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I. Introduction

The pressure p(T ) and its derivatives are central objects

in thermodynamics, determining quantities like

• entropy density s(T ) = p′(T ),

• energy density e(T ) = Ts(T )− p(T ),

• heat capacity c(T ) = e′(T ) = Tp′′(T ).

The main phenomenological applications of the thermody-

namic pressure include

• Cosmology:

cooling rate of radiation dominated (flat, Λ = 0) universe
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determines decoupling of various dark matter candidates,

fixing their relic densities.

• Heavy ion collisions:

pressure is relevant for hydrodynamic expansion; expansion

rate (after thermalization) is (in the ideal limit) given by

∂µTµν = 0 , Tµν = [p(T ) + e(T )]uµuν − p(T )gµν ,

with flow velocity uµ(t, x).

Theoretically, perturbative QCD corrections to the non-

interacting Stefan-Boltzmann law have been determined over

the last 30 years, including the relative orderO(g6 ln g). The

relevant coefficients have been computed as functions of Nc

and the number of massless quark flavors Nf [1], with gener-

alizations to finite quark chemical potentials µi [2], and also

an extension to weak interactions [3].

A convenient setup for these computations are dimensionally

reduced effective field theories, which allow for a transparent

organization of contributions from different physical scales.

One obtains the general form

pQCD = phard + psoft + pultrasoft ,

where the first part contains the contribution of the hard mo-

mentum scales (∼ T ) and hence the LO Stefan-Boltzmann

law plus its NLO and further corrections,

phard

T 4 = αMS

E1
+ g2αMS

E2
+O(g4) .

The soft and ultrasoft contributions first contribute at rela-

tive orders O(g3) and O(g6 ln g).

II. Pure-glue pressure to order O(g6)

The first unknown coefficient in pQCD, of order O(g6),

contains known non-perturbative contributions [4] as well as

a yet-unknown perturbative one.

To obtain the best possible description of the pure-glue sec-

tor, we attempt to fix the unknown perturbative O(g6) coef-

ficient by a phenomenological recipe, using available lattice

data at intermediate (T ∼ 3−5Tc) temperatures, see Fig. 1.
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Fig. 1: A phenomenological interpolating curve for the QCD pres-

sure at Nf = 0. In the perturbative curve (grey), the O(g6) constant

has been adjusted to fit lattice data (translated via Tc/ΛMS ≈ 1.20).

III. Quark mass thresholds in p(T )

Little is known about the quark mass dependence of

the QCD pressure. We have analyzed it to NLO [5], using a

strategy corresponding to “unquenching”:

• Start from Nf = 0, i.e. mq = ∞
• lower Nf quark masses to their physical values

• pressure at any T increases

• estimate “correction factor” describing the increase

This recipe allows for a systematic approach, whose LO re-

sult for the “correction factor” is simply the change in the

Stefan-Boltzmann law due to quark masses, αMS

E1
(Nf)/α

MS

E1
(0),

while the NLO result would be

[αMS

E1
+ g2αMS

E2
](Nf) / [αMS

E1
+ g2αMS

E2
](0) .

We have computed these coefficients (as functions of

T, Nc, Nf, mi, µi), and show the relevant QCD result for

µi = 0 and physical quark masses in Fig. 2, observing good

convergence going from LO to NLO: a 5% effect for Nf = 3,

and even less for the physical case Nf = 4.

Note that the charm quark contributes already at fairly low

temperatures, T ∼ 350 MeV.
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Fig. 2: The “correction factors” accounting for the effects of quarks,

at LO (g0) and NLO. Grey bands: MS scale variations (0.5...2) µ̄opt.

IV. Phenomenological results for QCD

To obtain estimates for thermodynamic quantities in-

cluding quarks with physical masses, we take the best avail-

able Nf = 0 result (interpolating curve of Fig. 1), and mul-

tiply by the “correction factor” (Fig. 2).

To do this, one needs to fix ΛMS in physical units: We tune it

such that our recipe and its first derivative match the pres-

sure produced by the full set of hadronic resonances at a

certain T , see Fig. 3. Get Λ(eff)

MS
≈ 175...180 MeV as a typical

range, depending on Nf and experimental errors for mi.
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Fig. 3: Fixing ΛMS by matching to hadronic resonance gas. Transi-

tion region (shaded): lattice simulations needed.

We are now ready to use our interpolation for other thermo-

dynamic observables, which can be parameterized through

effective numbers of bosonic degrees of freedom (Fig. 4, left)

geff(T ) ≡ e(T )[
π2T 4

30

] , heff(T ) ≡ s(T )[
2π2T 3

45

] , ieff(T ) ≡ c(T )[
2π2T 3

15

] .
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Fig. 4: Thermodynamic observables, for the physical case Nf = 4,

including the effects of realistic quark masses.

Other dimensionless ratios are the equation of state and the

sound speed (Fig. 4, right panel),

w(T ) ≡ p(T )

e(T )
, c2

s(T ) ≡ p′(T )

e′(T )
=

s(T )

c(T )
.

The deviation of the equation-of-state w(T ) from 1/3 is pro-

portional to the trace anomaly, sometimes also called the

interaction measure.

There is a significant amount of structure around the QCD

crossover, e.g. a peak in the heat capacity – which is not

unexpected in a rapid crossover, since in a 2nd order phase

transition it would diverge as T → Tc. We also observe a

peak in c2
s below Tc at around 70 MeV, a feature that has

not been visible in lattice simulations yet.

Since the phenomenological recipe presented here cannot

capture all details of the transition region, an important

check would be lattice simulations.
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