LETTERS

Functional characterization of desmin mutant p.P419S

European Journal of Human Genetics (2013) 21, 589–590; doi:10.1038/ejhg.2012.212; published online 3 October 2012

Recently, Hedberg et al. identified a DES mutation (p.P419S) in a Swedish family, suffering from myofibrillar myopathy (MFM) in combination with arrhythmogenic right ventricular cardiomyopathy (ARVC), by next-generation sequencing. Originally, a linkage analysis indicated that the genetic defect is located on chromosome 10q22.3 in this family. The analysis of muscle biopsies of affected patients demonstrated an aggregation of desmin and further proteins.

The same desmin mutation (p.P419S) was identified before by Olivia et al. in patients suffering from skeletal myopathy or hypertrophic cardiomyopathy, respectively. However, Hedberg et al. demonstrated that this mutation did not completely co-segregate within the Swedish family, raising the question on pathogenesis or penetrance, respectively. Of note, in both studies the desmin mutant p.P419S was not functionally characterized. Hence, it is currently difficult to judge the pathological potential of this variant. Especially, it is unclear whether the DES mutation p.P419S is a sufficient molecular trigger for aggregate formation.

For this reason, we introduced this mutation by site-directed mutagenesis into a desmin construct (pEYFP-N1-Desmin) using appropriate oligonucleotides and transfected H9c2, C2C12 and SW-13 cells with mutant and wild-type desmin-eYFP constructs. The filament or aggregate formation was investigated in cell culture.

Figure 1 Filament formation of wild-type and mutant (p.P419S) desmin in transfected cells. Representative fluorescence images of transfected SW-13, C2C12 and H9c2 cells expressing desmin-eYFP constructs (yellow) were shown. The nuclei were stained with DAPI. Scale bars represent 10 μm.

Figure 2 In vitro filament formation of wild-type and mutant (p.P419S) desmin. The desmin molecules were expressed in Escherichia coli and purified by ion-exchange and affinity chromatography. Filament assembly was initiated by the addition of sodium chloride (100 mM) and was analysed by AFM. The height is colour coded in the representative topography images.
and the filament formation of purified recombinant mutant desmin was analysed in vitro by atomic force microscopy (AFM), as previously described.4 To our surprise, the expression of desmin-p.P419S does not induce an aggregation in either cell line as recently described for other ARVC-related desmin mutants4,5 (Figure 1). The cell culture data were also supported by the AFM analysis virtually yielding undistinguishable desmin filaments between wild-type and desmin-p.P419S in vitro (Figure 2). Thus, our data reveal that the desmin mutant p.P419S published by Hedberg et al1 forms filaments in vitro and in transfected cells. Consequently, it might be important to look for further molecular triggers, which induce or influence the protein aggregation in the Swedish patients suffering from MFM/ARVC. From our point of view, the next-generation sequencing data of Hedberg et al1 might provide an important basis for further studies, identifying modifier genes or other molecular abnormalities responsible for desmin aggregate formation.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

Andreas Brodehl1,4, Mareike Dieding2,4, Hamdin Cakar3, Bärbel Klaeke1, Volker Walborn2, Jan Gummert1, Dario Anselmetti2 and Hendrik Milting1

Reply to Brodehl et al

European Journal of Human Genetics (2013) 21, 590; doi:10.1038/ejhg.2012.214; published online 3 October 2012

We appreciate the comments by Brodehl et al1 on our recent article describing a DES mutation in a family with myofibrillar myopathy and arrhythmicogen right ventricular cardiomyopathy.2 We would like to clarify that the mutation, p.P419S in the desmin gene (DES), indeed co-segregates with the disease. When we compared the muscle biopsy findings with the presence of the p.P419S DES mutation, desmin storage was found in all investigated family members with the DES mutation but not in those without the mutation. The clinical expression of the disease was highly variable within the family. The original linkage study on this family was based on combined findings from clinical examination, electromyography and muscle biopsy.3 Three of five asymptomatic individuals were incorrectly considered affected by the myopathy based on these investigations. These three individuals showed only mild and unspecific myopathic changes and no desmin storage. Whether these individuals were affected by another mild myopathy remains to be clarified. These results demonstrate diagnostic difficulties with some forms of dominantly inherited muscle diseases, as they can display a wide clinical and morphological variability even within a given family.

In conclusion, despite the report by Brodehl et al1, we believe that the identified desmin mutation is causative for the diseases in our family, as it segregates perfectly with desmin storage in muscle.

Further support for this conclusion is the finding of the same mutation segregating with desminopathy in a Spanish family.4

CONFLICT OF INTEREST
The authors declare no conflict of interest.

Carola Hedberg1, Atle Melberg2, Angelika Kuhl1,3, Dieter Jenne4,3 and Anders Oldfors1

1Department of Pathology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden; 2Department of Neuroscience and Neurology, Uppsala University Hospital and Uppsala University, Uppsala, Sweden; 3Department of Neuroimmunology, Max-Planck Institute of Neurobiology, Martinsried, Germany and 4Comprehensive Pneumology Center, Institute of Lung Biology and Disease (IBLD), Helmholtz Center Munich, Münchner-Großhadern, Germany

5Current address: Roche Diagnostics, Penzberg, Germany. E-mail: carola.hedberg@gu.se