Cosmology

Problem C6.1 Estimate the redshift corresponding to matter-radiation equality ($\rho_m = \rho_{rad}$) for $\Omega_{m0} = 0.27$, assuming that photons are the only form of radiation. What is the corresponding temperature of the photons in eV? Today, we have that $\Omega_{rad}h^2 = 4.18 \times 10^{-5}$, is the radiation content today only made of photons?

Problem C6.2 Give the age of the universe as a function of temperature during radiation domination. Primordial nucleosynthesis started at $T \sim 1$ MeV and ended around $T \sim 10$ keV, how old was the universe during that time? Using your estimation of the temperature of the photon at matter-radiation equality from above, how old was the universe then?

Problem H6.1 In the lecture the particle number densities were computed neglecting chemical potentials and masses assuming. Now expand the phase space densities for first order in μ_i and compute Show that for $T \gg m_i, \mu_i$ the difference of the number densities of particles and their antiparticles is

$$\Delta n_i = \frac{\mu T^2}{3} \text{ for bosons}$$
$$\Delta n_i = \frac{\mu T^2}{6} \text{ for fermions}$$
$$\int_0^\infty dz \frac{z}{e^z \pm 1} = \begin{cases} \frac{\pi^2}{6} \\ \frac{\pi^2}{12} \end{cases}$$

Hint:

Problem H6.2 Compute the entropy of a thermal bath of non-relativistic particles.