Chapter 3

WAVE PROPAGATION AND REFRACTIVE INDEX
AT EUV AND SOFT X-RAY WAVELENGTHS

\[n(\omega) = 1 - \frac{n_a r e \lambda^2}{2\pi} \left(f_1^0 - i f_2^0 \right) \]
(3.9)

\[n(\omega) = 1 - \delta + i\beta \]
(3.12)

\[l_{\text{abs}} = \frac{\lambda}{4\pi\beta} \]
(3.22)

\[\sigma_{\text{abs.}} = 2r e \lambda f_2^0(\omega) \]
(3.28)

\[\Delta \phi = \left(\frac{2\pi \delta}{\lambda} \right) \Delta r \]
(3.29)

\[\theta_c = \sqrt{2\delta} \]
(3.41)

\[R_{s,\perp} \simeq \frac{\delta^2 + \beta^2}{4} \]
(3.50)

\[\phi_B \simeq \frac{\pi}{4} - \frac{\delta}{2} \]
(3.60)
The transverse wave equation is

\[
\left(\frac{\partial^2}{\partial t^2} - c^2 \nabla^2 \right) E_T(\mathbf{r}, t) = -\frac{1}{\epsilon_0} \frac{\partial J_T(\mathbf{r}, t)}{\partial t}
\]

(3.1)

For the special case of forward scattering the positions of the electrons within the atom (\(\Delta k \cdot \Delta r_s\)) are irrelevant, as are the positions of the atoms themselves, \(n(\mathbf{r}, t)\). The contributing current density is then

\[
J_0(\mathbf{r}, t) = -en_a \sum_s g_s \mathbf{v}_s(\mathbf{r}, t)
\]

(3.2)

where \(n_a\) is the average density of atoms, and

\[
\sum_s g_s = Z
\]
The oscillating electron velocities are driven by the incident field \(\mathbf{E} \)

\[
\mathbf{v}(\mathbf{r}, t) = \frac{e}{m} \frac{1}{(\omega^2 - \omega_s^2) + i \gamma \omega} \frac{\partial \mathbf{E}(\mathbf{r}, t)}{\partial t}
\]

(3.2)

such that the contributing current density is

\[
\mathbf{J}_0(\mathbf{r}, t) = -\frac{e^2 n_a}{m} \sum_s \frac{g_s}{(\omega^2 - \omega_s^2) + i \gamma \omega} \frac{\partial \mathbf{E}(\mathbf{r}, t)}{\partial t}
\]

(3.4)

Substituting this into the transverse wave equation (3.1), one has

\[
\left(\frac{\partial^2}{\partial t^2} - c^2 \nabla^2 \right) \mathbf{E}_T(\mathbf{r}, t) = \frac{e^2 n_a}{\epsilon_0 m} \sum_s \frac{g_s}{(\omega^2 - \omega_s^2) + i \gamma \omega} \frac{\partial^2 \mathbf{E}_T(\mathbf{r}, t)}{\partial t^2}
\]

Combining terms with similar operators

\[
\left[\left(1 - \frac{e^2 n_a}{\epsilon_0 m} \sum_s \frac{g_s}{(\omega^2 - \omega_s^2) + i \gamma \omega} \right) \frac{\partial^2}{\partial t^2} - c^2 \nabla^2 \right] \mathbf{E}_T(\mathbf{r}, t) = 0
\]

(3.5)
Written in the standard form of the wave equation as

\[
\left[\frac{\partial^2}{\partial t^2} - \frac{c^2}{n^2(\omega)} \nabla^2 \right] E_T(\mathbf{r}, t) = 0
\]

(3.6)

The frequency dependent refractive index \(n(\omega) \) is identified as

\[
n(\omega) \equiv \left[1 - \frac{e^2 n_a}{\epsilon_0 m} \sum_s \frac{g_s}{(\omega^2 - \omega_s^2) + i \gamma \omega} \right]^{1/2}
\]

(3.7)

For EUV/SXR radiation \(\omega^2 \) is very large compared to the quantity \(e^2 n_a/\epsilon_0 m \), so that to a high degree of accuracy the index of refraction can be written as

\[
n(\omega) = 1 - \frac{1}{2} \frac{e^2 n_a}{\epsilon_0 m} \sum_s \frac{g_s}{(\omega^2 - \omega_s^2) + i \gamma \omega}
\]

(3.8)

which displays both positive and negative dispersion, depending on whether \(\omega \) is less or greater than \(\omega_s \). Note that this will allow the refractive index to be more or less than unity, and thus the phase velocity to be less or greater than \(c \).
Refractive Index in the Soft X-Ray and EUV Spectral Region (continued)

\[n(\omega) = 1 - \frac{1}{2} \frac{e^2 n_a}{\varepsilon_0 m} \sum_s \frac{g_s}{(\omega^2 - \omega_s^2) + i \gamma \omega} \] \hspace{1cm} (3.8)

Noting that

\[r_e = \frac{e^2}{4\pi \varepsilon_0 mc^2} \]

and that for forward scattering

\[f^0(\omega) = \sum_s \frac{g_s \omega^2}{\omega^2 - \omega_s^2 + i \gamma \omega} \]

where this has complex components

\[f^0(\omega) = f_1^0(\omega) - i f_2^0(\omega) \]

The refractive index can then be written as

\[n(\omega) = 1 - \frac{n_a r_e \lambda^2}{2\pi} \left[f_1^0(\omega) - i f_2^0(\omega) \right] \] \hspace{1cm} (3.9)

which we write in the simplified form

\[n(\omega) = 1 - \delta + i \beta \] \hspace{1cm} (3.12)
Refractive Index from the IR to X-Ray Spectral Region

\[n(\omega) = 1 - \delta + i\beta \]
\[\delta = \frac{n_a r_e \lambda^2}{2\pi} f_1^0(\omega) \]
\[\beta = \frac{n_a r_e \lambda^2}{2\pi} f_2^0(\omega) \]

- \(\lambda^2 \) behavior
- \(\delta \) & \(\beta \ll 1 \)
- \(\delta \)-crossover

Refractive index, \(n \) vs. Ultraviolet

Infrared \(\omega_{IR} \)
Visible \(\omega_{UV} \)
Ultraviolet \(\omega_{K,L,M} \)
X-ray
The wave equation can be written as

\[
\left(\frac{\partial}{\partial t} - \frac{c}{n(\omega)} \nabla \right) \left(\frac{\partial}{\partial t} + \frac{c}{n(\omega)} \nabla \right) \mathbf{E}_T(\mathbf{r}, t) = 0 \quad (3.10)
\]

The two bracketed operators represent left and right-running waves

\[
\left(\frac{\partial}{\partial t} - \frac{c}{n} \frac{\partial}{\partial z} \right) E_x = 0
\]

\[
\left(\frac{\partial}{\partial t} + \frac{c}{n} \frac{\partial}{\partial z} \right) E_x = 0
\]

where the phase velocity, the speed with which crests of fixed phase move, is not equal to \(c \) as in vacuum, but rather is

\[
v_\phi = \frac{c}{n(\omega)} \quad (3.11)
\]
Recall the wave equation

\[
\left(\frac{\partial}{\partial t} - \frac{c}{n(\omega)} \nabla \right) \left(\frac{\partial}{\partial t} + \frac{c}{n(\omega)} \nabla \right) E_T(\mathbf{r}, t) = 0 \quad (3.10)
\]

Examining one of these factors, for a space-time dependence

\[
E_T = E_0 \exp[-i(\omega t - kz)]
\]

\[-i \left(\omega - \frac{ck}{n} \right) = 0\]

Solving for \(\omega/k \) we have the phase velocity

\[
V_\phi = \frac{\omega}{k} = \frac{c}{n}
\]
Phase Variation and Absorption of Propagating Waves

For a plane wave \(\mathbf{E}(\mathbf{r}, t) = \mathbf{E}_0 e^{-i(\omega t - \mathbf{k} \cdot \mathbf{r})} \) in a material of refractive index \(n \), the complex dispersion relation is

\[
\frac{\omega}{k} = \frac{c}{n} = \frac{c}{1 - \delta + i\beta}
\]

(3.15)

Solving for \(k \)

\[
k = \frac{\omega}{c} (1 - \delta + i\beta)
\]

(3.16)

Substituting this into (3.14), in the propagation direction defined by \(\mathbf{k} \cdot \mathbf{r} = kr \)

\[
\mathbf{E}(\mathbf{r}, t) = \mathbf{E}_0 e^{-i[\omega t - (\omega/c)(1-\delta+i\beta)r]}
\]

or

\[
\mathbf{E}(\mathbf{r}, t) = \mathbf{E}_0 e^{\frac{-i\omega(t-r/c)}{\text{vacuum propagation}}} e^{\frac{-i(2\pi \delta/\lambda)r}{\phi\text{-shift}}} e^{\frac{-(2\pi \beta/\lambda)r}{\text{decay}}}
\]

(3.17)

where the first exponential factor represents the phase advance had the wave been propagating in vacuum, the second factor (containing \(2\pi \delta r/\lambda \)) represents the modified phase shift due to the medium, and the factor containing \(2\pi \beta r/\lambda \) represents decay of the wave amplitude.
For complex refractive index n

$$
\mathbf{H}(\mathbf{r}, t) = n \sqrt{\frac{\varepsilon_0}{\mu_0}} \mathbf{k}_0 \times \mathbf{E}(\mathbf{r}, t)
$$

(3.18)

The average intensity, in units of power per unit area, is

$$
\bar{I} = |\mathbf{S}| = \frac{1}{2} |\text{Re}(\mathbf{E} \times \mathbf{H}^*)|
$$

(3.19)

or

$$
\bar{I} = \frac{1}{2} \text{Re}(n) \sqrt{\frac{\varepsilon_0}{\mu_0}} |\mathbf{E}|^2
$$

(3.20)

Recalling that

$$
\mathbf{E}(\mathbf{r}, t) = \mathbf{E}_0 e^{-i\omega (t-r/c)} e^{-i(2\pi \delta/\lambda) r} e^{-(2\pi \beta/\lambda) r}
$$

(3.17)

$$
\bar{I} = \frac{1}{2} \text{Re}(n) \sqrt{\frac{\varepsilon_0}{\mu_0}} |\mathbf{E}_0|^2 e^{-2(2\pi \beta/\lambda) r}
$$

or

$$
\bar{I} = \bar{I}_0 e^{-(4\pi \beta/\lambda) r}
$$

(3.21)

the wave decays with an exponential decay length

$$
I_{\text{abs}} = \frac{\lambda}{4\pi \beta}
$$

(3.22)
Absorption Lengths

\[l_{\text{abs}} = \frac{\lambda}{4\pi \beta} \]

(3.22)

Recalling that \(\beta = n_a r_e \lambda^2 f_2^0(\omega)/2\pi \)

\[l_{\text{abs}} = \frac{1}{2n_a r_e \lambda f_2^0(\omega)} \]

(3.23)

In Chapter 1 we considered experimentally observed absorption in thin foils, writing

\[\frac{\bar{I}}{I_0} = e^{-\rho \mu r} \]

(3.24)

where \(\rho \) is the mass density, \(\mu \) is the absorption coefficient, \(r \) is the foil thickness, and thus \(l_{\text{abs}} = 1/\rho \mu \). Comparing absorption lengths, the macroscopic and atomic descriptions are related by

\[\mu = \frac{2r_e \lambda}{A m_u} f_2^0(\omega) \]

(3.26)

where \(\rho = m_a n_a = A m_u n_a \), \(m_u \) is the atomic mass unit, and \(A \) is the number of atomic mass units
For a wave propagating in a medium of refractive index $n = 1 - \delta + i\beta$

$$E(r, t) = E_0 e^{-i\omega(t-r/c)} e^{-i(2\pi\delta/\lambda)r} e^{-(2\pi\beta/\lambda)r}$$ \hspace{1cm} (3.23)

the phase shift $\Delta\phi$ relative to vacuum, due to propagation through a thickness Δr is

$$\Delta\phi = \left(\frac{2\pi\delta}{\lambda}\right) \Delta r$$ \hspace{1cm} (3.29)

- Flat mirrors at short wavelengths
- Transmissive, flat beamsplitters
- Bonse and Hart interferometer
- Diffractive optics for SXR/EUV
Reflection and Refraction at an Interface

incident wave: \(E = E_0 e^{-i(\omega t - k \cdot r)} \) \hspace{1cm} (3.30a)
refracted wave: \(E' = E'_0 e^{-i(\omega t - k' \cdot r)} \) \hspace{1cm} (3.30b)
reflected wave: \(E'' = E''_0 e^{-i(\omega t - k'' \cdot r)} \) \hspace{1cm} (3.30c)

(1) All waves have the same frequency, \(\omega \), and \(|k| = |k''| = \frac{\omega}{c}\)
(2) The refracted wave has phase velocity
\[
V_\phi = \frac{\omega'}{c'} = \frac{c}{n}, \text{ thus } k' = |k'| = \frac{\omega}{c} \left(1 - \delta + i\beta \right)\]
Boundary Conditions at an Interface

• E and H components parallel to the interface must be continuous

\[\mathbf{z}_0 \times (\mathbf{E}_0 + \mathbf{E}_0'') = \mathbf{z}_0 \times \mathbf{E}_0' \] \hspace{1cm} (3.32a)

\[\mathbf{z}_0 \times (\mathbf{H}_0 + \mathbf{H}_0'') = \mathbf{z}_0 \times \mathbf{H}_0' \] \hspace{1cm} (3.32b)

• D and B components perpendicular to the interface must be continuous

\[\mathbf{z}_0 \cdot (\mathbf{D}_0 + \mathbf{D}_0'') = \mathbf{z}_0 \cdot \mathbf{D}_0' \] \hspace{1cm} (3.32c)

\[\mathbf{z}_0 \cdot (\mathbf{B}_0 + \mathbf{B}_0'') = \mathbf{z}_0 \cdot \mathbf{B}_0' \] \hspace{1cm} (3.32d)
Spatial Continuity Along the Interface

Continuity of parallel field components requires

\[(k \cdot x_0 = k' \cdot x_0 = k''_0 \cdot x_0) \text{ at } z = 0 \quad (3.33)\]

\[k_x = k'_x = k''_x \quad (3.34a)\]

\[k \sin \phi = k' \sin \phi' = k'' \sin \phi'' \quad (3.34b)\]

Conclusions:

Since \(k = k''\) (both in vacuum)

\[\sin \phi = \sin \phi'' \quad (3.35a)\]

\[\therefore \quad \phi = \phi'' \quad (3.35b)\]

The angle of incidence equals the angle of reflection

\[k \sin \phi = k' \sin \phi' \quad (3.36)\]

\[k = \frac{\omega}{c} \quad \text{and} \quad k' = \frac{\omega'}{c/n} = \frac{n \omega}{c}\]

\[\sin \phi = n \sin \phi' \quad \sin \phi' = \frac{\sin \phi}{n} \quad (3.38)\]

Snell’s Law, which describes refractive turning, for complex \(n\).
Total External Reflection of Soft X-Rays and EUV Radiation

Snell’s law for a refractive index of \(n \approx 1 - \delta \), assuming that \(\beta \to 0 \)

\[
\sin \phi' = \frac{\sin \phi}{1 - \delta} \quad (3.39)
\]

Consider the limit when \(\phi' \to \frac{\pi}{2} \)

\[
1 = \frac{\sin \phi_c}{1 - \delta}
\]

\[
\sin \phi_c = 1 - \delta \quad (3.40)
\]

\[
\sin(90^\circ - \theta_c) = 1 - \delta
\]

\[
\cos \theta_c = 1 - \delta
\]

\[
1 - \frac{\theta_c^2}{2} + \cdots = 1 - \delta
\]

\[
\theta_c = \sqrt{2\delta} \quad (3.41)
\]

The critical angle for total external reflection.

Glancing incidence (\(\theta < \theta_c \)) and total external reflection

Exponential decay of the fields into the medium
Total External Reflection (continued)

\[\theta_c = \sqrt{2\delta} \quad (3.41) \]

\[\delta = \frac{n_a r_e \lambda^2 f_1^0(\lambda)}{2\pi} \]

\[\theta_c = \sqrt{2\delta} = \sqrt{\frac{n_a r_e \lambda^2 f_1^0(\lambda)}{\pi}} \quad (3.42a) \]

The atomic density \(n_a \), varies slowly among the natural elements, thus to first order

\[\theta_c \propto \lambda \sqrt{Z} \quad (3.42b) \]

where \(f_1^0 \) is approximated by \(Z \). Note that \(f_1^0 \) is a complicated function of wavelength (photon energy) for each element.
Total External Reflection with Finite β

Glancing incidence reflection as a function of β/δ

- finite β/δ rounds the sharp angular dependence
- cutoff angle and absorption edges can enhance the sharpness
- note the effects of oxide layers and surface contamination

... for real materials

(A) Reflectivity (%)

(B) Reflectivity (%)

(C) Reflectivity (%)

(D) Reflectivity (%)

(Henke, Gullikson, Davis)
The Notch Filter

- Combines a glancing incidence mirror and a filter
- Modest resolution, $E/\Delta E \sim 3-5$
- Commonly used

![Graph showing the mirror reflectivity and filter transmission](image-url)
Reflection at an Interface

E_0 perpendicular to the plane of incidence (s-polarization)

tangential electric fields continuous

$$E_0 + E_0'' = E_0'$$ \hspace{1cm} (3.43)

tangential magnetic fields continuous

$$H_0 \cos \phi - H_0'' \cos \phi = H_0' \cos \phi'$$ \hspace{1cm} (3.44)

$$\mathbf{H}(\mathbf{r}, t) = n \sqrt{\frac{\varepsilon_0}{\mu_0}} \mathbf{k}_0 \times \mathbf{E}(\mathbf{r}, t) \quad \Rightarrow \quad H = n \sqrt{\frac{\varepsilon_0}{\mu_0}} E$$

$$\sqrt{\frac{\varepsilon_0}{\mu_0}} E_0 \cos \phi - \sqrt{\frac{\varepsilon_0}{\mu_0}} E_0'' \cos \phi = n \sqrt{\frac{\varepsilon_0}{\mu_0}} E_0' \cos \phi'$$

$$(E_0 - E_0'') \cos \phi = n E_0' \cos \phi'$$ \hspace{1cm} (3.45)

Snell’s Law:

$$\sin \phi' = \frac{\sin \phi}{n}$$

Three equations in three unknowns
(E_0', E_0'', ϕ') (for given E_0 and ϕ)
E₀ perpendicular to the plane of incidence (s-polarization)

\[
\frac{E'_0}{E_0} = \frac{2 \cos \phi}{\cos \phi + \sqrt{n^2 - \sin^2 \phi}} \quad (3.47)
\]

\[
\frac{E''_0}{E_0} = \frac{\cos \phi - \sqrt{n^2 - \sin^2 \phi}}{\cos \phi + \sqrt{n^2 - \sin^2 \phi}} \quad (3.46)
\]

The reflectivity R is then

\[
R = \frac{\tilde{I}''}{I_0} = \frac{|\tilde{S}''|}{|\tilde{S}|} = \frac{1}{2} \text{Re}(E''_0 \times H''_0^*) \quad (3.48)
\]

With \(n = 1 \) for both incident and reflected waves,

\[
R = \frac{|E''_0|^2}{|E_0|^2}
\]

Which with Eq. (3.46) becomes, for the case of perpendicular (s) polarization

\[
R_s = \frac{|\cos \phi - \sqrt{n^2 - \sin^2 \phi}|^2}{|\cos \phi + \sqrt{n^2 - \sin^2 \phi}|^2} \quad (3.49)
\]
Normal Incidence Reflection at an Interface

Normal incidence ($\phi = 0$)

$$R_s = \frac{\left| \cos \phi - \sqrt{n^2 - \sin^2 \phi} \right|^2}{\left| \cos \phi + \sqrt{n^2 - \sin^2 \phi} \right|^2}$$ \hspace{1cm} (3.49)

$$R_{s,\perp} = \frac{|1 - n|^2}{|1 + n|^2} = \frac{(1 - n)(1 - n^*)}{(1 + n)(1 + n^*)}$$

For $n = 1 - \delta + i\beta$

$$R_{s,\perp} = \frac{(\delta - i\beta)(\delta + i\beta)}{(2 - \delta + i\beta)(2 - \delta - i\beta)} = \frac{\delta^2 + \beta^2}{(2 - \delta)^2 + \beta^2}$$

Which for $\delta \ll 1$ and $\beta \ll 1$ gives the reflectivity for x-ray and EUV radiation at normal incidence ($\phi = 0$) as

$$R_{s,\perp} \approx \frac{\delta^2 + \beta^2}{4}$$ \hspace{1cm} (3.50)

Example: Nickel @ 300 eV (4.13 nm)

From table C.1, p. 433

$f_1^\circ = 17.8$ \hspace{1cm} $f_2^\circ = 7.70$

$\delta = 0.0124$ \hspace{1cm} $\beta = 0.00538$

$$R_{\perp} = 4.58 \times 10^{-5}$$
Glancing Incidence Reflection (s-polarization)

\[
R_s = \left| \frac{\cos \phi - \sqrt{n^2 - \sin^2 \phi}}{\cos \phi + \sqrt{n^2 - \sin^2 \phi}} \right|^2 \tag{3.49}
\]

For \(\theta = 90^\circ - \phi \leq \theta_c \)

where \(\theta_c = \sqrt{2\delta} \ll 1 \)

\[
\cos \phi = \sin \theta \simeq \theta
\]

\[
\sin^2 \phi = 1 - \cos^2 \phi = 1 - \sin^2 \theta \simeq 1 - \theta^2
\]

For \(n = 1 - \delta + i\beta \)

\[
n^2 = (1 - \delta)^2 + 2i\beta(1 - \delta) - \beta^2
\]

\[
R_{s,\theta} = \left| \frac{\theta - \sqrt{(\theta^2 - \theta_c^2) + 2i\beta}}{\theta + \sqrt{(\theta^2 - \theta_c^2) + 2i\beta}} \right|^2 \quad (\theta \ll 1)
\]

Day 3
1. \(\beta/\delta = 0 \)
2. \(\beta/\delta = 10^{-2} \)
3. \(\beta/\delta = 10^{-1} \)
4. \(\beta/\delta = 1 \)
5. \(\beta/\delta = 3 \)
Reflection at an Interface

E_0 perpendicular to the plane of incidence (p-polarization)

\[
\frac{E''}{E_0} = \frac{n^2 \cos \phi - \sqrt{n^2 - \sin^2 \phi}}{n^2 \cos \phi + \sqrt{n^2 - \sin^2 \phi}} \tag{3.54}
\]

\[
\frac{E'}{E_0} = \frac{2n \cos \phi}{n^2 \cos \phi + \sqrt{n^2 - \sin^2 \phi}} \tag{3.55}
\]

The reflectivity for parallel (p) polarization is

\[
R_p = \left| \frac{E''}{E_0} \right|^2 = \left| \frac{n^2 \cos \phi - \sqrt{n^2 - \sin^2 \phi}}{n^2 \cos \phi + \sqrt{n^2 - \sin^2 \phi}} \right|^2 \tag{3.56}
\]

which is similar in form but slightly different from that for s-polarization. For $\phi = 0$ (normal incidence) the results are identical.
Brewster’s Angle for X-Rays and EUV

For p-polarization

\[R_p = \left| \frac{E''}{E_0} \right|^2 = \left(\frac{n^2 \cos \phi - \sqrt{n^2 - \sin^2 \phi}}{n^2 \cos \phi + \sqrt{n^2 - \sin^2 \phi}} \right)^2 \] \hspace{1cm} (3.56)

There is a minimum in the reflectivity where the numerator satisfies

\[n^2 \cos \phi_B = \sqrt{n^2 - \sin^2 \phi_B} \] \hspace{1cm} (3.58)

Squaring both sides, collecting like terms involving \(\phi_B \), and factoring, one has

\[n^2(n^2 - 1) = (n^4 - 1) \sin^2 \phi_B \]

or

\[\sin \phi_B = \frac{n}{\sqrt{n^2 + 1}} \]

the condition for a minimum in the reflectivity, for parallel polarized radiation, occurs at an angle given by

\[\tan \phi_B = n \] \hspace{1cm} (3.59)

For complex \(n \), Brewster’s minimum occurs at

\[\tan \phi_B = 1 - \delta \]

or

\[\phi_B \simeq \frac{\pi}{4} - \frac{\delta}{2} \] \hspace{1cm} (3.60)
Focusing with Curved, Glancing Incidence Optics

The Kirkpatrick-Baez mirror system

- Two crossed cylinders (or spheres)
- Astigmatism cancels
- Fusion diagnostics
- Common use in synchrotron radiation beamlines
- See hard x-ray microprobe, chapter 4, figure 4.14
Determining f_1^0 and f_2^0

- f_2^0 easily measured by absorption
- f_1^0 difficult in SXR/EUV region
- Common to use Kramers-Kronig relations

\[
\begin{align*}
 f_1^0(\omega) &= Z - \frac{2}{\pi} P_C \int_0^\infty \frac{u f_2^0(u)}{u^2 - \omega^2} \, du \\
 f_2^0 &= \frac{2\omega}{\pi} P_C \int_0^\infty \frac{f_1^0(u) - Z}{u^2 - \omega^2} \, du
\end{align*}
\] (3.85a) (3.85b)

as in the Henke & Gullikson tables (pp. 428-436)

- Possible to use reflection from clean surfaces; Soufli & Gullikson
- With diffractive beam splitter can use a phase-shifting interferometer; Chang et al.
- Bi-mirror technique of Joyeux, Polack and Phalippou (Orsay, France)