Spatial string tension revisited (dimensional reduction at work)

York Schröder

work together with: M. Laine

Motivation

RHIC \rightarrow QCD at $T \gtrsim$ (a few) 100 MeV

asymptotic freedom \rightarrow weak coupling expansion
slow convergence, non-trivial structure
problematic dof's are identified

- soft modes $p \sim g T \rightarrow$ odd powers in g
- ultrasoft modes $p \sim g^{2} T \rightarrow$ non-pert coeffs

general picture

- perturbation theory OK for parametrically hard scales $p \sim 2 \pi T$
- soft and ultrasoft scales need improved analytic schemes, or non-pert treatment
- starting point: dim red eff. theory, or HTL eff. theory
quantitative evidence:
- pick some simple observables
- compare 4d lattice vs soft/ultrasoft eff. theory
- e.g. static correlation lengths \rightarrow agreement down to $T \sim 2 T_{c}$

Thermal pressure $p(T)$: 4d vs $3 \mathbf{d}$

$$
\begin{aligned}
p_{\mathrm{QCD}}(T) & \equiv \lim _{V \rightarrow \infty} \frac{T}{V} \ln \int \mathcal{D}\left[A_{\mu}^{a}, \psi, \bar{\psi}\right] \exp \left(-\frac{1}{\hbar} \int_{0}^{\hbar / T} d \tau \int d^{3-2 \epsilon} x \mathcal{L}_{\mathrm{QCD}}\right) \\
\mathcal{L}_{\mathrm{QCD}} & =\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}+\bar{\psi} \gamma_{\mu} D_{\mu} \psi+\mathcal{L}_{\mathrm{GF}}+\mathcal{L}_{\mathrm{FP}}
\end{aligned}
$$

asymptotically, expect ideal gas: $p_{\mathrm{QCD}}(T \rightarrow \infty) \equiv p_{0}=\left(16+\frac{21}{2} N_{f}\right) \frac{\pi^{2} T^{4}}{90}$

Spatial string tension σ_{s}

study an observable allowing an unambiguous comparison
take rectangular Wilson loop $W_{s}\left(R_{1}, R_{2}\right)$ in $\left(x_{1}, x_{2}\right)$ plane
def potential $V_{s}\left(R_{1}\right)=-\lim _{R_{2} \rightarrow \infty} \frac{1}{R_{2}} \ln W_{s}\left(R_{1}, R_{2}\right)$ def spatial string tension $\sigma_{s} \equiv \lim _{R_{1} \rightarrow \infty} \frac{V_{s}\left(R_{1}\right)}{R_{1}}$
σ_{s} has been measured in $\mathrm{SU}(3)$ on the (4d) lattice
as e.g. $\frac{\sqrt{\sigma_{s}}}{T}=\phi\left(\frac{T}{T_{c}}\right)$
aim: get the eff. theory prediction for σ_{s}

- effective theory setup
- σ_{s} from 3d lattice
- perturbative matching to 4d
- $\Lambda_{\overline{\mathrm{MS}}}$ vs T_{c}

Spatial string tension σ_{s} : 4d vs 3d

(anticipating all that follows)

[4d lattice data from Boyd et al, 96] (cave: $32^{3} \times 8$, no cont. extrapolation: $N_{\tau}=8, T=1 / a N_{\tau}$)

Effective theory setup: QCD \rightarrow EQCD

high T: QCD dynamics contained in 3d EQCD

$$
\mathcal{L}_{\mathrm{E}}=\frac{1}{2} \operatorname{Tr} F_{k l}^{2}+\operatorname{Tr}\left[D_{k}, A_{0}\right]^{2}+m_{\mathrm{E}}^{2} \operatorname{Tr} A_{0}^{2}+\lambda_{\mathrm{E}}^{(1)}\left(\operatorname{Tr} A_{0}^{2}\right)^{2}+\lambda_{\mathrm{E}}^{(2)} \operatorname{Tr} A_{0}^{4}+\ldots
$$

matching coefficients

$$
\begin{aligned}
m_{\mathrm{E}}^{2} & =T^{2}\left\{\# g^{2}+\# g^{4}+\ldots\right\} \\
\lambda_{\mathrm{E}}^{(1 / 2)} & =T\left\{\# g^{4}+\# g^{6}+\ldots\right\} \\
g_{\mathrm{E}}^{2} & =T\left\{g^{2}+\# g^{4}+\# g^{6}+\ldots\right\}
\end{aligned}
$$

higher order operators do not (yet) contribute [5. Chapman, 94; Kajantie et al, 97, 02]

$$
\left.\delta \mathcal{L}_{\mathrm{E}} \sim g^{2} \frac{D_{k} D_{l}}{(2 \pi T)^{2}} \mathcal{L}_{\mathrm{E}} \sim g^{2} \frac{\left(g^{2} T\right)^{2}}{(2 \pi T)^{2}} \mathcal{L}_{\mathrm{E}} \quad \text { (i.e. } g^{8} \text { for } g_{\mathrm{E}}^{2}\right)
$$

Digression: g_{E}^{2} numerically

in practice, need to renormalize: $g^{2}=g^{2}(\bar{\mu})$ is $\overline{\mathrm{MS}}$ coupling
from soln of RGE at 2-loop level, define as usual

$$
\Lambda_{\overline{M S}} \equiv \lim _{\bar{\mu} \rightarrow \infty} \bar{\mu}\left[b_{0} g^{2}(\bar{\mu})\right]^{-b_{1} / 2 b_{0}^{2}} \exp \left[-\frac{1}{2 b_{0} g^{2}(\bar{\mu})}\right]
$$

hence $g_{\mathrm{E}}^{2}=g_{\mathrm{E}}^{2}\left(\bar{\mu}, \Lambda_{\overline{\mathrm{MS}}}, T\right)=T \phi\left(\frac{\bar{\mu}}{T}, \frac{T}{\Lambda_{\overline{\mathrm{MS}}}}\right)$

Digression: g_{E}^{2} numerically

in practice, need to renormalize: $g^{2}=g^{2}(\bar{\mu})$ is $\overline{\mathrm{MS}}$ coupling
from soln of RGE at 2-loop level, define as usual

$$
\Lambda_{\overline{M S}} \equiv \lim _{\bar{\mu} \rightarrow \infty} \bar{\mu}\left[b_{0} g^{2}(\bar{\mu})\right]^{-b_{1} / 2 b_{0}^{2}} \exp \left[-\frac{1}{2 b_{0} g^{2}(\bar{\mu})}\right]
$$

hence $g_{\mathrm{E}}^{2}=g_{\mathrm{E}}^{2}\left(\bar{\mu}, \Lambda_{\overline{\mathrm{MS}}}, T\right)=T \phi\left(\frac{\bar{\mu}}{T}, \frac{T}{\Lambda_{\overline{\mathrm{MS}}}}\right)$
ren. scale dependence

- formally, $\bar{\mu}$ dependence is of higher order
- numerically, there is $\bar{\mu}$ dependence
- free to choose some optimisation procedure, e.g. PMS

```
\triangleright ~ c h o o s e ~ \overline { \mu } _ { \text { opt } } \text { at extremum of 1-loop}
\triangleright ~ v a r y ~ s c a l e ~ w i t h i n ~ \overline { \mu } = ( 0 . 5 . . . 2 . 0 ) \times \overline { \mu } _ { \text { opt } }
```

Choosing $\bar{\mu}_{\text {opt }}$ via PMS

Choosing $\bar{\mu}_{\text {opt }}$ via PMS

Choosing $\bar{\mu}_{\text {opt }}$ via PMS

Digression: g_{E}^{2} numerically

Digression: g_{E}^{2} numerically

Digression: g_{E}^{2} numerically

Digression: g_{E}^{2} numerically

Effective theory setup: QCD \rightarrow EQCD \rightarrow MQCD

3d EQCD is contained in 3d MQCD

$$
\mathcal{L}_{M}=\frac{1}{2} \operatorname{Tr} F_{k l}^{2}+\ldots
$$

matching coefficient
[P. Giovannangeli, 04; M. Laine, YS, 05]

$$
g_{M}^{2}=g_{\mathrm{E}}^{2}\left\{1+\# \frac{g_{\mathrm{E}}^{2}}{m_{\mathrm{E}}}+\# \frac{g_{\mathrm{E}}^{4}}{m_{\mathrm{E}}^{2}}+\# \frac{g_{\mathrm{E}}^{2} \lambda_{\mathrm{E}}^{(1 / 2)}}{m_{\mathrm{E}}^{2}}+\ldots\right\}
$$

expansion converges extremely well, even close to T_{c}
can safely ignore higher loop corrections for g_{M}^{2}
higher order operators could contribute

$$
\delta \mathcal{L}_{\mathrm{M}} \sim g_{\mathrm{E}}^{2} \frac{D_{k} D_{l}}{m_{\mathrm{E}}^{3}} \mathcal{L}_{\mathrm{M}} \sim g_{\mathrm{E}}^{2} \frac{\left(g^{2} T\right)^{2}}{m_{\mathrm{E}}^{3}} \mathcal{L}_{\mathrm{M}}
$$

Effective theory prediction for σ_{s}

observable σ_{s} exists in 3d $\operatorname{SU}(3)$ gauge theory (MQCD)

- dimensionful gauge coupling $\rightarrow \sigma_{s}=\# g_{M}^{4}$
- most recent lattice data $\frac{\sqrt{\sigma_{s}}}{g_{\mathrm{M}}^{2}}=0.553(1)$

Effective theory prediction for σ_{s}

observable σ_{s} exists in 3d $\operatorname{SU}(3)$ gauge theory (MQCD)

- dimensionful gauge coupling $\rightarrow \sigma_{s}=\# g_{M}^{4}$
- most recent lattice data $\frac{\sqrt{\sigma_{s}}}{g_{\mathrm{M}}^{2}}=0.553(1)$
[M. Teper, B. Lucini, 02]
to compare with 4d lattice, need to relate g_{M}^{2} and T
- $\frac{\sqrt{\sigma_{s}}}{T}=0.553(1) \frac{g_{\mathrm{M}}^{2}}{g_{\mathrm{E}}^{2}} \frac{g_{\mathrm{E}}^{2}}{T}=\phi\left(\frac{T}{\Lambda_{\overline{M S}}}\right)$

Effective theory prediction for σ_{s}

observable σ_{s} exists in 3d $\operatorname{SU}(3)$ gauge theory (MQCD)

- dimensionful gauge coupling $\rightarrow \sigma_{s}=\# g_{M}^{4}$
- most recent lattice data $\frac{\sqrt{\sigma_{s}}}{g_{M}^{2}}=0.553(1)$
[M. Teper, B. Lucini, 02]
to compare with 4d lattice, need to relate g_{M}^{2} and T
- $\frac{\sqrt{\sigma_{s}}}{T}=0.553(1) \frac{g_{\mathrm{M}}^{2}}{g_{\mathrm{E}}^{2}} \frac{g_{\mathrm{E}}^{2}}{T}=\phi\left(\frac{T}{\Lambda_{\overline{\mathrm{MS}}}}\right)$
finally, need to relate $\Lambda_{\overline{\mathrm{Ms}}}$ and T_{c}
- e.g. via $T=0$ string tension $\frac{T_{c}}{\Lambda_{\overline{\mathrm{MS}}}}=\frac{T_{c} / \sqrt{\sigma}}{\Lambda_{\overline{\mathrm{MS}}} / \sqrt{\sigma}}=1.16(4) \quad$ [Teper et al, 03; Bali, Schilling, 92]
- e.g. via Sommer scale $\frac{T_{c}}{\Lambda_{\overline{\mathrm{MS}}}}=\frac{r_{0} T_{c}}{r_{0} \Lambda_{\overline{\mathrm{MS}}}}=1.25(10)$
- e.g. via scaling at crit. point $\frac{T_{c}}{\Lambda_{\overline{M S}}}=1.15(5)$
- to be conservative, consider the interval 1.10 ...1.35

Spatial string tension $\sigma_{s}: 4 d$ vs $3 d$

[4d lattice data from Boyd et al, 96] (cave: $32^{3} \times 8$, no cont. extrapolation: $N_{\tau}=8, T=1 / a N_{\tau}$) parameter-free comparison!
support for hard/soft+ultrasoft picture of thermal QCD

