrum
ptumax_mt v 1+u%nax
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Flow coefficients [3]

v,(p) = Vil1(p,)-D(p,)] D(p) = —MiVmee 2 P Viar)

- . t DMV 0 1+17!2 T
vi(p,) = V[I(p)—D(p)] + o(V,V>) .
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v4(pt) — V4.I(pt)_D(pt): T Vz I(pt) _I(pt)D(pt)] h(%) B 1+g(‘§)
vs(p,) = V,VilI(p,)—D(p,)] + o(Vs) g(&) = & nC,(x, (V' )(x,)

— D(p,) comes from the dissipative effects

Dissipative effects [3]

The ratio between v, and v, should be a constant,

in fact, if V,= V3 and all other Vn = (), then v, and

v, should not be any different and the ratio

should be equal to one
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for which the saddle-point
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using ALICE data, 40-50% centrality N
(experimental error bars not shown)
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For #,,, nottoo large (#,, << 1), the analytic solution D(p ) (blue) can be compared to the

disspative correction calculated with a “blast wave model” ansatz (green)

(vs(p,) = va(p)vs(p))
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Two independent relations from which the .l i

viscous correction could be extracted I
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Summary

» Slow particles: Viscous corrections do not Outlook

change the scaling laws  Other relations possible

» Fast particles: Flow coefficients gain a  Other freeze-out ansatze
viscous correction term

» Flow coefficients: New relations between

different flow coefficients are found
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