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In this talk, I discuss known results for the weak-coupling expansion of the pure Yang-
Mills pressure, including its first non-perturbative coefficient. I give an update on the
values of all known coefficients, display them in compact numerical form, and speculate
on the value of the last unknown parameter that contributes to the four-loop pressure.

1. Introduction

The purpose of this talk is to summarize the information that has been obtained for
the weak-coupling expansion of the pure Yang-Mills pressure. For details of the setup,
which solves the notorious infrared problem of hot gauge theories [1] via effective theories
and dimensional reduction [2], see e.g. [3].

I concentrate on the pure Yang-Mills sector (i.e. QCD at Nf = 0) here for two reasons:
First, as has been demonstrated by scaling behavior of lattice data (see Fig. 4 of [4]), the
quark sector does not seem to play a major role for the qualitative features of the pressure.
Second, for Nf > 0 lattice data (which one would like to use for a phenomenologigal fit
later on) is not yet available with controlled systematic errors, due to the well-known
challenges that light fermions pose in lattice Monte-Carlo simulations.

2. Ingredients

Let me now collect all information that is known about the weak-coupling expansion
of the thermodynamic Yang-Mills pressure, following in parts the presentation in [5]. I
will use re-scaled couplings, in order to make expressions compact. Although all formulae
are valid for a gauge group SU(N), the expression for the pressure, at least up to the
parametric order g6 (where non-perturbative information first enters), will depend on N
only via a trivial overall factor, which is made manifest by the re-scaled variables.

The framework of dimensional reduction allows to organize contributions to the pressure
into three groups, corresponding to the three distinct physical scales involved in hot QCD:

pQCD =
(N2 − 1)π2T 4

45
{ph + ps + pus} , (1)

where T is the temperature and ph, ps and pus are dimensionless functions.
At large T , these functions (representing the contributions from the three physical

scales) can be determined via weak-coupling expansions. They depend on the parame-
ters (couplings and, in general, masses) of the effective actions governing the respective
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physical scales. Their detailed functional dependence on those couplings is known to be:

ph = 1 + ˜̃g
2
(
−1

5

)
+ ˜̃g

4 2

1875
(174 + 30γ0 + 370Z1 − 95Z3)

+ ˜̃g
6
[
#̃0 −

2

3125

(
4 + 11π2 + 24Z1 + 8γ0 (3 + 22Z1) − 176γ1

)]
+ O

(
˜̃g

8)
, (2)

ps = m̃3
E

16

25
√

3
+ g̃2

Em̃2
E

48

125
ln

(
2

5
√

3
e−3/4m̃E

)
+ g̃4

Em̃E

(
−2

√
3

625

)(
89 + 4π2 − 44 ln 2

)

+ g̃6
E

(
− 3

50000

) (
8256 − 491π2

)
ln

(
2

5
√

3
e

768

8256−491π
2

(1.391512)
m̃E

)

+ m̃2
E

(
− 48

3125

) [(
1 +

1

N2

)
λ̃

(1)
E +

(
2

3
− 1

N2

)
λ̃

(2)
E

]
+ O

(
g̃8
E/m̃E, λ2m̃E

)
, (3)

pus = g̃6
M

(
− 3

50000

) (
2752 − 157π2

)
ln
(
cN g̃2

M

)
, (4)

where constants Zn =ζ ′(−n)/ζ(−n) and γn from ζ(1−ǫ)=−1/ǫ+γ0+ǫγ1+. . . were used.
The only unknown coefficient to this order is #̃0. It is purely perturbative and entails

a four-loop computation of all connected vacuum diagrams involving gluons and ghosts.
The best that can be done before it is evaluated is to fix it phenomenologically, by fitting
to lattice data for the pressure. This will be attempted in Sec. 3.

Note that pus is a non-perturbative coefficient, and there are no perturbative corrections.
It has taken great efforts to determine the constant cN under the logarithm. These
efforts combine an interesting mix of computing higher-order perturbative coefficients by
continuum-calculations (e.g. [6]) and by numerical stochastic lattice methods [7], as well
as non-perturbative numerical lattice Monte-Carlo simulations [8]. The result is
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While the result of the numerical stochastic methods, [nspt]N , is currently known for
N = 3 only, very recently the large-N estimate [non−pert]N = 15.9(2)−44(2)/N2 became
available [9]. The numbers in brackets above estimate statistical and systematic errors.

As usual in effective theories, their parameters have to be matched in order to describe
the same underlying physics. This step is perturbative, and the matching coefficients read
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In the above, I have expressed all expansions in terms of ˜̃g, which essentially is the 4d
running gauge coupling g(µ̄). The exact relation is along the following lines:
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where L = ln (µ̄/4πT ). In the last line I have taken the running 4d coupling as a solution
of the 2-loop RGE equation, in terms of the negative real branch of the Lambert W
function. Note that the construction ˜̃g is renormalization-scale independent to the order

we are working, ∂ln µ̄2
˜̃g

2
= O(ˆ̂g

8
). In practice, however, one needs to fix this higher-order

µ̄-dependence, a procedure that is somewhat arbitrary. Following [10], I choose the scale
µ̄ by the principle of minimal sensitivity applied to the 1-loop result for g̃2

E. This fixes
the optimal scale µ̄ = µ̄opt as a function of T , resulting in L = −γ0 − 1

22
. Finally, to ease

comparison with existing 4d lattice data for the pressure, one can translate the MS scale
to a typical physical scale (taken to be the critical temperature Tc) via Tc/ΛMS = 1.22.
Note that both of these steps (optimizing the renormalization scale, and fixing Tc/ΛMS)
are associated with uncertainties, which are discussed in more detail e.g. in [5].

3. Numerical values

Taking the set of formulae of Sec. 2 and plugging in numerical values for all constants
(using Z1 = 1.98505.., Z3 = 0.645429.., γ0 = 0.577216.., γ1 = −0.0728158..), one obtains
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The matching coefficients then read
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while the (scaled and scale-optimized) effective gauge coupling reads
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Figure 1. Left panel: The effective gauge coupling ˜̃g
2

from Eq. (19), plotted versus
ln T

Tc

. Right panel: The normalized pressure pQCD/pSB at Nf = 0 plotted versus ln T
Tc

.

The black dots correspond to lattice data from [11]. The ˜̃g
6

coefficient depends on an
unknown parameter #̃0 as defined in Eq. (2), and the different curves correspond to
choosing #̃0 = 0.0 (lowest curve) to #̃0 = 0.6, in steps of 0.1.

All the above is plotted in Fig. 1, for different choices of the unknown parameter #̃0.
In the right-hand panel, data from 4d lattice Monte-Carlo simulations has been included.
Keeping the uncertainties discussed above in mind – and noting that in the overlap region
(T ∼ 3-5 Tc) the weak-coupling expansion might be stretched to (or beyond) its limit of
applicability – this comparison suggests a value of the order #̃0 ∼ 0.4. Whether this
estimate is sensible can only be checked by a direct perturbative computation of #̃0.
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026 [hep-ph/0605042].

8. A. Hietanen, K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, JHEP 0501
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