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Jan Möller

Presented to: Dept. of Physics, University of Bielefeld
Date: 9th April, 2009
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Abstract

In this thesis we describe an approach to deal with high-order loop corrections in a systematic way.

We apply this approach to determine the O(g6) contribution to the electric screening mass m2
E

and O(g8) correction to the effective gauge coupling g2
E appearing as matching coefficients in so-

called EQCD, which acts as a large-distance effective theory for the theory of strong interactions

at finite-temperature. The first chapter summarises the theoretical tools needed in order to

simplify this task. The second chapter illustrates the necessity of using computer algebra systems

(CAS) to deal with very large algebraic expressions and the concrete implementation of our

calculation in FORM. In chapter three we evaluate basketball-like sum-integrals by methods

originally introduced by Arnold & Zhai. The fourth chapter concludes with results from the

three-loop computation and an outlook about what has to be done to complete the calculation.

Zusammenfassung

In dieser Diplomarbeit beschreiben wir einen systematischen Ansatz für Schleifen-Korrekturen

höherer Ordnung. Dieses wenden wir an um den O(g6) Beitrag zur elektrischen Abschirm-Masse

m2
E und die O(g8) Korrektur zur effektiven Eichkopplung g2

E zu berechnen. Beide treten als

Matching-Koeffizienten in der sogennanten EQCD, einer effektive Theorie der starken Wechsel-

wirkung bei endlicher Temperatur, auf. Das erste Kapitel umfasst theoretische Hilfsmittel um

diese Aufgabe zu vereinfachen. Im zweiten Kapitel illustrieren wir die Notwendigkeit der Nutzung

von Computer-Algebra-Systemen um mit langen algebraischen Ausdrücken umzugehen. In Kapi-

tel drei berechnen wir Basketball-ähnliche Summenintegrale mit Methoden von Arnold & Zhai.

Im vierten Kapitel diskutieren wir die Ergebnissen der Drei-Schleifen-Rechnung und geben einen

Ausblick darüber was noch getan werden muss um die Rechnung zu vervollständigen.
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Preface

Due to the impressive experimental precision reached in the recent years at present col-
liders and at the LHC in the near future, accurate predictions from the theoretical side
are required. Perturbative calculations in quantum field theories and especially in the
Standard Model (SM) of partical physics become more and more complicated as the
number of loops and/or external legs gets larger. At some point, the number of dia-
grams and large expressions in the intermediate steps forbid a calculation completely
by hand and necessitate the usage of computer algebra. The first attempt was made by
M. Veltman in 1967 with SCHOONSHIP [1], which was primarily designed for the evalua-
tion of fermion traces. In the early 1980s more general programs like REDUCE [2] or SMP
[3] were introduced by particle physicists. Nowadays the algebraic manipulator FORM [4]
is widely used in particle physics and is a direct descendant of M. Veltman’s SCHOONSHIP.

Any perturbative calculation consist of a combinatoric, algebraic and analytic part.
The former parts are well suited problems for automatisation and by now efficient al-
gorithms have been implemented. The usual approach to deal with the analytic part
i.e. with Feynman integrals is to reduce them algebraically to a small set of so-called
master integrals with techniques like integration-by-parts [5] and/or a more recent ap-
proach via Gröbner-, s-bases [6, 7]. An important algorithm based on the systematic
use of integration-by-parts relations was proposed by S. Laporta [8] and a public imple-
mentation is e.g. AIR [9]. A combined strategy of the s-bases approach and Laporta’s
method has been implemented recently in FIRE [10].

At least at this point, human intervention is unavoidable in order to evaluate the remain-
ing master integrals. Fortunately, at least for zero-temperature physics, recent devel-
opments in the field of sector decomposition (for a concise review see [11]) has resulted
in programs like FIESTA [12] capable to solve multi-loop integrals up to 11 propagators
numerically. On the other hand, at finite temperature, surprisingly little is currently
known [13]. Up to now, no systematic approach for the evaluation of multi-loop sum-
integrals exists.

As we will see in this thesis, the relevant master integrals which remain in this calcula-
tion are basketball-like sum-integrals and fortunately the evaluation of those is solely a
question of man-power.
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1 Introduction and theoretical tools

This chapter consists of a brief review of some important topics in thermal field theory
and theoretical tools to simplify the perturbative calculation.

1.1 Partition function and path integral

The fundamental quantity in statistical mechanics is the partition function Z. In the
canonical ensemble and with kB = 1 ⇒ β ≡ 1

T we have

Z(T ) ≡ Tr[exp (−βH)] , (1.1)

with T the temperature and H the Hamiltonian of our quantum mechanical system.
From this point on, we can easily compute further observables like the free energy F ,
average energy E or the entropy S via

F = −T lnZ ,

E =
1

ZTr[H exp (−βH)] ,

S =
∂F

∂T
.

(1.2)

In the majority of cases, it is difficult to evaluate the partition function via (1.1). A
more convenient way to express the partition function is given by the path integral
representation. In order to derivate the path integral, we recall some basics of quantum
mechanics (~ = 1):

〈x|p |p〉 = p〈x|p〉 = −i∂x〈x|p〉 ⇒ 〈x|p〉 = Aeipx , (1.3)

and with the completeness relations for x and p which can be written as

∫
dx|x〉〈x| = 1 ,

∫
dp

B
|p〉〈p| = 1 , (1.4)

we obtain the relation B = 2π|A|2. If we choose A ≡ 1 it follows B = 2π. In the
following we evaluate the partition function in x-basis and obtain

Z = Tr[e−βH ] =

∫
dx〈x|e−βH |x〉 =

∫
dx〈x|e−ǫH · · · e−ǫH |x〉 , (1.5)
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with ǫ ≡ β
N . In the last expression we have split the exponential e−βH into N parts.

The standard procedure is now to insert alternately
∫
dpi

B
|pi〉〈pi| = 1, i = 1, . . . , N , (1.6)

and ∫
dxi|xi〉〈xi| = 1, i = 1, . . . , N , (1.7)

to simplify (1.5) to objects like

〈xi+1|pi〉〈pi|e−ǫH(x,p)|xi〉 = eipixi+1〈pi|e−ǫH(pi,xi)+O(ǫ2)|xi〉

= exp

{
−ǫ
[
p2

i

2m
− ipi

xi+1 − xi

ǫ
+ V (xi) + O(ǫ)

]}
.

(1.8)

On the very right we get
〈x1|x〉 = δ(x1 − x) , (1.9)

and after integration over x we have 〈x| = 〈x1|. By sending N → ∞ the correction O(ǫ)
in Eq. (1.8) goes to zero and we get for the partition function

Z = lim
N→∞

∫ [ N∏

i=1

dxidpi

2π

]
exp



−

N∑

j=1

ǫ

[
p2

j

2m
− ipj

xj+1 − xj

ǫ
+ V (xj)

]


∣∣∣∣∣
xN+1≡x1, ǫ≡ β

N

.

(1.10)
The momentum integrations over pi can be carried out explicitly

∫ ∞

−∞

dpi

2π
exp

{
−ǫ
[
p2

j

2m
− ipj

xj+1 − xj

ǫ

]}
=

√
m

2πǫ
exp

[
m(xi+1 − xi)

2

2ǫ

]
. (1.11)

Then we obtain from Eq. (1.10)

Z = lim
N→∞

∫ [ N∏

i=1

dxi√
2πǫ/m

]
exp



−

N∑

j=1

ǫ

[
m

2

(
xj+1 − xj

ǫ

)2

+ V (xj)

]


∣∣∣∣∣
xN+1≡x1, ǫ≡ β

N

,

(1.12)
and the continuum version of the path integral

Z = C

∫

x(β)=x(0)
Dx exp

{
−
∫ β

0
dτ

[
m

2

(
dx(τ)

dτ

)2

+ V (x(τ))

]}
, (1.13)

with

C ≡
( m

2πǫ

)N/2
= exp

[
N

2
ln

(
mN

2πβ

)]
. (1.14)

We can ask now how is it possible to bring Eq.(1.13) in a form comparable to the usual
path integral with the exponential

exp

(
i

∫
dtLM

)
, LM =

m

2

(
dx

dt

)2

− V (x) . (1.15)
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The first step for this task is to perform a Wick rotation i.e. t → τ ≡ it and introduce
the Euclidean Lagrangian

LE ≡ −LM (t = −iτ) =
m

2

(
dx

dτ

)2

+ V (x) . (1.16)

Then we restrict τ to the interval 0...β and demand periodicity over τ and obtain for
the exponential in Eq. (1.13)

exp (−SE) ≡ exp

(
−
∫ β

0
dτLE

)
. (1.17)

It should be noted that this derivation of the path integral also works in field theory
with minimal modifications [14].

1.2 Free scalar field

We start with the usual Minkowskian Lagrangian for the free scalar field

LM =
1

2
(∂µφ) (∂µφ) − V (φ) . (1.18)

If we follow the procedure of the previous chapter in order to evaluate the path integral
for the Lagrangian (1.18), and consider

x→ φ(x), p→ π(x) ,

〈φ|π〉 = exp

(
i

∫
d3x π(x)φ(x)

)
,

(1.19)

it leads us to

Z =

∫

φ(β,x)=φ(0,x)

∏

x

[CDφ(τ,x)] exp

{
−
∫ β

0
dτ

∫
ddxLE

}
, (1.20)

with

LE = −LM (t = −iτ) =
1

2
(∂µφ) (∂µφ) + V (φ) . (1.21)

Eq. (1.19) reflects the fact that we go from an finite number of degrees of freedom (DOF)
in quantum mechanics to an infinite number of DOF in quantum field theory.

1.3 Interacting scalar field

When the Lagrangian (1.21) contains terms higher than quadratic in the fields, it is
generally not possible to evaluate the path integral (1.20) analytically. Therefore one
has to develop a technique to approximate the path integral in the interacting case. For
the following procedure it is economical to introduce an abbreviated form of Eq. (1.20):

Z = N ′

∫
[dφ]e−S , (1.22)
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with S = S0 + SI where S0 is quadratic in the fields and SI contains higher orders in φ.
It seems resonable to expand the exponential in Eq. (1.22) in a power series

Z = N ′

∫
[dφ]e−S0

∞∑

l=0

(−SI)
l

l!
, (1.23)

and after taking the logarithm we obtain

lnZ = ln

(
N ′

∫
[dφ]e−S0

)
+ ln

(
1 +

∞∑

l=1

(−1)l

l!

∫
[dφ]e−S0Sl

I∫
[dφ]e−S0

)

≡ lnZ0 + lnZI .

(1.24)

With the notation

〈 . . . 〉0 ≡
∫
[dφ]( . . . )e−S0

∫
[dφ]e−S0

, (1.25)

we are able to write the interacting part of Eq. (1.24) in the following short form

lnZI = ln

(
1 +

∞∑

l=1

(−1)l

l!
〈Sl

I〉0
)
. (1.26)

Eq. (1.24) separates the contributions from interactions, lnZI , and the well-known ideal
gas contribution lnZ0. After these preparations the relevant quantity is Eq. (1.26). In
order to compute Eq. (1.26) we expand the logarithm in a power series

lnZI =

∞∑

k=0

(−1)k

k + 1

(
∞∑

l=1

(−1)l

l!
〈Sl

I〉0
)k+1

=
∞∑

k=0

(−1)k

k + 1

(
−〈S1

I 〉0 +
1

2
〈S2

I 〉0 −
1

6
〈S3

I 〉0 + . . .

)k+1

= −〈SI〉0 +
1

2

[
〈S2

I 〉0 − 〈SI〉20
]
− 1

6

[
〈S3

I 〉0 − 3〈SI〉0〈S2
I 〉0 + 2〈SI〉30

]
+ . . . ,

(1.27)

and if we assume λ is the coupling constant, then the first term is of order λ and the
second and third of order, O(λ2) and O(λ3), respectively. Moreover, the first, second
and third term are associated with connected diagrams. The corresponding diagrams
in φ4 theory up to O(λ2) are:

= 3 + 36 + 12 + O(λ3) .

It turns out that at arbitrary order N in the perturbative expansion all disconnected

contributions cancel. Formally lnZI can be written as

lnZI =

∞∑

N=1

lnZN , (1.28)
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where lnZN is ∼ λN . A comparison of Eq. (1.24) and (1.25) yields

ZI =

∞∑

l=0

(−1)l

l!
〈Sl

I〉0 . (1.29)

Furthermore, 〈Sl
I〉0 can be expressed as a sum of terms and each of them are products

of connected diagrams:

〈Sl
I〉0 =

∞∑

a1,a2, ...=0

l!

a1! a2! (2!)a2a3! (3!)a3 . . .
〈SI〉a1

0,c〈S2
I 〉a2

0,c . . . δa1+2a2+3a3+ ... ,l . (1.30)

The subscript c in 〈Si
I〉ai

0,c indicates connected diagrams and the Kronecker delta ensures

that the contribution is of order λl. Finally, substituting Eq. (1.30) in (1.29) we obtain

ZI =

∞∑

a1,a2, ...=0

∞∑

l= 0

(−1)l

a1! a2! (2!)a2a3! (3!)a3 . . .
〈SI〉a1

0,c〈S2
I 〉a2

0,c . . . δa1+2a2+3a3+ ... ,l

=

∞∑

a1,a2, ...=0

(−1)a1〈SI〉a1
0,c

a1!

(−1)2a2〈S2
I 〉a2

0,c

a2!(2!)a2
· · · = exp

(
∞∑

n=1

(−1)n

n!
〈Sn

I 〉0,c

)
.

(1.31)

Another important quantity is the so called self-energy Π(ωn,p) which is defined by

D(ωn,p) =
[
ω2

n + p2 +m2 + Π(ωn,p)
]−1

, (1.32)

where D(ωn,p) is the full two-point propagator in frequency-momentum space and ωn

the Matsubara frequencies

ωn ≡
{

2πnT bosonic

(2n+ 1)πT fermionic
(1.33)

This case differentiation reflects the fact that we require periodicity φ(x, 0) = φ(x, β) for
the bosonic field, cf. Eq. (1.20) and antiperiodicity ψα(x, 0) = −ψα(x, β) for fermionic
fields, respectively. We can write Eq. (1.32) in terms of the free-particle propagator D0

D0 =
1

ω2
n + p2 +m2

, (1.34)

and find the expression
D(ωn,p) = (1 + D0 Π)−1 D0 . (1.35)

Our goal is to establish a relationship between the full two-point propagator D(ωn,p)
and the functional derivative of lnZI with respect to D0(ωn,p). For this task it is
necessary to inspect the full two-point propagator D(ωn,p) a little bit more in detail

D(ωn,p) =

∫ β

0
dτ

∫
d3x e−i(p·x+ ωnτ)D(x, τ)

=
∑

n1, n2

∑

p1, p2

β

V
〈φ̃n1(p1)φ̃n2(p2)〉

∫ β

0
dτ

∫
d3x ei(p1−p)·xei(ωn1−ωn)·τ ,

(1.36)
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where we make use of translational invariance of the finite-temperature propagator in
position space D(x1, τ1,x2, τ2) ≡ 〈φ(x1, τ1)φ(x2, τ2)〉 = D(x1 − x2, τ1 − τ2) and x1 =
x,x2 = 0, τ1 = τ, τ2 = 0. The ensemble average

〈φ̃n1(p1)φ̃n2(p2)〉 =

∫
[dφ]φ̃n1(p1)φ̃n2(p2)e

−S

∫
[dφ]e−S

(1.37)

vanishes unless p1 = −p2, n1 = −n2. Hence we obtain from Eq. (1.36)

D(ωn,p) = β2

∫
[dφ]φ̃n(p)φ̃−n(−p)e−S

∫
[dφ]e−S

. (1.38)

In the next step we examine the Lagrangian LE = 1
2 (∂µφ) (∂µφ) + 1

2m
2φ2. The corre-

sponding action follows after integration by parts and using periodicity of φ to

S = −1

2

∫ β

0
dτ

∫
d3xφ

(
− ∂2

∂τ2
−∇2 +m2

)
φ

= −1

2
β2
∑

n

∑

p

(ω2
n + ω2)φ̃n(p)φ̃−n(−p) ,

(1.39)

where ω =
√

p2 +m2. In Eq. (1.39) we also make use of the Fourier expansion

φ(x, τ) =

√
β

V

∑

n

∑

p

ei(p·x+ ωnτ)φ̃n(p) , (1.40)

for the field φ. With Eq. (1.39), (1.38) and (1.24) we obtain the important relation

D(ωn,p) = −2
δ lnZ

δD−1
0

= 2D2
0

δ lnZ

δD0
, (1.41)

and therefore

(1 + D0 Π)−1 = 2D0
δ lnZ

δD0
. (1.42)

This leads to our final result

(1 + D0 Π)−1 = 1 + 2D0
δ lnZI

δD0
, (1.43)

via
δ lnZ0

δD0(ωn,p)
=

1

2
D−1

0 (ωn,p) . (1.44)

Now we write the self-energy Π(ωn,p) in the same way as we proceeded with lnZ in
Eq. (1.29)

Π =
∞∑

l=1

Πl , (1.45)
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where Πl is proportinal to λl. Inserting Eq. (1.45) in Eq. (1.43) and expanding to first
order yields

1 −D0Π1 = 1 + 2D0
δ lnZ1

δD0

= 1 + 2D0
δ

δD0

(
3

)

= 1 + 12D0 .

(1.46)

This means that a functional differentiation with respect to D0 is equivalent to cutting
one line in the diagram. A factor of 2 occurs because both possible cuts are equivalent.
Hence

Π1 = −12 . (1.47)

The second-order contribution to Π is

−D0Π2 + D0Π1D0Π1 = 2D0
δ lnZ2

δD0

= 2D0
δ

δD0

(
36 + 12

)

= 144D0 + 96D0 + 144D0 .

(1.48)

The second term on the left cancels with the last on the right. Those diagrams are called
one-particle reducible. Thus

Π2 = −144 − 96 . (1.49)

It can be shown, at arbitrary order N in the perturbative expansion, that all one-particle
reducible contributions cancel and only the so called one-particle irreducible (1PI)
diagrams are left

Π = −2

(
δ lnZI

δD0

)

1PI

. (1.50)

1.4 Green’s functions and generating functionals

This section consists of a short review of some basic functional methods in field the-
ory which are required for the background field formalism considered in Sec. 1.5. The
generating functional is given by

Z[J ] =

∫
[dQ] exp

[
i
(
S[Q] + J ·Q

)]
, (1.51)
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whereas Q is a generic scalar field with action S[Q] and J ·Q ≡
∫
d4xJ Q. The n-point

Green’s functions are defined by

G(n)(Q, . . . ,Q) ≡ 〈0|T{Q . . . Q︸ ︷︷ ︸
n−times

} |0〉 =

∫
[dQ](Q . . . Q) exp i S[Q] , (1.52)

and with Eq. (1.51) we are able to express G(n) via the n-th functional derivative with
respect to the source J of Z[J ]:

G(n)(Q, . . . ,Q) =

(
1

i

δ

δJ

)n

Z[J ]

∣∣∣∣∣
J=0

. (1.53)

The Green’s functions introduced in (1.52) are disconnected Green’s functions (Fig. 1.1a).

x1

x2

x3

x4 . . . xn

(a) G(n)

x1

x2

xn−1

...

xn

(b) G
(n)
c

Figure 1.1: Disconnected G(n) and connected G
(n)
c Green’s functions

We have already seen that contributions from disconnected Green’s functions do not
contribute to lnZ or Π. Hence we work from now on only with connected Green’s
functions. These functions are generated by taking functional derivatives of

W [J ] ≡ −i lnZ[J ] . (1.54)

Let us inspect the first three derivatives with respect to J :

δW

δJ

∣∣∣∣∣
J=0

=
〈0|Q|0〉
〈0|0〉 ,

1

i

δ2W

δJ2

∣∣∣∣∣
J=0

=

[
〈0|T{QQ}|0〉

〈0|0〉 −
(〈0|Q|0〉

〈0|0〉

)2
]
,

(
1

i

)2 δ3W

δJ3

∣∣∣∣∣
J=0

=
〈0|T{QQQ}|0〉

〈0|0〉 − 3
〈0|T{QQ}|0〉〈0|Q|0〉

〈0|0〉2 + 2

(〈0|Q|0〉
〈0|0〉

)3

.

(1.55)

The last equation reads diagrammatically:

C = D -3 C C -
C

C
C

12



A comparison of Eq. (1.27) and (1.55) reveals a strong similarity. A further simplification
is to express the connected Green’s functions in terms of one-particle irreducible

(1PI) Green’s functions which are generated by

Γ[Q̄] = W [J ] − J · Q̄, Q̄ ≡ δW

δJ
, (1.56)

the so-called effective action. Q̄ can be understood as the vacuum expectation value
of Q in presence of the source J cf. (1.55). It turns out that the most economical way
to determine connected Green’s functions is to compute 1PI graphs and string these
together. A few examples below will show how this works in practice. Let us inspect
the first three derivatives of (1.56) with respect to Q̄:

δΓ

δQ̄
= −J . (1.57)

This field equation replaces the classical field equation δS/δQ = −J in the quantized
theory. Taking the second derivative yields

δ2Γ

δQ̄2
= − δJ

δQ̄
=

[
−δQ̄
δJ

]−1

=

[
−δ

2W

δJ2

]−1

=
(1.55)

iD−1 , (1.58)

where D stands for the full propagator. After multiplying Eq. (1.58) from the left and
right with D we obtain

D
1

i

δ2Γ

δQ̄2
D = D , (1.59)

or diagrammatically:

C = C 1PI C

This means that the full two-point propagator can be constructed by dressing the two
external lines with propagators. In addition to this result we can use Eq. (1.58) to find
the following identity

δ

δQ̄
=
δJ

δQ̄

δ

δJ
= D−1 1

i

δ

δJ
. (1.60)

The equation above allows us to understand why Eq. (1.56) generates the 1PI-Green’s
functions. When operating with Eq. (1.60) on Γ[Q̄], δ/δJ adds an external leg and D−1 re-
moves the propagator from this leg. The continuous adding and removing of propagators
(= amputation) keeps diagrams 1PI. Finally, let us compute the third derivative:

δ3Γ

δQ̄3
= D−1 1

i

δ

δJ

[
−δ

2W

δJ2

]−1

= iD−3 δ
3W

δJ3
. (1.61)

C = 1PI C

C

C
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1.5 Background field method

The background field method allows us to quantize gauge theories without losing explicit
gauge invariance. Furthermore, this approach makes a lot of computations much easier
and helps for a better understanding of gauge theories. The usual approach in gauge field
theory starts with a gauge invariant Lagrangian. For the purpose of quantization, we
have to choose a gauge. At that time, the Lagrangian consists of the classical Lagrangian,
gauge fixing and ghost terms. In the background field gauge we retain explicit gauge
invariance in the original Lagrangian with gauge fixing and ghost terms. From this
it follows that, among other things, even quantities like divergent counterterms take a
gauge invariant structure. The generating functional for gauge theory reads

Z[J ] =

∫
[dQ] det

[
δGa

δωb

]
exp

[
i

(
S[Q] − 1

2ξ
G ·G+ J ·Q

)]
, (1.62)

where Q is a short notation for Qa
µ and

J ·Q ≡
∫
d4xJa

µQ
a
µ ,

G ·G ≡
∫
d4xGaGa .

(1.63)

In the following we consider the gauge field action

S = −1

4

∫
d4xF a

µνF
a
µν , (1.64)

with
F a

µν = ∂µQ
a
ν − ∂νQ

a
µ + gfabcQb

µQ
c
ν . (1.65)

Ga represents the gauge fixing term and δGa/δωb the derivative with respect to the pa-
rameterisation ωb of the infinitesimal gauge transformation

Qa
µ → Qa

µ + ∂µω
a + gfabcωbQc

µ . (1.66)

Then we introduce the background field generating functional which is defined by

Z̃[J,A] =

∫
[dQ] det

[
δG̃a

δωb

]
exp i

[
S[Q+A] − 1

2ξ
G̃ · G̃+ J ·Q

]
, (1.67)

with background field Aa
µ and as above δ eGa/δωb the derivative of gauge fixing G̃a under

gauge tranformation

Qa
µ → Qa

µ + ∂µω
a + gfabcωb(Qc

µ +Ac
µ) . (1.68)

In order to perform computations in background field gauge we need a relation between
the conventional approach via Eq. (1.56) and the background field effective action

Γ̃[Q̃,A] = W̃ [J,A] − J · Q̃, Q̃ ≡ δW̃

δJ
, (1.69)
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with
W̃ ≡ −i ln Z̃[J,A] . (1.70)

Shifting the integration variable Q → Q−A in Eq. (1.67) and using of Eqs. (1.70) and
(1.69) yields

Γ̃[Q̃,A] = Γ[Q̃+A], Q̃ = Q−A . (1.71)

In the special case Q̃ = 0 we find

Γ̃[0, A] = Γ[A] . (1.72)

This result tells us that computations with Γ̃[0, A] and gauge fixing G̃a = G̃a(Q,A)
provide the same result as the conventional approach via Γ[Q̄] evaluated at Q̄ = A with
gauge fixing Ga = G̃a(Q−A,A). However, the unusual gauge fixing Ga = G̃a(Q−A,A)
results in different Green’s functions compared to those obtained in a conventional gauge.
But in the end gauge independence of physical quantities guarantees the correct result.

Let us focus our attention on the explicit gauge invariance of Γ̃[0, A] in A. For this
task it is necessary to choose the correct gauge fixing term and it turns out that

G̃a = ∂µQ
a
µ + gfabcAb

µQ
c
µ (1.73)

makes Eq. (1.67) invariant under gauge transformations

Aa
µ → Aa

µ + ∂µω
a + gfabcωbAc

µ ,

Ja
µ → Ja

µ + gfabcωbJc
µ .

(1.74)

The proof of this proposition can be found in [15, 16] or [17].

1.6 QCD Feynman rules and renormalisation

In order to compute the background field effective action Γ̃[0, A] we need to sum all
one-particle irreducible diagrams. There are restrictions on the diagrams, only diagrams
with external fields A (since Q̃ = 0) and Q fields inside the loops (because there is no
functional integration over A cf. Eq. (1.67)) contribute. From here on we need Feynman
rules to translate the graphical notation into a mathematical expression. We start with
the action for finite temperature QCD, corresponding to a gauge group SU(Nc) and Nf

flavours of quarks

SQCD
E =

∫ β

0
dτ

∫
d3−2ǫx

[
1

4
F a

µνF
a
µν − 1

2ξ
GaGa + c̄a

(
δGa

δωb

)
cb + ψ̄(γµDµ +m)ψ

]
,

(1.75)
where the subscript E stands for Euclidian space-time and µ = 0, . . . , 3,Dµ = ∂µ −
igQµ, Qµ = Qa

µT
a,Tr[T aT b] = δab/2, {γµ, γν} = 2δµν . The Dirac fields ψ, ψ̄ are treated

as vectors in Dirac space. The Faddeev-Popov determinant in Eq. (1.62) is written
in terms of an anticommutating scalar ghost field. We express the gauge fixing term,
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Eq. (1.73), and the functional derivative in a more convenient way and introduce the
covariant derivative in the adjoint representation

Dab
µ (Q) = ∂µδ

ab + gfabcQc
µ , (1.76)

in terms of which

G̃a = Dab
µ (A)Qb

µ ,

δG̃a

δωb
= Dac

µ (A)Dcb
µ (Q+A) .

(1.77)

Now we are able to express the action (1.75) in Fourier representation. Then we split
the action into a quadratic part and a part which contains all higher orders in the fields.
Inverting the matrices appearing in the quadratic part provides us with the propagators

〈
Q̃a

µ(R̃)Q̃b
ν(S̃)

〉
0

= δabδ(R̃ + S̃)


δµν − eRµ eRν

eR2

R̃2
+
ξ

eRµ eRν

eR2

R̃2


 , (1.78a)

〈
c̃a(R̃)̃c̄

b
(S̃)
〉

0
= δabδ(R̃ − S̃)

1

R̃2
, (1.78b)

〈
ψ̃A(R̃)˜̄ψB(S̃)

〉
0

= δABδ(R̃ − S̃)
−i6R̃+m

R̃2 +m2
, (1.78c)

and everything else gives the Feynman rules in QCD in background field gauge. The
subscript in Eq. (1.78c) contains quark flavour and colour. After symmetrization as far
as possible via integration by parts and changing summation indices we have:

ψ̃A ψ̃B

Q̃a
µ

= −igγµT
a
AB ,

ψ̃A ψ̃B

Ãa
µ

= −igγµT
a
AB ,

c̃b(S̃) c̃a(R̃)

Ac
µ(T̃ )

= −igfacb(R̃µ + S̃µ) ,

c̃b(S̃) c̃a(R̃)

Qc
µ(T̃ )

= −igfabcR̃µ ,

c̃a c̃b

Q̃d
ν Ãc

µ

= −g2facef edbδµν ,

c̃a c̃b

Ãd
ν Ãc

µ

= −g2(facef edb+fadef ecb)δµν ,

Q̃c
ρ(T̃ )

Q̃a
µ(R̃)

Q̃b
ν(S̃) = igfabc

[
δµρ(R̃ν − T̃ν) + δρν(T̃µ − S̃µ) + δνµ(S̃ρ − R̃ρ)

]
,

Q̃c
ρ(T̃ )

Ãa
µ(R̃)

Q̃b
ν(S̃) = igfabc

[
δµρ(R̃ν − T̃ν − 1

ξ S̃ν) + δρν(T̃µ − S̃µ) + δνµ(S̃ρ − R̃ρ + 1
ξ T̃ρ)

]
,
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Q̃c
ρ(T̃ )

Q̃a
µ(R̃)

Q̃b
ν(S̃)

Q̃d
σ(Ũ )

Q̃c
ρ(T̃ )

Ãa
µ(R̃)

Q̃b
ν(S̃)

Q̃d
σ(Ũ )

= g2

[
fabef ecd(δµρδνσ − δµσδνρ) + facef ebd(δµνδρσ − δµσδνρ) +

+ fadef ebc(δµνδρσ − δµρδνσ)

]
,

Ãc
ρ(T̃ )

Ãa
µ(R̃)

Q̃b
ν(S̃)

Q̃d
σ(Ũ )

= g2

[
fabef ecd(δµρδνσ − δµσδνρ +

1

ξ
δµνδρσ) + facef ebd(δµνδρσ − δµσδνρ) +

+ fadef ebc(δµνδρσ − δµρδνσ − 1

ξ
δµσδνρ)

]
.

Solid lines represent fermions, dashed lines ghosts and curly lines stand for gluons. It
should be noted that we are not able to determine the propagator for the background
field A because the A field gauge invariance has not been broken. In addition, the
above vertices are only those with two or more Q lines (fermions, ghosts or gluons).
This is reasonable because we are only interested in 1PI graphs. For completeness, in
Fig. A.1 all vertices are shown which can be extracted from the action (1.75) with (1.77).

In the calculation process of Γ̃[0, A] divergences will arise and must be renormalised.
As usual, we introduce renormalisation constants

(Aµ)B = Z
1/2
A Aµ , (1.79a)

gB = Zgg , (1.79b)

ξB = Zξξ , (1.79c)

where the subscript B stands for bare quantities. The ghost field c, quantum field Q and
fermion field ψ are only internal fields and therefore do not have to be renormalised. As
mentioned above, the great advantage in background field gauge is that, in particular,
the renormalisation factors ZA and Zg are associated with each other. Due to the fact

that gauge invariance is retained, the divergences arising in Γ̃[0, A] must have a structure
of a divergent constant times (F a

µν)2. With Eq. (1.79a) and (1.79b) the renormalised
(F a

µν)B reads

(F a
µν)B = Z

1/2
A

[
∂µA

a
ν − ∂νA

a
µ + ZgZ

1/2
A gfabcAb

µA
c
ν

]
. (1.80)

The only way to bring Eq. (1.80) in a gauge invariant form times a divergent constant
is if

Zg = Z
−1/2
A . (1.81)

For our purposes, the most convenient way to renormalise the theory is dimensional
regularisation in the modified minimal subtraction (MS) scheme. Therefore all
integrals appearing during the calculation are carried out in 3 − 2ǫ dimensions. The
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renormalisation constants introduced in Eq. (1.79a - 1.79c) can be written as a sum over
poles in ǫ, e.g.:

ZA = 1 +

∞∑

n=1

Z
(n)
A

ǫn
. (1.82)

If we perform our calculation up to n-loop, we will get contributions 1/ǫ . . . 1/ǫn. Fur-
thermore, in dimensional regularisation the bare coupling gB is no longer dimensionless.
Considering the F a

µνF
a
µν term in (1.75) and keeping in mind that the action is dimen-

sionless gives ∫
d3−2ǫx

(
∂µAν

)2
∫
d3−2ǫx g2

B

(
AµAν

)2





⇒ gB ∼ (mass)ǫ . (1.83)

We introduce an arbitrary mass parameter µ such that the combination µ−2ǫg2 is di-
mensionless. In this framework the usual sum-integral becomes to

∑∫

P

→ µ2ǫT
∑

p0

∫
d3−2ǫp

(2π)3−2ǫ
. (1.84)

Working in the MS scheme corresponds to doing common minimal subtraction (MS)
scheme and then changing to the µ̄ scale parameter by µ2 ≡ µ̄2eγE/4π.

1.7 QCD at high temperatures

The perturbation theory outlined in Section 1.3 is the so-called weak-coupling expan-
sion. It is obvious that, only if the coupling is small, an expansion therein is justified.
A weak-coupling expansion in QCD at high temperatures is justified because we have
asymptotic freedom. This means, at sufficiently high temperatures the coupling is small
and an expansion converges. However, at realistic temperatures the convergence can
still be very slow (see e.g. [18, 19]). Hence we need high order computations in QCD to
get accurate results. Unfortunately, a naive perturbative expansion in g2 does not work,
due to the fact that we are faced with a multi-scale system [20, 21]. The coupling is
treated as a small parameter, but g(µ̄) varies with the momentum scale µ̄. QCD at high
temperature exhibits three different momentum scales T, gT and g2T [22]. Perturbation
theory, restricted to the momentum scale T 1 can be treated with conventional methods.
But at higher order in perturbation theory, the other momentum scales gT and g2T
enter the stage and can contribute to observables. In contrast to the momentum scale
T , these low momentum scales are only accessible through improved analytic methods
or non-perturbatively via lattice simulations, as is especially the case for the g2T scale.

As an example we consider the free energy of QCD at high temperature. The free
energy can be decomposed into contributions of the different momentum scales and it

1The typical momentum of a particle in the plasma with temperature T
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QCD

∼ 1
T

ΛE

ΛM

EQCD

∼ 1
gT

MQCD

∼ 1
g2T

Figure 1.2: Different length scales in hot QCD

turns out that the scale T is a power series in g2, the scale gT a power series in g, entering
at order g3 and the contribution of g2T beginning at g6. In the following we construct
a sequence of two effective theories in order to seperate the different momentum scales
[23, 24]. The first theory (called EQCD) is constructed by integrating out the hard scale
T and reproduces static properties of thermal QCD at length scales of 1/gT or greater.
We obtain the second effective theory (MQCD) by integrating out the scale gT from
the first. MQCD reproduces the behavior of full QCD at length scales of order 1/g2T
or larger. The idea behind this simplification is the following: Before gauge fixing, the
QCD Langrangian, taken from Eq. (1.75), with vanishing mass matrix reads

LQCD =
1

4
F a

µνF
a
µν + ψ̄γµDµψ . (1.85)

We know from Section 1.3 that bosonic fields are periodic in imaginary time τ . Thus
the fields Qa

µ(x) can be expanded into their Fourier modes Qa
µ,n exp [i2πnTτ ] with the

corresponding propagators [p2 + (2πnT )2]−1. For nonstatic modes, 2πnT acts like a
mass and at sufficiently high temperature T these modes decouple like infinitely heavy
particles from the theory. In contrast to zero-temperature field theories with heavy
particles, the decoupling is not ‘complete’. In addition to L0

EQCD there are corrections
that cannot be ignored

SEQCD =

∫
d3−2ǫxLEQCD , (1.86)

LEQCD =
1

4
F a

ijF
a
ij + Tr[Di, A0]

2

︸ ︷︷ ︸
L0

EQCD

+m2
ETr[A2

0] + λ
(1)
E (Tr[A2

0])
2 + λ

(2)
E Tr[A4

0] + · · · , (1.87)

with i = 1, . . . , 3, F a
ij = ∂iA

a
j −∂jA

a
i +gEf

abcAb
iA

c
j and Di = ∂i−igEAi. The electrostatic

gauge field Aa
0(x) and magnetostatic gauge field Aa

i (x) appearing in the theory can be
related (up to normalisation) to the zero modes ofQa

µ(x) in thermal QCD. The derivation
of L0

EQCD can be found in [25] and for higher operators see [26]. The largest contribution
that higher-order operators, omitted in Eq. (1.87), could give (e.g. in the case of the
thermodynamic pressure) is ∼ g7. This can be shown by dimensional analysis [27].
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1.8 Matching computation

In order to determine the coefficients emerging in (1.87) we have to perform a matching
computation. This means we require the same result on the QCD and EQCD side within
the domain of validity. A convenient way to perform the matching computation is by
using a strict perturbation expansion in g2. On both sides, the expansion is afflicted
with infrared divergences. These divergences are screened by plasma effects and can
be taken into account (at least for electrostatic gluons) by resumming an infinite set
of diagrams (see e.g. [14]). Screening of magnetostatic gluons is completely a non-
perturbative effect. For the matching computation, it is not necessary to worry about
the infrared divergences because the matching parameters are only sensitive to the effects
of large momenta. All infrared divergences appearing during matching computation can
be removed by choosing a convenient infrared cutoff. It is essential to choose the same
infrared cutoff in both theories. At leading order, the effective gauge coupling gE , related
to gB , in the full theory reads

g2
E = g2

BT . (1.88)

This can be seen by substitutingQ0(x, τ) →
√
TQ0(x) in (1.85) and comparing

∫ β
0 dτLQCD

and (1.87). The mass parameter m2
E in (1.87) can be understood as the large momentum

contribution to the electric screening mass m2
el in the full theory. The screening mass

mel is defined2 by the pole of the propagator for Aa
0(τ,x) at p2 = −m2

el and p0 = 0

p2 + Π(p2) = 0 , (1.89)

with Π(p2) ≡ Π00(p
2). On the EQCD side, the mass parameter mE is defined in a

similar way by
p2 +m2

E + ΠEQCD(p2) = 0 , (1.90)

evaluated at p2 = −m2
el, and ΠEQCD denotes the self-energy on EQCD side. In the

following we expand the self energy Π(p2) in a Taylor series and obtain

Π(p2) = Π(0) + p2Π′(0) + · · ·

≡
∞∑

n=1

Πn(0)(g2
B)n + p2

∞∑

n=1

Π′
n(0)(g2

B)n + · · · . (1.91)

With Eq. (1.89) and (1.91) we express the electric screening mass mel in terms of Taylor
coefficents up to next-to-next to leading order

m2
el = g2

BΠ1(0) + g4
B

[
Π2(0) − Π′

1(0)Π1(0)
]
+ g6

B

[
Π3(0) − Π′

1(0)Π2(0) −
− Π′

2(0)Π1(0) + Π′′
1(0)Π

2
1(0) + Π1(0)Π

′2
1 (0)

]
+ O(g8

B) .
(1.92)

In this expansion we treated the deviation of p2 from 0 as a perturbation in g2. To
complete the matching for mE we have to compute ΠEQCD on the EQCD side in a
strict perturbation in g2

B . The only scale in ΠEQCD(p2) is p2 and after Taylor expansion

2In presence of an infrared cut-off, otherwise a non-perturbative definition is needed.
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the dimensionally regularised integrals vanishing identically. With Eq. (1.90) we find
immediately

m2
E = m2

el . (1.93)

In order to match the effective gauge coupling gE we make use of background field
method introduced in Section 1.5. Symbolically, Eq. (1.87) can be written as

Leff ∼ c2A
2 + c3gA

3 + c4g
2A4 + · · · , (1.94)

where A denotes the background field potential and ci = 1 + O(g2). With A2
eff ≡ c2A

2

Eq. (1.94) becomes

Leff ∼ A2
eff + c3c

−3/2
2 gA3

eff + c4c
−2
2 g2A4

eff + · · · , (1.95)

and under consideration of the gauge invariant structure (cf. Eq. (1.80)) in terms of the
effective background potential we obtain

gE = c3c
−3/2
2 g = c

1/2
4 c−1

2 g . (1.96)

In addition, gauge invariance in the original potential A and Eq. (1.94) yields c3 = c2 = c4
and

gE = c
−1/2
2 g . (1.97)

This means that the background field method simplifies this task from two independent
calculations of a 3-point or 4-point function in combination with a two-point function
in the case of Eq. (1.96) to calculating a single two-point function in the case of Eq. (1.97).

At this point it is helpful to recall Eq. (1.35). The gluon self-energy Πµν can be ex-
pressed through the inverses of the full and free propagators

Πµν = D−1
µν −D−1

0µν . (1.98)

There are two constraints concerning the full propagator Dµν and self-energy Πµν

pµΠµν = 0 , (1.99a)

pµpνDµν = ξ , (1.99b)

where pµ denotes the gluon four-momentum and ξ a general gauge parameter. The
corresponding proofs can be found in [14] and [28]. In general, Πµν ,Dµν and D−1

µν

are symmetric second-rank tensors made up of gµν , pµpν , uµuν and pµuν + pνuµ where
uµ = (1,0) describes the rest frame of the thermal bath. With Eq. 1.98-1.99b we obtain

Π00(p) ≡ ΠE(p2) , (1.100a)

Πij(p) ≡
(
δij −

pipj

p2

)
ΠT(p2) +

pipj

p2
ΠL(p2) , (1.100b)

while Π0i,Πi0 and ΠL are vanishing. A Taylor expansion according to Eq. (1.97) yields

g2
E = T

{
g2
B − g4

BΠ′
T1(0) + g6

B

[(
Π′

T1(0)
)2 − Π′

T2(0)
]
+

+g8
B

[
Π′

T1(0)Π
′
T2(0) −

(
Π′

T1(0)
)3 − Π′

T3(0)
]

+ O(g10
B )
}
. (1.101)
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1.9 Spatial string tension

The spatial string tension is defined by

σs ≡ lim
R1→∞

Vs(R1)

R1
, (1.102)

with the potential

Vs(R1) = − lim
R2→∞

1

R2
lnWs(R1, R2) , (1.103)

where Ws(R1, R2) is a rectangular Wilson loop of size R1 ×R2 in the (x1, x2)-plane.

In three dimensional SU(3) gauge theory (MQCD) the same observable exists and is
directly related to the corresponding gauge coupling g2

M due to its dimensionality

σs = c× g4
M , (1.104)

where c stands for a numerical proportionality constant. The coefficient has been deter-
mined by 3d quenched lattice simulations [29] and can be expressed for Nc = 3 as

√
σs

g2
M

= 0.553(1) . (1.105)

The relation between the MQCD gauge coupling g2
M and the EQCD gauge coupling g2

E,
is known up to two-loop order [30] and reads

g2
M = g2

E

[
1 − 1

48

g2
ENc

πmE
− 17

4608

(
g2
ENc

πmE

)2
]
, (1.106)

where we have neglected numerically insignificant contributions. For a discussion re-
garding higher order corrections to Eq. (1.106) see [31].

The next step would be to re-expand Eq. (1.101) in terms of the renormalised gauge
coupling g2(µ̄) and solve the RG equation. After these standard procedures, g2

E is a
function of µ̄/T and µ̄/ΛMS. Furthermore, the MS scheme scale parameter µ̄ can be
fixed by the “principle of minimal sensitivity” [32, 33]. Considering this and Eq. (1.105),
(1.106), the spatial string tension σs becomes a function of T/ΛMS.

In order to compare the three dimensional prediction of σs with 4d lattice data we
still need a relation between “perturbative units” ΛMS and the critical temperature Tc

Tc

ΛMS

= 1.10, . . . , 1.35 , (1.107)

which takes into account the results obtained from three different approaches3 and their
associated uncertainties.

3For more details see [31] and references therein.
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2 Framework: Automated loop

computations

2.1 One-loop evaluation by hand

This section consists of the one-loop computation without using CAS. It should give an
impression of the complexity already for the one-loop correction. In order to simplify this
task somewhat, we perform the whole computation in Feynman gauge i.e. with ξ = 1.
At one-loop order there are 5 diagrams contributing to Πµν in background field gauge:

= −g
2

24
〈Aa

µ(P )Ab
ν(Q)

∑∫

R,S,T,U

Ac
α(R)Ad

β(S)Qe
ρ(T )Qf

σ(U)〉0,cδ(R + S + T + U)×

×
[
f cexfxdf (δαβδρσ − δασδρβ + δαρδβσ) + f cdxfxef (δαρδβσ − δασδρβ)+

+ f cfxfxed (δαρδβσ − δαβδρσ + δασδρβ)
]

=
(∗)

−g
2

12

∑∫

R,S,T,U

〈Aa
µ(P )Ac

α(R)〉0〈Ab
ν(Q)Ad

β(S)〉0〈Qe
ρ(T )Qf

σ(U)〉0δ(R + S + T + U)Ccdef
αβρσ

= −g
2

12
δacδbdδef δµαδνβδρσC

cdef
αβρσ︸ ︷︷ ︸

= 2dNcδµνδab

∑∫

R,S,T,U

1

P 2Q2T 2
δ(P +R)δ(Q+ S)δ(T + U)δ(R + · · · + U)

= −g
2

6
dNcδ

abδµν
∑∫

R,S,T,U

1

P 2Q2T 2
δ(P +R)δ(Q + S)δ(T + U)δ(R + S + T + U)

= −g
2

6
dNcδ

abδµν
δ(P +Q)

(P 2)2
∑∫

S

1

S2
. (2.1)

In (∗) we introduced Ccdef
αβρσ and used its complete symmetry in interchanging Lorentz

and color indices simultaneously.
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=
g2

2
〈Aa

µ(P )Ab
ν(Q)

∑∫

R,S,T,U

Ac
α(R)Ad

β(S)c̄e(T )cf (U)〉0,cδ ( . . . )
[
f ecxfxdf + f edxfxcf

]
δαβ

=
(∗)

−g2 ∑
∫

R,S,T,U

〈Aa
µ(P )Ac

α(R)〉0〈Ab
ν(Q)Ad

β(S)〉0〈cf (U)c̄e(T )〉0δ(R + S − T + U)
[
. . .
]
δαβ

= −g2 δacδbdδefδµαδνβδαβ

[
. . .
]

︸ ︷︷ ︸
=−2Ncδµνδab

∑∫

R,S,T,U

1

P 2Q2T 2
δ(P +R)δ(Q+ S)δ(T − U)δ ( . . . )

= 2g2Ncδ
abδµν

∑∫

R,S,T,U

1

P 2Q2T 2
δ(P +R)δ(Q+ S)δ(T − U)δ(R + S − T + U)

= 2g2Ncδ
abδµν

δ(P +Q)

(P 2)2
∑∫

S

1

S2
, (2.2)

where we used one more time the complete symmetry of
[
. . .
]
δαβ and Grassmann

nature of the ghost fields.

= −g
2

2
〈Aa

µ(P )Ab
ν(Q)

∑∫

R,S,T,U,V,X

c̄c(R)Ad
α(S)ce(T )c̄g(U)Ah

β(V )ci(X)〉0,c(Rα + Tα)(Uβ +Xβ)×

× f cdef ghiδ(−R + S + T )δ(−U + V +X)

=
(∗)

−g2 ∑
∫

R,S,T,U,V,X

〈Aa
µ(P )Ad

α(S)〉0〈Ab
ν(Q)Ah

β(V )〉0〈ce(T )c̄g(U)〉0〈ci(X)c̄c(R)〉0(Rα + Tα)×

× (Uβ +Xβ)f cdef ghiδ(−R + S + T )δ(−U + V +X)

= g2 δadδbhδegδicf cdef ghi

︸ ︷︷ ︸
=−Ncδab

∑∫

R,S,T,U,V,X

δ(P + S)δ(Q+ V )δ(T − U)δ(X −R)

P 2Q2T 2X2
(Rµ + Tµ)×

× (Uν +Xν)δ(−R + S + T )δ(−U + V +X) .

Performing the momentum integrations over S,V,U and R and then X gives

= −g2Ncδ
ab δ(P +Q)

(P 2)2
∑∫

S

1

S2(P − S)2
(2Sµ − Pµ) (2Sν − Pν) . (2.3)

This is the first integral with a non-trivial tensor structure. It is convenient to write the
3-gluon vertex shown in Section 1.6 in short form as

Dαβγ(R,S, T ) ≡ δαγ (Rβ − Tβ − Sβ) + δγβ (Tα − Sα) + δβα (Sγ −Rγ + Tγ) . (2.4)
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Changing Lorentz indices in additon to four-momentum e.g. β ↔ γ, S ↔ T results in
an overall minus sign

Dαβγ(R,S, T ) = −Dαγβ(R,T, S) . (2.5)

The following gluon diagram and higher loop diagrams of this type, entirely composed
of 3-gluon vertices, are the most complicated1 ones appearing in this computation.

= −g
2

72
〈Aa

µ(P )Ab
ν(Q)

∑∫

R,S,T,U,V,X

Ac
α(R)Qd

β(S)Qe
γ(T )Ag

η(U)Qh
ρ(V )Qi

σ(X)〉0,cDαβγ(R,S, T )×

× Dηρσ(U, V,X)f cdef ghiδ(R + S + T )δ(U + V +X)

= −g
2

2

∑∫

R,S,T,U,V,X

〈Aa
µ(P )Ac

α(R)〉0〈Ab
ν(Q)Ag

η(U)〉0〈Qd
β(S)Qh

ρ(V )〉0〈Qe
γ(T )Qi

σ(X)〉0 ×

× f cdef ghiδ(R + S + T )δ(U + V +X)Dαβγ(R,S, T )Dηρσ(U, V,X)

= −g
2

2
δacδbgδdhδeif cdef ghi

︸ ︷︷ ︸
=Ncδab

∑∫

R,S,T,U,V,X

1

P 2Q2S2T 2
δ(P +R)δ(Q+ U)δ(S + V )δ(T +X)×

× δµαδνηδβρδγσDαβγ(R,S, T )Dηρσ(U, V,X)δ(R + S + T )δ(U + V +X)

= −g
2

2
Ncδ

ab δ(P +Q)

(P 2)2
∑∫

S

1

S2(P − S)2
Dµβγ(−P, S, P − S)Dνβγ(P,−S,−P + S) .

At this point we have to carry out the contractions of Dµβγ(. . . )Dνβγ(. . . )

Dµβγ(−P, S, P − S)Dνβγ(P,−S,−P + S) =

[δµγ(−Pβ − (P − S)β − Sβ) + δγβ((P − S)µ − Sµ) + δβµ(Sγ + Pγ + (P − S)γ ] ×
× [δνγ(−Pβ − (S − P )β + Sβ) + δγβ((S − P )ν + Sν) + δβν(−Sγ − Pγ + (S − P )γ ]

= [−2δµγPβ + δγβ(Pµ − 2Sµ) + 2δβµPγ ] [2δνγPβ + δγβ(2Sν − Pν) − 2δβνPγ ]

= −8δµνP
2 + (8 − d)PµPν + 2d(SνPµ − 2SµSν + SµPν) ,

with δββ = d. The final expression for the gluon diagram becomes

= −g
2

2
Ncδ

ab δ(P +Q)

(P 2)2
∑∫

S

1

S2(P − S)2

[
− 8δµνP

2 + (8 − d)PµPν+

+ 2d(SνPµ − 2SµSν + SµPν)

]
.

(2.6)

1l-loop diagrams of this type consist of ∼ 23l+132l terms in presence of a general gauge parameter.
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= −g
2

2
〈Aa

µ(P )Ab
ν(Q)

∑∫

{R,T,U,X},S,V

ψ̄A(R)γαA
c
α(S)ψB(T )ψ̄C(U)γβA

d
β(V )ψD(X)〉0,cT

c
ABT

d
CD ×

× δ(−R + S + T )δ(−U + V +X)

= g2 ∑∫

{R,T,U,X},S,V

〈Aa
µ(P )Ac

α(S)〉0〈Ab
ν(Q)Ad

β(V )〉0Tr
[
〈ψD(X)ψ̄A(R)〉0γα〈ψB(T )ψ̄C(U)〉0γβ

]
×

× T c
ABT

d
CDδ(−R + S + T )δ(−U + V +X)

= −g2 δacδbdδBCδDAT
c
ABT

d
CD︸ ︷︷ ︸

=Tr[T aT b]=Nf /2

∑∫

{R,T,U,X},S,V

1

P 2Q2T 2X2
RσUρδµαδνβTr[γσγαγργβ ]︸ ︷︷ ︸

4[δµνR·U−RµUν−RνQµ]

×

× δ(−R + S + T )δ(−U + V +X)δ(P + S)δ(Q+ V )δ(T − U)δ(X −R) .

Curly brackets indicate fermionic Matsubara frequencies and integration over S, V,R,U,X
gives the final result

= 2g2Nf δ
ab δ(P +Q)

(P 2)2
∑∫

{S}

1

S2(P − S)2
[
δµν(S2 − P · S) − 2SµSν + PµSν + PνSµ

]
.

In the next step we perform a Taylor expansion in the external momentum P = (0,p)
(which is taken purely spatial) and decouple all scalar products of P with loop momenta.
In order to abbreviate the following expressions, we introduce a short-hand notation for
the one-loop tadpole

∑∫

P

Pn
0

(P 2)m
≡ Ib(m,n) , (2.7a)

∑∫

{P}

Pn
0

(P 2)m
≡ If (m,n) . (2.7b)

There is a recursion relation2 which allows us to reduce the appearing integrals with
arbitrary value of m and n to lower ones n′ < n,m′ < m

Ib(m+ 1, n+ 2) =
2m− d+ 1

2m
Ib(m,n) , (2.8)

for m ≥ 1, n ≥ 0. Fortunately, at one-loop order all integrals are known explicitly

Ib(m,n) =
2π3/2T 4

(2πT )2m−n

(
µ2

πT 2

)ǫ Γ
(
m− 3

2 + ǫ
)

Γ(m)
ζ(2m− n− 3 + 2ǫ) , (2.9)

2This can be shown via integration by parts (IBP) relations, see Section 2.4.
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so that in principle, a reduction in terms of Eq. (2.8) is not needed. Furthermore, the
fermionic one-loop tadpoles If (m,n) are related3 to the corresponding bosonic ones via

If (m,n) = (22m−n−d+1 − 1)Ib(m,n) . (2.10)

Adding all contributions and performing a Taylor expansion yields

Πµν,1 = Nc



(2 − d)

∑∫

S

δµν

S2
+ (2d− 4)

∑∫

S

SµSν

(S2)2



+ 2Nf

∑∫

{S}

δµνS
2 − 2SµSν

(S2)2
, (2.11)

Π′
µν,1 = −Nc

∑∫

S

{
(2d− 4)

(
SνPµ + SµPν

(S2)3
(S · P ) +

SµSν

(S2)3
P 2 − 4

SµSν

(S2)4
(S · P )2

)
+

+

(
5 − d

2

)
PµPν

(S2)2
− 4

δµν

(S2)2

}

+ 4Nf
∑∫

{S}

{
SνPµ + SµPν

(S2)3
(S · P ) − 4

SµSν

(S2)4
(S · P )2 +

SµSν

(S2)3
P 2 +

δµν

(S2)3
(S · P )2 −

− δµν

2(S2)2
P 2

}
. (2.12)

As mentioned above, in order to express both Taylor coefficients in terms of one-loop
tadpoles Eq. (2.7b) we have to extract the tensor structure out of the appearing tensor
integrals in addition to decoupling the external momentum P :

∑∫

S

SµSν

(S2)a
=

(1.100b)
δµ0δν0

∑∫

S

S0S0

(S2)a
+ δµiδνj

∑∫

S

SiSj

(S2)a

= δµ0δν0
∑∫

S

S2
0

(S2)a
+ δµiδνjδij

1

d− 1

∑∫

S

S2

(S2)a

= δµ0δν0
∑∫

S

S2
0

(S2)a
+ δµiδνi

1

d− 1

∑∫

S

S2 − S2
0

(S2)a

= δµ0δν0 Ib(a, 2) +
δµiδνi

d− 1

[
Ib(a− 1, 0) − Ib(a, 2)

]

=

[
δµ0δν0

2a− 1 − d

2(a− 1)
+
δµiδνi

d− 1

{
1 − 2a− 1 − d

2(a− 1)

}]
Ib(a− 1, 0)

=
1

2(a− 1)

[
δµ0δν0(2a− 1 − d) + δµiδνi

]
Ib(a− 1, 0) (2.13)

∑∫

S

SµPν

(S2)a
(S · P ) = · · · = pµpν

1

d− 1

∑∫

S

S2 − S2
0

(S2)a
=
pµpν

d− 1

[
Ib(a− 1, 0) − Ib(a, 2)

]
(2.14)

3Can be seen by rescaling the spatial momentum by a factor of 2, see e.g. Eq. (3.5).
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∑∫

S

1

(S2)a
(S · P )2 = · · · = P 2 1

d− 1

∑∫

S

S2 − S2
0

(S2)a
=

P 2

d− 1

[
Ib(a− 1, 0) − Ib(a, 2)

]
(2.15)

∑∫

S

SµSν

(S2)a
(S · P )2 = δµ0δν0

∑∫

S

S2
0

(S2)a
(S · P )2 + δµiδνj

∑∫

S

SiSj

(S2)a
(S · P )2

= δµ0δν0
P 2

d− 1

∑∫

S

S2 − S2
0

(S2)a
S2

0 + δµiδνjpkpl
∑∫

S

SiSjSkSl

(S2)a

= δµ0δν0
P 2

d− 1

∑∫

S

S2 − S2
0

(S2)a
S2

0 +
P 2δij + 2pipj

d2 − 1

∑∫

S

S4 − 2S2
0S

2 + S4
0

(S2)a

= δµ0δν0
P 2

d− 1

[
Ib(a− 1, 2) − Ib(a, 4)

]
+

+
P 2δij + 2pipj

d2 − 1

[
Ib(a− 2, 0) − 2Ib(a− 1, 2) + Ib(a, 4)

]
.

(2.16)

Inserting Eq. (2.13) for a = 2 in Eq. (2.11) yields

Πµν,1 = δµ0δν0(d− 2)
[
Nc(2 − d)Ib(1, 0) + 2Nf If (1, 0)

]
, (2.17)

and using Eqs. (2.12 - 2.16) and Eq. (2.8) gives

Π′
µν,1 = δµ0δν0 P

2

[
Nf

3
(2 − d)If (2) +

Nc

6
(34 − 7d+ d2)Ib(2)

]
+

+ δµiδνj

(
pµpν − δµνP

2
) [2Nf

3
If (2) +

Nc

6
(d− 26)Ib(2)

]
.

(2.18)

Now we can easily read off the functions ΠE and ΠT according to Eq. (1.100b)

ΠE1(0) = (d− 2)
[
Nc(2 − d)Ib(1) + 2Nf If (1)

]
, (2.19a)

ΠT1(0) = 0 , (2.19b)

Π′
E1(0) =

Nc

6
(34 − 7d+ d2)Ib(2) +

Nf

3
(2 − d)If (2) , (2.19c)

Π′
T1(0) =

Nc

6
(26 − d)Ib(2) −

2Nf

3
If (2) , (2.19d)

where Ib,f (i) ≡ Ib,f (i, 0). For d → d + 1 and multiplied by an overall minus sign this
result agrees completely with the corresponding expressions for ξ0, given in [31]. Let us
have a closer look on (2.19a). In d = 4−2ǫ the expansion for Ib(1) and If (1) up to O(1)
reads

Ib(1) =
T 2

12
+ O(ǫ) , If (1) = −T

2

24
+ O(ǫ) , (2.20)

and with Eq. (1.92) we find the well known Debye screening mass

m2
E = g2T 2

(
Nf

6
+
Nc

3

)
+ O(g4) . (2.21)
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In Eqs. (2.13 - 2.16) we used several times a tensor decomposition which can be written
in the most general case as

Ii1 ... iα ≡∑
∫

S

Si1 ... iα

(S2)a
=
ddi1i2 ... iα−1iα

ddi1i1 ... iαiα

∑∫

S

(S2 − S2
0)α/2

(S2)a
, (2.22)

where ddi1 ... iα stands for the total symmetric tensor build of metric tensors:

ddij = gij , ddijkl = gijgkl + gikgjl + gilgjk , . . . . (2.23)

2.2 Two-loop

To get a general idea of the complexity of the two-loop computation we show the corre-
sponding diagrams in Fig. 2.1.

2 ≡ 1
2 −1 −1 −1 −1 −1 −1

+1
2 +1

2 −1 −1 −2 −2

+1
4 +1

6 −1

+1
2 −1 −2 −1 −2 +1

2

+1
4 −1

2 −1 −1
2 +1

4 .

Figure 2.1: The two-loop self-energy diagrams in the background field gauge taken from
[31]. Wavy (curly) lines represent gauge fields, dotted lines ghosts, and solid
lines fermions.

It is not economical to evaluate every single diagram by hand like in the one-loop case
shown in the previous section for two reasons. First, the evaluation of every single di-
agram shown in Fig. 2.1 is much more ‘expensive’ in terms of performing the tedious
Lorentz- and colour contractions. Second, after the Taylor expansion, we are still faced
with two-loop vacuum sum-integrals and unfortunately, neither a recursion relation as
that in Eq. (2.8) nor an exact solution like in Eq. (2.9) is presently known.

In fact, we will use the one- and two-loop results given in [31] as a first serious cross-
check of the methods introduced in the next sections. In addition, the one- and two-loop
Taylor coefficients are required in order to check general gauge invariance for the three-
loop corrections to m2

E and g2
E via Eq. (1.92) and (1.101) in which we are ultimately

interested in.
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2.3 Some preparations

Any perturbative expansion starts with generating the graphs. At 1-loop there are just
5 one-particle irreducible self-energy diagrams and it is easy to construct those directly
from the Langrangian in Eq. (1.75) with the corresponding combinatoric factors. But
the number of diagrams increases rapidly at higher order and to avoid mistakes during
Wick contractions we use a computer program called QGRAF4 which generates all dia-
grams for a given interaction and order. QGRAF requires three input files; the model

1 % QCD in background f i e l d gauge 20 [ ge , qu , uq ]
2 % p a r t i c l e content 21 [ gl , gl , g l ]
3 % qu quark 22 [ ge , gl , g l ]
4 % uq antiquark 23 [ gl , gh , hg ]
5 % g l gluon 24 [ ge , gh , hg ]
6 % gh ghost 25
7 % hg ant i ghos t 26 [ ge , ge , ge ]
8 % ge background gauge f i e l d 27 [ ge , ge , g l ]
9 28

10 % propagators 29 % 4 v e r t i c e s
11 30
12 [ qu , uq , −] 31 [ gl , gl , gl , g l ]
13 [ gl , gl , +] 32 [ ge , gl , gl , g l ]
14 [ ge , ge , +, ex t e r na l ] 33 [ ge , ge , gl , g l ]
15 [ gh , hg , −] 34 [ ge , gl , gh , hg ]
16 35 [ ge , ge , gh , hg ]
17 % 3 v e r t i c e s 36
18 37 [ ge , ge , ge , g l ]
19 [ gl , qu , uq ] 38 [ ge , ge , ge , ge ]

Listing 2.1: bg QCD model file for QGRAF: (% are comment-lines)

file where the interactions and propagators are specified; a style file which controls the
form of the output; and a file which contains parameters like the desired order and type
of diagram (number of external legs, 1PI, . . . ).

Loop order # of diagrams

1 5
2 31
3 447
4 8999
5 222864
... · · ·

Table 2.1: Total number of 2-point 1PI diagrams at a given loop order

In this framework it turns out that not the number of graphs is the limiting factor (as
it would be for a evaluation by hand) rather than the complexity of a few graphs ap-
pearing in this computation. In order to later manipulate the QGRAF output we use

4See [34] and [35] for the implemented algorithm.

30



1 +tag (1)∗(+1/12)∗
2 ext ( ge (−1, kq ) , ge (−2,−kq1 ))∗
3 prop ( g l (1,− k1 ) , g l ( 2 , k1 ))∗
4 prop ( g l ( 3 , k1 ) , g l (4,− k1 ))∗
5 prop ( g l ( 5 , k2+k3−k1 ) , g l ( 6 , k1−k2−k3 ))∗
6 prop ( g l (7,− k2 ) , g l ( 8 , k2 ))∗
7 prop ( g l (9,− k3 ) , g l ( 10 , k3 ))∗
8 vrtx ( ge (−1, kq ) , ge(−2,−kq1 ) , g l (1,− k1 ) , g l ( 3 , k1 ))∗
9 vrtx ( g l ( 2 , k1 ) , g l ( 5 , k2+k3−k1 ) , g l (7,− k2 ) , g l (9,− k3 ))∗

10 vrtx ( g l (4,− k1 ) , g l ( 6 , k1−k2−k3 ) , g l ( 8 , k2 ) , g l ( 10 , k3 ) )

Listing 2.2: QGRAF output at 3-loop for diagram 1/447

an output style which can be directly interpreted by FORM [36]. Let us have a closer
look at Listing 2.2. The first line specifies the diagram and contains the combinatoric
factor. Then ext(...) holds the information about the external particles including its
momentum. Futhermore, lines 3 - 7 specify propagators prop(...) and the last three
lines determine the vertices via vrtx(...). Considering this we can easily draw the cor-
responding diagram:

A brief overview of the most important steps in the automation process is as follows:

1. Generating graphs: self.A.frm [37]

2. Mapping QGRAF’s momenta to our convention: self.B.frm [37]

3. self.C.frm [37]:

a) Feynman rules, color sums, Lorentz contractions and gamma traces

b) Taylor expansion in external momentum

c) Decoupling of external momentum

4. Reducing integrals to some master integrals by using Laporta algorithm

5. Solving the remaining master integrals by hand

In order to express the appearing integrals in a unique representation we have to map
QGRAF’s momenta5 to ours shown in Fig. 2.2. For example we consider Listing 2.2.
The momenta emphasised are not part of our convention. Performing the momentum
shift k2 → k2 − k3 on Listing 2.2 gives the desired momenta. However, in general there
is external momentum flowing within the loops and therefore we are not able to express
the integrals in our convention from the very beginning. This means, at that point, we

5Which are in fact not unique.
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Q-R
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P-Q

QP
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P

Figure 2.2: Vacuum diagram momenta convention up to 3-loop level

just ‘prepare’ the occuring propagators for a unique representation. In the end (3.b)
we Taylor expand the propagators and can identify the momentum flow with specific
list entries according to our vacuum convention in Fig. 2.2. The momenta mapping is
implemented in self.B.frm and the most important statement is shown below and reads
in our example

1 id f s h i f t ( k2,−k3+k2 ) = r ep l a c e ( k2,−k3+k2 ) ;

which replaces all occurrences of k2 by k2 − k3. In contrast to the 1-loop evaluation of
Section 2.1 we start with projecting out the relevant quantities of Πµν to avoid tensor-like
integrals such in (2.12) by

ΠG ≡ δµνΠµν ,

ΠE = δµ0δν0Πµν ,

ΠL =
pµpν

P 2
Πµν .

(2.24)

Then with Eq. (1.100b) it follows
(
δµν − pµpν

P 2
− δµ0δν0

)
Πµν = Π00 + Πii −

pipj

P 2
Πij − Π00 = (d− 2)ΠT , (2.25)

and finally with (2.24) we obtain

ΠT =
1

d− 2

(
δµν − pµpν

P 2
− δµ0δν0

)
Πµν

=
1

d− 2

(
ΠG − ΠL − ΠE

)
.

(2.26)

In FORM this is done by the following statements

1 id once ext ( ge ?(m1? , kq ) , ge ?(m2?,−kq))=
2 ( sProjg ∗d (m1,m2)
3 +sProjL ∗kq (m1)∗ kq (m2)∗G( kq,0 )
4 +sProjE∗ku(m1)∗ku(m2))∗G( kq,0 ) ;

where G(P, 0) = 1/P 2 and mi are Lorentz indices with dimension d. In addition, we
also perform color projections for the external background field:

Aab
µν = δab 1

dA
Acc

µν , (2.27)
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where Aab
µν denotes a 2-point function, for example Πab

µν and dA ≡ δaa = N2
c − 1. From

here on we follow the standard procedure outlined in Section 2.1, i.e. inserting vertex
and propagator structures, performing color sums and gamma traces. Finally we Taylor
expand propagators with external momentum P up to a given order using the recursion

1

(P − S)2
=

1

S2
+

2S · P − P 2

S2

1

(P − S)2
, (2.28)

and decouple all scalar products with external momentum and loop momenta according
to Eq. (2.22). After these manipulations all appearing integrals up to 3-loop can be
written in the following notation:

Ia;c1;α ≡∑
∫

Pc1

Pα
0

(P 2)a
, (2.29a)

Ia,b,c;c1,c2;α,β ≡ ∑∫

Pc1,Qc2

Pα
0 Q

β
0

(P 2)a(Q2)b((P −Q)2)c
, (2.29b)

Ia,b,c,d,e,f ;c1,c2,c3;α,β,γ ≡ ∑∫

Pc1,Qc2,Rc3

Pα
0 Q

β
0R

γ
0

(P 2)a(Q2)b(R2)c((P −Q)2)d((P −R)2)e((Q−R)2)f
,

(2.29c)

where Pc1=0 refers to bosonic Matsubara frequencies and Pc1=1 to the fermionic ones.
The 1-loop tadpole in Eq. (2.29a) for c1 = 0, 1 is equivalent to Eq. (2.7a) and (2.7b),
respectively. Naively, we would expect two indicies for every propagator, the correspond-
ing power and fermion information. However, the latter property for the remaining three
lines in Eq. (2.29c) is given by

c4 = (c1 + c2) (mod 2) ,

c5 = (c1 + c3) (mod 2) ,

c6 = (c2 + c3) (mod 2) .

(2.30)

In Fig. 2.3 all non-trivial topologies are displayed. For their representations see Tables

Figure 2.3: Non-trivial topologies at one, two and three-loop order

2.2 and 2.3. Since some topologies can be represented by more than one choice of
momenta, we have emphasised (in red) our choice of a unique representative.
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a b c d e f Typ

1 1 1 1 1 1 Mercedes

1 1 1 1 1 0 Spectacles
1 1 1 1 0 1 Spectacles
1 1 1 0 1 1 Spectacles
1 1 0 1 1 1 Spectacles
1 0 1 1 1 1 Spectacles
0 1 1 1 1 1 Spectacles

1 1 0 0 1 1 Basketball
1 0 1 1 0 1 Basketball
0 1 1 1 1 0 Basketball

Table 2.2: 3-loop topologies and representations in list notation cf. Eq. (2.29c): 1 stands
for positive integers and 0 for negative/zero integers.

a b c d e f Typ a b c d e f Typ

0 0 1 1 1 1 2loop×1loop 0 1 0 1 0 1 (1loop)3

0 1 0 1 1 1 2loop×1loop 0 1 0 1 1 0 (1loop)3

0 1 1 0 1 1 2loop×1loop 0 1 1 0 1 0 (1loop)3

0 1 1 1 0 1 2loop×1loop 0 1 1 1 0 0 (1loop)3

1 0 0 1 1 1 2loop×1loop 1 0 0 0 1 1 (1loop)3

1 0 1 0 1 1 2loop×1loop 1 0 0 1 0 1 (1loop)3

1 0 1 1 1 0 2loop×1loop 1 0 0 1 1 0 (1loop)3

1 1 0 1 0 1 2loop×1loop 1 0 1 0 0 1 (1loop)3

1 1 0 1 1 0 2loop×1loop 1 0 1 1 0 0 (1loop)3

1 1 1 0 0 1 2loop×1loop 1 1 0 0 1 0 (1loop)3

1 1 1 0 1 0 2loop×1loop 1 1 0 0 0 1 (1loop)3

1 1 1 1 0 0 2loop×1loop 1 1 1 0 0 0 (1loop)3

0 0 1 0 1 1 (1loop)3 1 1 0 1 0 0 2l×SumI.=0

0 0 1 1 0 1 (1loop)3 1 0 1 0 1 0 2l×SumI.=0

0 0 1 1 1 0 (1loop)3 0 1 1 0 0 1 2l×SumI.=0

0 1 0 0 1 1 (1loop)3 0 0 0 1 1 1 2l×SumI.=0

Table 2.3: Factorized topologies appearing in the 3-loop computation with 3 or 4 positive
lines cf. Eq. (2.29c). Everything else i.e. with more than 3 negative lines
vanishes in dimensional regularisation.
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2.4 Integration by parts relations and shifts

As mentioned above, in order to reduce the large amount of integrals to a small set of so
called master integrals6, we need relations among them. There are two different kinds
of relations we use in the following: first the integration by parts (IBP) relations and
second relations obtained by using momentum shifts. A generic Feynman integral in d
dimensions reads

F (p1, . . . , pn) ≡
∫

k1,...,kn

ddk1 . . . d
dkn

∏

i

(p · k)bi
i

(q2i +m2
i )

ai
, (2.31)

where (p ·k)bi
i are irreducible scalar products of loop momenta kj and external momenta

pk to the power bi. The integration by parts relations [5] are generated by the fact that

∫

k1,...,kn

ddk1 . . . d
dkn

∂

∂kµ
j

(
kµ

l

∏

i

(p · k)bi
i

(q2i +m2
i )

ai

)
= 0 , (2.32)

for j, l = 1, . . . , n. Applying this to the 1-loop case in Eq. (2.29a), we obtain

0 =
∑∫

Pc1

∂

∂pi

(
pi Pn

0

(P 2)m

)

=
∑∫

Pc1

{
(d− 1)

Pn
0

(P 2)m
− 2mp2 Pn

0

(P 2)m+1

}

=
∑∫

Pc1

{
(d− 1 − 2m)

Pn
0

(P 2)m
+ 2m

Pn+2
0

(P 2)m+1

}

= (d− 1 − 2m) Ic1(m,n) + 2mIc1(m+ 1, n + 2) ,

(2.33)

which is precisely the recursion relation Eq. (2.8) used in the previous section.

Already at 2-loop we are faced with the problem of how to apply the IBP relations
in a systematic way because there is no obvious recursion relation as in the case of
Eq. (2.33):

0 = (−1 + d− c− 2a) Ia,b,c;c1,c2;α,β

−2c Ia,b,c+1;c1,c2;α+1,β+1

+2c Ia,b,c+1;c1,c2;α+2,β

+c Ia,b−1,c+1;c1,c2;α,β

+2a Ia+1,b,c;c1,c2;α+2,β

−c Ia−1,b,c+1;c1,c2;α,β

(2.34)

6IBP relations produce an under-determinded system of linear equations with unknowns called master
integrals.
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In Eq. (2.34) we emphasised a possible way to use this relation to reduce the power of
the first propagator for a ≥ 1 (by bringing the second-last term to the left hand side
(lhs)). But in the end we just ‘replaced’ a given 2-loop integral by many other 2-loop
integrals in addition to some (1loop)2 integrals, cf. the last line of Eq. (2.34). The same
holds for the other IBP relations and simple linear combinations thereof. A solution to
the problem is given by the Laporta algorithm introduced in Section 2.5.

Further relations can be obtained by shifting integration variables. As an example we
consider the 3-loop case

Ia,b,c,d,e,f ;c1,c2,c3;α,β,γ =
∑∫

Pc1,Qc2,Rc3

Pα
0 Q

β
0R

γ
0

(P 2)a(Q2)b(R2)c((P −Q)2)d((P −R)2)e((Q−R)2)f

Q→ P −Q : =
∑∫

Pc1,Qc2,Rc3

Pα
0 (P0 −Q0)

βRγ
0

(P 2)a((P −Q)2)b(R2)c(Q2)d((P −R)2)e((P −Q−R)2)f

R→ P −R : =
∑∫

Pc1,Qc2,Rc3

Pα
0 (P0 −Q0)

β(P0 −R0)
γ

(P 2)a((P −Q)2)b((P −R)2)c(Q2)d(R2)e((R−Q)2)f

=

β∑

n=0

γ∑

m=0

(
β

n

)(
γ

m

)
(−1)β−n(−1)γ−m ×

×
∑∫

Pc1,Qc4,Rc5

Pα+n+m
0 Qβ−n

0 Rγ−m
0

(P 2)a(Q2)d(R2)e((P −Q)2)b((P −R)2)c((Q−R)2)f

=

β∑

n=0

γ∑

m=0

(
β

n

)(
γ

m

)
(−1)β−n(−1)γ−mIa,d,e,b,c,f ;c1,c4,c5;α+n+m,β−n,γ−m ,

(2.35)

where c4 and c5 are determind by Eq. (2.30). Symmetries implied by momentum shifts
are equivalent to interchanging lines within the corresponding diagrams.

Q-R

QP

R

P-R

P-Q

P

Q

P-Q

Q-R

R

P-R

Figure 2.4: Symmetry of the Mercedes diagram implied by the momentum shifts used in
Eq. (2.35), cf. Lst. A.1.

In the following we solely focus on the 3-loop case because all methods required for the
one- and two loop computation are contained7 in the complete 3-loop computation. As

7More precisely: in the 2loop×1loop sector.
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a next step we have to consider the different fermion signatures appearing. As it turns
out, only a few signatures are needed in the following because the others can be shifted
to the former ones.

0,1,00,0,11,0,0

1,1,1

Figure 2.5: Fermion shifts for the Mercedes topology; dotted lines stands for fermions,
cf. Lst. A.2.

Our fermion signature convention for non-trivial topologies is shown in Table 2.4. In

Topo+FermSig. #SYM #IBP

I1,1,1,1,1,1;0,0,0;... 23 9
I1,1,1,1,1,1;0,0,1;... 5 9
I1,1,1,1,1,1;0,1,1;... 7 9

I1,1,1,1,1,0;0,0,0;... 7 9
I1,1,1,1,1,0;0,0,1;... 3 9
I1,1,1,1,1,0;0,1,1,... 7 9
I1,1,1,1,1,0;1,0,0;... 1 9

I1,1,0,0,1,1;0,0,0;... 23 9
I1,1,0,0,1,1;0,0,1;... 3 9
I1,1,0,0,1,1;1,1,0;... 23 9

Table 2.4: Total number of symmetries and IBP relations for non-trivial topologies and
our convention for the fermion signature.

order to avoid mistakes during the implementation of IBP relations, symmetries, shifts
and fermion shifts we have automated the process of generating these relations com-
pletely.

It is important to understand the difference between shifts, fermion shifts, symmetries
and IBP relations. All of them, except for the IBP relations, are generated by the
same momentum shifts like in Eq. (2.35). Shifts respect the topology but not necessar-
ily the fermion signature in contrary to symmetries, whereas fermion shifts respect the
particular representative (cf. Table 2.4) in addition to the fermion signature.
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2.5 Reduction: Laporta algorithm and decompositions

We already encountered the problem of how to apply the IBP relations and symmetries in
a systematic way. For this purpose we implement an algorithm based on Laporta’s ideas
outlined in [8]. The basic concept is shown in Fig. 2.6. There are two new ‘components’

Initialisation:

→ 0 = (
∑

m Imam)
k+1

Substitute relation 1,...,k in rel. k + 1:

i = i + 1
i = 1

j = j + 1

yes

integral I ′m′ ∈ {I | I ∈ I ′m ∀m} accord.

Im′ = −∑m 6=m′ I ′mcm , cm = bm

b
m

′

existing relations 1,...,k and set
Substitute relation k + 1 in already

k = k + 1

to a given order and compute new rel.

Apply (IBP+SYM)i to suggestion j:

Decide what is the most complicated

END

yes

if rhs 6= 0
no

no

yes

no

→ 0 = (
∑

m I ′mbm)
k+1 if i < imax

jmax=#Suggestions
i=j=1,k=0,imax=#IBP/S

if j = jmax

Figure 2.6: Schematic Laporta algorithm

which are indispensable for the Laporta algorithm: A unique directive in order to decide
what is the most complicated integral out of a set of integrals; and a list of so-called
‘suggestions’ which specifies, roughly speaking, the search area8. For our purposes, a

8At 3-loop we have 6 propagators + 3 irr. scalar products → discrete 9-dimensional search space.
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convenient choice9 for choosing the most complicated integral looks as follows (f1 =
a, . . . , f6 = f , q1 = α, . . . , q3 = γ):

1. Count positive lines:
∑

i θ(fi) and choose the highest, if equal go to 2,

2. Compute abs. sum of powers of props.:
∑

i |fi| ,choose highest, if equal go to 3,

3. Count zero lines:
∑

i δ(fi) , choose lowest, if equal go to 4,

4. Comp. sum of pow. of irr. scalar products:
∑

i qi ,choose highest, if equal go to 5,

5. Choose integral with highest power on propagator 6,5,4,3,2,1, if equal go to 6,

6. Pick integral with highest power of irreducible scalar product 3,2,1,

where fi, qi refers to the power of propagators and irreducible scalar products, respec-
tively. The above rules can be divided into two categories: Rules 1 to 4 classify the
integral according to its complexity and rules 5 and 6 guarantee uniqueness.

We then move to consider the question how to generate ‘suggestions’. For this task
it is necessary to find out what are the most difficult integrals needed for the computa-
tion. We find the following integrals for Π3 and Π′

3 (in which we are ultimately interested
in) as the most difficult ones (according to above ordering):

I3,3,0,−5,2,2;0,0,0;0,0,0

I3,3,−1,−2,1,1;0,0,1;0,0,0
(2.36)

I4,4,0,−6,2,2;0,0,0;0,0,0

I4,4,−1,−3,1,1;0,0,1;0,0,0 .
(2.37)

The observation is, for both Taylor coefficients, that the bosonic integrals are more
difficult than the fermionic ones. This is simply due to the difference between boson and
fermion propagators Eqs. (1.78a), (1.78c) respectively. In Feynman gauge we would get
the same depth10. Back to the initial problem, Eqs. (2.36) and (2.37) tell us how deep
the reduction needs to run. It gives us an upper bound for suggestions and hence for
the total number of suggestions.
In addition to the number of suggestions also the order in which they are processed is
important. We follow Laporta’s initial proposal and order the suggestions inverse to the
above order for extraction. This means that the simplest integrals (according to above
ordering) are processed first and integrals like in Eq. (2.36) or (2.37) last.

I2,1,0,0,1,1;0,0,0;0,0,0

I1,2,0,0,1,1;0,0,0;0,0,0

I1,1,0,0,2,1;0,0,0;0,0,0

I1,1,0,0,1,2;0,0,0;0,0,0

...

(2.38)

9In the literature also called ‘lexicographic’ order.
10The depth measures the deviation from base-integrals: I2,1,0,0,1,1;... for Π3 and I3,1,0,0,1,1;... for Π′

3.
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Furthermore, we truncate the maximum number of suggestions by discarding integrals
with more than

∑
i qi = 6 which leaves us with a few ten thousand11 suggestions per

topology and fermion signature (cf. Table 2.4). In Fig. 2.7 we outlined the reduction

3

Masters

Laporta 40

Decomposition

Laporta 50

Physics

or (1l)3 Laporta
Laporta 2l×1l

Laporta 6

Figure 2.7: 3-loop reduction via Laporta algorithm and decompositions

process and two important things should be noted. Firstly we parallelise the reduction
in such a way that each topology and fermion signature runs independently, indicated by
Laporta 6, 40, 50, 2l×1l and (1l)3. This is done by restricting the lhs’s in Fig. 2.6 (during
extraction) to their particular topology. Secondly, the above-mentioned decomposition
is just a consequence of Eq. (2.22)

I1,1,1,0,0,0;c1,c2,c3;... →
∑∫

Pc1,Qc2,Rc3

P ···
0 Q

···
0 R

···
0 (P · Q)a (P · R)b (Q · R)c

(P 2)···(Q2)···(R2)···
(2.39)

=
∑∫

Pc1,Qc2

P ···
0 Q

···
0 (P · Q)a

(P 2)···(Q2)···
∑∫

Rc3

R···
0 (P ·R)b (Q ·R)c

(R2)···

→ ∑∫

Pc1,Qc2

P ···
0 Q

···
0 (P · Q)a

(P 2)···(Q2)···
(P · Q)a′

+
(
P2
)b′ (

Q2
)c′

dd i1,i1,...,i(b+c)/2,i(b+c)/2

∑∫

Rc3

R···
0

(
R2
) b

2
(
R2
) c

2

(R2)···

→





∑∫

Pc1,Qc2

P ···
0 Q

···
0

(
P2 Q2

) a+a′

2

(P 2)···(Q2)···
+
∑∫

Pc1,Qc2

P ···
0 Q

···
0

(
P2
)a

2
+b′ (

Q2
) a

2
+c′

(P 2)···(Q2)···





×

11 Instead of a few hundred thousand suggestions which is far beyond what our implementation can
handle in a realistic period (∼ 1-2 months runtime).
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×
[
dd i1,i1,...,i(b+c)/2,i(b+c)/2

· dd j1,j1,...,j(a+a′)
a/2

/2,j(a+a′)
a/2

/2

]−1∑∫

Rc3

R···
0

(
R2
) b+c

2

(R2)···
,

where we have omitted prefactors and irrelevant integrals indicated by arrows. The
last expression in Eq. (2.39) equals a sum of products of three 1-loop tadpoles times
a rational function in d. It is also possible to derive an analogue decomposition for
the 2loop×1loop sector but without any practical advantage over the Laporta approach
because we are still faced with 2-loop diagrams.

3

2l LaportaDecompsition

Figure 2.8: 2loop×1loop decomposition with 2-loop Laporta

I1,1,1,1,0,0;c1,c2,c3;... →
∑∫

Pc1,Qc2,Rc3

P ···
0 Q

···
0 R

···
0 (P ·R)b (Q ·R)c

(P 2)···(Q2)···(R2)···((P −Q)2)···
(2.40)

=
∑∫

Pc1,Qc2

P ···
0 Q

···
0

(P 2)···(Q2)···((P −Q)2)···
∑∫

Rc3

R···
0 (P ·R)b (Q ·R)c

(R2)···

→
∑∫

Pc1,Qc2

P ···
0 Q

···
0

(P 2)···(Q2)···((P −Q)2)···
(P · Q)a

′

+
(
P2
)b′ (

Q2
)c′

dd i1,i1,...,i(b+c)/2,i(b+c)/2

∑∫

Rc3

R···
0

(
R2
) b+c

2

(R2)···

→





∑∫

Pc1,Qc2

P ···
0 Q

···
0 (P ·Q)a

′

(P 2)···(Q2)···((P −Q)2)···
+
∑∫

Pc1,Qc2

P ···
0 Q

···
0

(
P2
) a

2
+b′ (

Q2
)c′

(P 2)···(Q2)···





×

×
[
dd i1,i1,...,i(b+c)/2,i(b+c)/2

]−1∑∫

Rc3

R···
0

(
R2
) b+c

2

(R2)···
.

The first integral in Eq. (2.40) corresponds (after re-expressing the scalar product in
terms of inverse propagators) to some generic 2-loop integrals in addition to (1-loop)3

integrals. As an example, we consider the bosonic Mercedes diagram. A complete
reduction according to Fig. 2.7 looks as follows

I1,1,1,1,1,1;0,0,0;2,0,0 =
208 − 87d+ 9d2

−600 + 390d − 84d2 + 6d3
I3,1,0,0,1,1;0,0,0;2,0,0

+
8

60 − 27d+ 3d2
I2,1,0,0,1,1;0,0,0;0,0,0 ,

(2.41)

and the ǫ expansion for both masters can be found in Chapter 3. We end up this section
with a flow chart which shows all manipulations needed in order to reduce the self.C
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output (cf. Sec. 2.3) to master integrals. In Fig. 2.9, we show schematically how the
different reduction steps discussed above work together in order to substantially reduce
the number of integals to be computed for Π3.

Result

self.C output

Shift 50,40 topologies to their represt.:
50: I1,1,1,0,1,1;... → I1,1,1,1,1,0;...

40: I0,1,1,1,1,0;... → I1,1,0,0,1,1;...

50: all signatures → 001, 011, 100
40: all signatures → 001, 110

2l×1l: I1,0,1,0,1,1;... → I1,1,1,1,0,0;...

2l×1l: decomposition

one-time

6: all signatures → 001, 011
Fermion shifts for 6,50 and 40 topology:

(1l)3: I0,1,0,1,0,1;... → I1,1,1,0,0,0;...

(1l)3: decomposition

Eliminate trivial integral e.g.:
I1,1,0,0,0,0;... and permutations

Shift (1l)3 topology to its representation:

Shift 2l×1l topology to its representation:

Use relations obtained by Lap. algorithm
for topologies shown in Table 2.4 + 2loop

# Integrals

∼ 250000

∼ 25000

?

R
ed

u
ce

d
b
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a
fa

ct
o
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o
f
1
0

b
y

a
fa

ct
o
r

o
f
5
0
0
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Figure 2.9: Overview of 3-loop reduction from self.C output to masters: The iteration
is needed in cases like I1,1,1,1,1,0;0,1,0;... → I1,1,1,1,1,0;0,0,1;... + I0,1,1,1,1,0;0,0,1;... +
· · · → I1,1,0,0,1,1;1,0,0;... + · · · → I1,1,0,0,1,1;0,0,1;... + . . .
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2.6 Implementation of the Laporta algorithm

In this section we describe the concrete implementation of Laporta’s method outlined in
Section 2.5. In principle, the implementation of Fig. 2.6 looks rather simple. However,
there are still problems we should pay attention to. In particular, during the extraction

Dimension Depth

Shifts & Symmetries
Generate Generate
suggestions

Topology +
Fermion Sig.

Generate
IBP relations

Loop

procedures(topo,fer).h

translation

FERMAT

Syntax

GCD’s with

#system(...)

Perl script

Resubstitution

#toexternal IPC::Open2(...)

FORM FERMAT

Laporta main block

cf. Fig. 2.11

Figure 2.10: Laporta implementation in FORM with external program FERMAT.

and generation of new relations we are faced with the problem how to compute the
coefficients

cm =
bm
bm′

∀m, (2.42)

where bm stands for polynomials in one or more variables. In other words, the computa-
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Initialisation:
i=j=1,k=0,imax=#IBP/S

Apply (IBP+SYM)i to suggestion j:

→ 0 = (
∑

m I ′mbm)
k+1

if rhs 6= 0
no

Decide what is the most complicated
integral I ′m′ ∈ {I | I ∈ I ′m ∀m} accord.
to a given order and compute new rel.

yes

yes

yes

Im′ = −∑m 6=m′ I ′mcm , cm = bm

b
m

′

no

no

yes

no
→ 0 = (

∑
m Imam)

k+1

50: subst. 40 topo. & 2l×1l topo.

END

yes

no
if j = jmax

6: subst. 50 topo.

40: subst. (1l)3 topo. via decomp.

if rhs

k = k + 1
p = p + 1

p=0,jmax=#Suggestions

in rels. k - p,...,k

Resubstitute p new
relationsif i < imax

I

#system(...)

#toexternal(...)

: external communication

all rels.

pieceswise
Substitute relation 1,...,k in rel. k + 1:

i = i + 1

j = j + 1
i = 1, p=0

=cur topo

resub?

Substitute lower topo.’s in rel. k + 1:

Figure 2.11: Laporta main block
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tion of coefficients cm corresponds to determining the greatest common divisor (GCD) of
two polynomials in one or more variables. Unfortunately, the current version of FORM
is not capable to compute polynomial GCD’s in a reliable way so that we revert to
external software. In the following we use the external program FERMAT [38] for all
polynomial algebra during the reduction process. In addition, as indicated in Fig. 2.10,
a script is needed for syntax translation [39] between FORM and FERMAT.

Let us have a closer look at Fig. 2.11: A comparison with Fig. 2.6 reveals slight dif-
ferences. In principle, a straightforward implementation of Fig. 2.6 works quite well, at
least for the two-loop computation. However, if we try to apply the ‘naive’ approach at
three-loop we run into a dead end for two reasons. The first problem occurs simply due
to the required ‘depth’ (cf. sec. 2.5) which results in systems with ∼ 103−105 relations12

and eventually the question of how to handle such a huge amount of relations in an
efficient way. The second problem is, as always, to optimise the implementation as far
as possible to reach an acceptable run-time behaviour. To this end, we

1. restrict lhs’s to current topology → reduces number of irrelevant relations,

2. use relations obtained from other topologies → minimises size of rhs’s,

3. suppress simplification of ‘simple’ coefficients → reduces external communication.

Without going into great detail, everything together results in a speed-up factor of ∼ 25
depending on topology and fermion signature. In Fig. 2.11 we also indicated the way
how to perform the re-substitution safely13. In addition, this approach allows to paral-
lelise the time-consuming re-substitutions (cf. sec. A.4) on multi-core systems and we
observe a good scaling behaviour on two- and four-core machines.

In order to estimate the complexity, we make the following assumptions: average num-
ber of new relations per suggestion ≡ Nr, number of relations after j processed sugges-
tions ≡ Nj ≈ Nr · j, then the average time for suggestion j + 1 becomes

tj ≈ Nr

Nj∑

i=1

Ti ≈ Nr T

Nj∑

i=1

≈ N2
r T j (2.43)

where we made the naive assumption Ti ≈ T . The behaviour in Eq. (2.43) agrees roughly
with Figs. A.3 and A.4 (green curve) in Appendix A.4. In general, it is rather difficult to
predict the concrete run-time behaviour for a given topology and fermion signature. But
it turns out, at least for our implementation, that large rhs’s are the biggest problem
and affect the run-time behaviour significantly. This is the main reason for using lower
topologies during the reduction. Moreover, the symmetries introduced in Sec. 2.4 play
also an essential role in minimising the rhs’s. For instance, the purely bosonic spectacles
topology runs about three times faster than the mixed-spectacles one (fermion sig. 001).

12A factor of 10 to 1000 more compared to the two-loop computation.
13In terms of avoiding memory overflows.
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3 Evaluation of master integrals

As we have seen in Sec. 2.5 all non-trivial masters are basketball-type integrals. We
start with a brief review of already known basketball sum-integrals. For convenience we
define, in the notation of Eq. (2.29c),

Sbb
1 ≡ I1,1,0,0,1,1;0,0,0;0,0,0 ,

Sbf
1 ≡ I1,1,0,0,1,1;0,0,1;0,0,0 ,

Sff
1 ≡ I1,1,0,0,1,1;1,1,0;0,0,0 .

(3.1)

The simplest basketball sum-integral evaluated by Arnold and Zhai [40] in 3−2ǫ spatial
dimensions reads

Sbb
1 =

1

(4π)2

(
T 2

12

)2
[

6

ǫ
+ 36 ln

µ̄

4πT
− 12

ζ ′(−3)

ζ(−3)
+ 48

ζ ′(−1)

ζ(−1)
+

182

5

]
+ O(ǫ) , (3.2)

and the corresponding fermionic basketball diagram evaluates to [41]:

Sff
1 =

1

(4π)2

(
T 2

12

)2
[

3

2ǫ
+9 ln

µ̄

4πT
−3

ζ ′(−3)

ζ(−3)
+12

ζ ′(−1)

ζ(−1)
+

173

20
− 63

5
ln 2

]
+O(ǫ) . (3.3)

Fortunately, the mixed basketball Sbf
1 is just a linear combination of Eq. (3.2) and (3.3)

and is given by

Sbf
1 =

1

6

(
26ǫ−1 − 1

)
Sbb

1 − 1

6
Sff

1 , (3.4)

and can be seen by rescaling spatial momenta by a factor of 2:

Sbb
1 =

∑∫

P,Q,R

1

P 2Q2(P −R)2(Q−R)2
=

∑∫

P,Q,K,R

δ(P +Q+K +R)

P 2Q2K2R2

= µ−2ǫ 1

T

∑∫

P,Q,K,R

δp0+q0+k0+r0(2π)3−2ǫδ3−2ǫ(p + q + k + r)

P 2Q2K2R2

= µ−2ǫ 1

T
24−8ǫ ∑∫

P,Q,K,R

δp0+q0+k0+r0(2π)3−2ǫδ3−2ǫ(2p + 2q + 2k + 2 r)

[(πTn)2 + p2]Q2K2R2

= µ−2ǫ 1

T
21−6ǫ ∑

∫

P+{P}

. . .
∑∫

R+{R}

δp0+q0+k0+r0(2π)3−2ǫδ3−2ǫ(p + q + k + r)

P 2Q2K2R2
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= 21−6ǫ ∑
∫

P+{P}

. . .
∑∫

R+{R}

1

P 2Q2R2

[
1

(p0 + q0 + r0)
2

︸ ︷︷ ︸
even

+ (. . . )2
+

1

(p0 + q0 + r0)
2

︸ ︷︷ ︸
odd

+ (. . . )2

]

= 21−6ǫ
[
Sbb

1 + 6Sbf
1 + Sff

1

]
, (3.5)

where we have used fermion shifts and symmetries of Sbb
1 , Sbf

1 and Sff
1 . A similiar identity

can be obtained for

Sbb
2 ≡ I2,1,0,0,1,1;0,0,0;0,0,0 ,

Sbf
2 ≡ I2,1,0,0,1,1;0,0,1;0,0,0 ,

Sff
2 ≡ I2,1,0,0,1,1;1,1,0;0,0,0 ,

Sbf
2,1 ≡ I1,1,0,0,1,2;0,0,1;0,0,0 ,

(3.6)

and reads
Sbb

2 = 2−1−6ǫ
[
Sbb

2 + 3Sbf
2 + 3Sbf

2,1 + Sff
2

]
. (3.7)

The integrals shown in (3.6) are needed for the computation of Π3. S
bb
2 is already known

[42] and can be written as

Sbb
2 =

T 2

8(4π)2

{
1

ǫ2
+

1

ǫ

[
3 ln

µ2

4πT 2
+

17

6
+ γE + 2

ζ ′(−1)

ζ(−1)

]
+

9

2

(
ln

µ2

4πT 2

)2

+

+

(
17

2
+ 3γE + 6

ζ ′(−1)

ζ(−1)

)
ln

µ2

4πT 2
+

131

12
+

31π2

36
+ 8 ln 2π − 9

2
γE −

− 15

2
γ2
E + (5 + 2γE)

ζ ′(−1)

ζ(−1)
+ 2

ζ ′′(−1)

ζ(−1)
− 16γ1 + 0.388594531408(4)

}
+ O(ǫ) (3.8)

where γ1 refers to the first Stieltjes constant, defined through the series ζ(s) = 1/(s −
1) +

∑∞
n=0 γn(−1)n(s− 1)n/n!.

3.1 Bosonic basketball Sbb
3

As a first example we demonstrate the feasibility of adapting the techniques used for the
basketball diagrams Sbb

1 and Sbb
2 in order to determine the new master integral

Sbb
3 ≡ I3,1,0,0,1,1;0,0,0;0,0,0 , (3.9)

which appears as a master in the computation of Π′
3. Let us start with noting that, by

a momentum shift, the integral (3.9) can be written as

Sbb
3 =

∑∫

P

Π(P ) ¯̄Π(P ) , (3.10)
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with

Π(P ) ≡∑
∫

Q

1

Q2(Q− P )2
, (3.11)

¯̄Π(P ) ≡
∑∫

Q

1

Q6(Q− P )2
. (3.12)

First of all, we review some properties regarding the UV behaviour of (3.11). We split
(3.11) into its zero-temperature and finite-temperature part

Π(P ) = Π(0)(P ) + Π(T )(P ) , (3.13)

and note that the leading UV behaviour of (3.11) is given by its zero-temperature limit

Π(0)(P ) = µ2ǫ

∫
d3−2ǫQ

(2π)3−2ǫ

1

Q2(P −Q)2
≡ β

(P 2)ǫ
=

µ2ǫ

(4π)2−ǫ

Γ(ǫ)Γ2(1 − ǫ)

Γ(2 − 2ǫ)

1

(P 2)ǫ
, (3.14)

where the last equality sign can be seen through Feynman parametrisation. For the
finite-temperature part we first evaluate the sum via the usual contour integral trick

Π(T )(P ) = µ2ǫ

∫
d3−2ǫq

(2π)3−2ǫ

∫ +∞−i O+

−∞+iO+

dp

2π

[
f(p) + f(−p)

]
n(ip) , (3.15)

where n(ip) ≡ [exp (iβp) − 1]−1 refers to the bosonic distribution function and

f(p′) =
1

[p′2 + q2] [(p0 + p′)2 + (p + q)2]
. (3.16)

Computing the residues of (3.15) results in

Π(T )(P ) = −µ2ǫ

∫
d3−2ǫq

(2π)3−2ǫ

n(q)

q

[
1

(q − ip0)2 − |q + p|2 +
1

(q + ip0)2 − |q − p|2
]
,

(3.17)
and Taylor expanding the denominators for P ≫ T yields

Π(T )(P ) = −µ2ǫ

∫
d3−2ǫq

(2π)3−2ǫ

n(q)

q

[
2

P 2
+

8(ip0q + p · q)2

P 6

]
+ O(T 6/P 6) , (3.18)

which is justified by the fact that only q . T contribute. Then our final result becomes

Π(P ) = Π(0)(P ) +
2

P 2
Ib(1) + ∆Π(P ) , (3.19)

where ∆Π(P ) behaves in the UV as 1/P 4. In addition, let us for convenience, define a
third function

Π̃(P ) ≡∑
∫

Q

Π(0)(Q)

(Q− P )2
, (3.20)
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for which an analogous examination gives

Π̃(P ) = Π̃(0)(P ) + Π(0)(P )Ib(1) + ∆Π̃(P ) , (3.21)

with

Π̃(0)(P ) ≡ β̃
(
P 2
)1−2ǫ

=
µ2ǫ

(4π)2−ǫ

Γ(1 − ǫ)Γ(2 − 2ǫ)Γ(−1 + 2ǫ)

Γ(ǫ)Γ(3 − 3ǫ)
β
(
P 2
)1−2ǫ

. (3.22)

All following computations are performed in configuration space and therefore we need
Fourier-representations for propagators and for the functions introduced above. Defining
the inverse Fourier transformation

F(q0, r;α) ≡
∫

d3q

(2π)3
e−iq·r

(q2 + q20)
α

=
2−1/2−απ−3/2

Γ(α)

( |q0|
r

)3/2−α

K3/2−α(|q0|r) , (3.23)

and using Eqs. (3.19), (3.21) we obtain

1

(Q− P )2
=

∫
d3r ei(q−p)·rF(q0 − r0, r; 1)

=
1

4π

∫
d3r ei(q−p)·re−|q0−p0|r 1

r
, (3.24)

1

P 6
=

1

23 4π

∫
d3r eip·re−|p0|r

(
1 +

1

|p0|r

)
r

|p0|2
, (3.25)

1

P 8
=

1

24 4π

∫
d3r eip·re−|p0|r

(
1

3
+

1

|p0|r
+

1

(|p0|r)2
)

r2

|p0|3
, (3.26)

∆Π(P ) =
T

(4π)2

∫
d3r

1

r2
eip·re−|p0|r

(
coth r̄ − 1

r̄
− r̄

3

)
, (3.27)

∆Π̃(P ) =
T

(4π)4

∫
d3r

1

r4
eip·re−|p0|r

{
r̄csch2r̄ + (2 + |p̄0|r̄)(|p̄0| + coth r̄)−

− 1

r̄
(3 + 3|p̄0|r̄ + p̄2

0r̄
2) − r̄

3
(1 + |p̄0|r̄)

}
, (3.28)

where we have introduced the dimensionless variables

r̄ ≡ 2πTr, p̄0 ≡ p0/2πT , (3.29)

and noted that ∆Π(P ),∆Π̃(P ) behaves as 1/P 4 and 1/P 2 at large P , respectively.
Finally, we consider Eq. (3.12) and start with separating the Matsubara zero-mode

¯̄Π(P ) =
∑∫

Q

′

1

Q6(Q− P )2
+Tµ2ǫ

∫
d3−2ǫq

(2π)3−2ǫ

1

q6
[
(q − p)2 + p2

0

] ≡ ¯̄Πr(P )+ ¯̄Π0(P ), (3.30)

where the prime indicates the leaving out of the Matsubara zero-mode. ¯̄Πr(P ) is both UV
and IR convergent and hence we perform the momentum integration in three dimensions

¯̄Πr(P ) =
T

23(4π)2

∫
d3r eip·r

∑

q0 6=0

1

|q0|2
(

1 +
1

|q0|r

)
e−(|q0|+|q0−p0|)r , (3.31)
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in which we used Eq. (3.24) and (3.25). The zero-mode contribution ¯̄Π0(P ) is UV but
not IR convergent

¯̄Π0(P ) = Tµ2ǫ

∫
d3−2ǫq

(2π)3−2ǫ

{
1

q6
[
(q− p)2 + p2

0

] −
[

1

q6P 2
+

1

3

P 2 − 4 p2
0

q4(P 2)3

]}

where the last two terms vanish in dimensional regularisation but render the expression
IR convergent and allow for a momentum integration in three dimensions

= − T

(2π)2

∫ ∞

0
dq

1

q2

{
2

q2P 2
+

2

3

P 2 − 4 p2
0

(P 2)3
+

1

2 p q3
ln

[
(p− q)2 + p2

0

(p+ q)2 + p2
0

]}

= − T

4π

[
2|p0|3
(P 2)4

− |p0|
(P 2)3

]
, (3.32)

such that using the expressions in Eq. (3.25) and (3.26) finally yields

¯̄Π0(P ) = − T

24 (4π)2

∫
d3r r2eip·re−|p0|r . (3.33)

We now proceed in complete analogy with the appendix of [42] and begin the calculation
by dividing Eq. (3.10) into two categories of terms, contributions that are potentially

divergent Sbb,...,b
3 but simple enough to allow an analytic evaluation, and contributions

which are perhaps complicated but both UV and IR convergent Sbb,...,a
3 . First we write

Sbb
3 =

∑∫

P

∆Π(P ) ¯̄Πr(P ) +
∑∫

P

∆Π(P ) ¯̄Π0(P ) + 2 Ib(1)
∑∫

P

Π(P )

P 6
+
∑∫

P

Π̃(P )

P 6

≡ Sbb,I
3 + Sbb,II

3 + Sbb,III
3 + Sbb,IV

3 , (3.34)

where we have used Eq. (3.19) for the split-up procedure. We repeat the procedure in

Sbb,IV
3 by using Eq. (3.21) and take into account that integrals without scales1 vanish in

dimensional regularisation. Thereby

Sbb,I
3 =

∑∫

P

∆Π(P ) ¯̄Πr(P ) (3.35)

Sbb,II
3 =

∑∫

P

′

∆Π(P ) ¯̄Π0(P ) + Tµ2ǫ

∫
d3−2ǫp

(2π)3−2ǫ
Π(p0 = 0, p) ¯̄Π0(p0 = 0, p)

≡ Sbb,II,a
3 + Sbb,II,b

3 (3.36)

Sbb,III
3 = 2 Ib(1)




∑∫

P

′

Π(T )(P )

P 6
+ Tµ2ǫ

∫
d3−2ǫp

(2π)3−2ǫ

Π(p0 = 0, p)

p6
+
∑∫

P

Π(0)(P )

P 6





≡ Sbb,III,a
3 + Sbb,III,b

3 + Sbb,III,c
3 (3.37)

1∆Π → Π − Π(0)
− 2 Ib(1)/P

2 in Sbb,II,b
3 , Π(T )

→ Π − Π(0) in Sbb,III,b
3 and ∆eΠ →

eΠ −
eΠ(0)

− Ib(1)Π
(0)

in Sbb,IV,b
3
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Sbb,IV
3 =

∑∫

P

′

∆Π̃(P )

P 6
+ Tµ2ǫ

∫
d3−2ǫp

(2π)3−2ǫ

Π̃(p0 = 0, p)

p6
+ Ib(1)β

∑∫

P

1

(P 2)3+ǫ
+
∑∫

P

Π̃(0)(P )

P 6

≡ Sbb,IV,a
3 + Sbb,IV,b

3 + Sbb,IV,c
3 + Sbb,IV,d

3 (3.38)

Let us start evaluating the integrals which are both UV and IR convergent i.e. Sbb,...,a
3 :

Sbb,I
3 =

T 3

8 (4π)4

∫
d3r

1

r2

(
coth r̄ − 1

r̄
− r̄

3

)∑

p0

∑

q0 6=0

(
1

|q0|2
+

1

|q0|3 r

)
e−(|p0|+|q0|+|q0+p0|)r

=
2

(4π)6

∫ ∞

0
dr

(
coth r − 1

r
− r

3

)(
Li2
(
e−2r

)(
coth r +

1

r

)
+ Li3

(
e−2r

) coth r

r
−

− ln
(
1 − e−2r

))

≈ − 2

(4π)6
× 0.0256487(1) , (3.39)

where the last integration was performed numerically with MATHEMATICA [43] and

∑

p0

∑

q0 6=0

(
1

|q0|2
+

1

|q0|3 r

)
e−(|p0|+|q0|+|q0+p0|)r

=
∑

q0 6=0

(
1

|q0|2
+

1

|q0|3 r

)(
|q̄0| + coth r̄

)
e−2|q0|r

=
2

(2πT )2

∞∑

n=1

[
1

n
+

1

n2

(
coth r̄ +

1

r̄

)
+

1

n3

coth r̄

r̄

]
e−2 n r̄ , (3.40)

where we first carried out the p0 sum

e−|q0|r
∑

p0

e−(|p0|+|q0+p0|) r = e−|q0|r
∞∑

n=−∞

e−(|n|+|n+|m||) r̄

= e−|q0|r



−|m|−1∑

n=−∞

en r̄e(n+|m|) r̄ +

0∑

n=−|m|

en r̄e−(n+|m|) r̄ +

∞∑

n=1

e−n r̄e−(n+|m|) r̄




= e−2|q0| r

[
|q̄0| + coth r̄

]
. (3.41)

Using Eq. (3.36) in addition to Eq. (3.27) and (3.33) yields

Sbb,II,a
3 = − T 3

24(4π)4

∫
d3r

(
coth r̄ − 1

r̄
− r̄

3

)∑

p0 6=0

e−2 |p0| r

= − 2

3(4π)6

∫ ∞

0
dr r2

(
coth r − 1

r
− r

3

)
1

e2 r − 1

= − 2

3(4π)6
1

720

(
30π2 − π4 − 180 ζ(3)

)
. (3.42)
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For Sbb,III,a
3 the Fourier-representation of Π(T ) is needed and can be obtained through

Eq. (3.13) by subtracting the zero-temperature limit

Sbb,III,a
3 = Ib(1)

T 2

4(4π)3

∫
d3r

1

r2

(
coth r − 1

r

)∑

p0 6=0

(
1 +

1

|p0|r

)
r

|p0|2
e−2 |p0| r

=
2

3(4π)6

∫ ∞

0
dr

(
coth r − 1

r

)(
rLi2(e

−2 r) + Li3(e
−2 r)

)

≈ 2

3(4π)6
× 0.15565346169869(1) , (3.43)

where we have used Eq. (2.20) and (3.37). Finally, with Eq. (3.25), (3.28) and (3.38) we
get

Sbb,IV,a
3 =

T 2

8(4π)5

∫
d3r

1

r3

∑

p0 6=0

{
r̄csch2r̄ + (2 + |p̄0|r̄)(|p̄0| + coth r̄)−

− 1

r̄
(3 + 3|p̄0|r̄ + p̄2

0r̄
2) − r̄

3
(1 + |p̄0|r̄)

}(
1

|p0|2
+

1

|p0|3r

)
e−2|p0| r

=
1

(4π)6

∫ ∞

0
dr

1

r

∞∑

n=1

{
r csch2r + (2 + n r)(n+ coth r)−

− 1

r
(3 + 3n r + n2 r2) − r

3
(1 + n r)

}(
1

n2
+

1

n3r

)
e−2 n r

≈ − 1

(4π)6
× 0.0036161(1) . (3.44)

For purposes of clarity we left out the lengthy expression which appears when per-
forming the sum. At this point it is resonable to begin the computation of zero-mode
contributions Sbb,...,b

3 by recalling two formulas for Feynman parametrisation [28]

1

Am1
1 . . . Amn

n
=

∫ 1

0
dx1 . . . dxn δ

(∑
xi − 1

) ∏
xmi−1

i[∑
xiAi

]P mi

Γ(m1 + · · · +mn)

Γ(m1) . . . Γ(mn)
, (3.45)

where m1, . . . ,mn ∈ R and

∫
ddl

(2π)d
1

(l2 + ∆)n
=

1

(4π)d/2

Γ(n− d/2)

Γ(n)

(
1

∆

)n−d/2

. (3.46)

Applying Eq. (3.45) to ¯̄Π0(p0 = 0,p) in Eq. (3.30) gives

¯̄Π0(p0 = 0,p) = Tµ2ǫ

∫
d3−2ǫq

(2π)3−2ǫ

∫ 1

0
dx dy δ(x+ y − 1)

3x2

[xq2 + y(q − p)2]4

=
Tµ2ǫ

(4π)3/2−ǫ

Γ
(

5
2 + ǫ

)

2

∫ 1

0
dx

x2

(x− x2)5/2+ǫ

1

(p2)5/2+ǫ

=
Tµ2ǫ

2(4π)3/2−ǫ

Γ
(

5
2 + ǫ

)
Γ
(

1
2 − ǫ

)
Γ
(
−3

2 − ǫ
)

Γ(−1 + 2ǫ)

1

(p2)5/2+ǫ
, (3.47)
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where l ≡ q − p + xp,∆ ≡ xp2 − x2p2. An analogous reasoning for Eq. (3.11) and
(3.20) produces

Π(p0 = 0,p) = Tµ2ǫ Γ
(

1
2 + ǫ

)

(4π)3/2−ǫ

∑

q0

∫ 1

0
dx

1
[
x(1 − x)p2 + q20

]1/2+ǫ
, (3.48)

Π̃(p0 = 0,p) =
β Tµ2ǫ

(4π)3/2−ǫ

Γ
(
−1

2 + 2ǫ
)

Γ(ǫ)

∑

q0

∫ 1

0
dx

(1 − x)−1+ǫ

[
x(1 − x)p2 + q20

]−1/2+2ǫ
. (3.49)

Sbb,II,b
3 =

T 3µ6ǫ

2(4π)3−2ǫ

Γ
(

5
2 + ǫ

)
Γ
(

1
2 + ǫ

)
Γ
(

1
2 − ǫ

)
Γ
(
−3

2 − ǫ
)

Γ(−1 + 2ǫ)

∑

q0

∫ 1

0
dx

∫
d3−2ǫp

(2π)3−2ǫ
×

× 1

(p2)5/2+ǫ
[
x(1 − x)p2 + q20

]1/2+ǫ

=
T 3µ6ǫ

2(4π)3−2ǫ

Γ
(

5
2 + ǫ

)
Γ
(

1
2 + ǫ

)
Γ
(

1
2 − ǫ

)
Γ
(
−3

2 − ǫ
)

Γ(−1 + 2ǫ)

2π3/2−ǫ

Γ
(

3
2 − ǫ

)
(2π)3−2ǫ

×

×
{∑

q0

(q20)
−3/2−3ǫ

}{∫ 1

0
[x(1 − x)]1+2ǫ

}{∫ ∞

0

p−3−4ǫ

(p2 + 1)1/2+ǫ

}

=
T 3µ6ǫ

2(4π)3−2ǫ

Γ
(

5
2 + ǫ

)
Γ
(

1
2 + ǫ

)
Γ
(

1
2 − ǫ

)
Γ
(
−3

2 − ǫ
)

Γ(−1 + 2ǫ)

2π3/2−ǫ

Γ
(

3
2 − ǫ

)
(2π)3−2ǫ

×

× 2(2πT )−3−6ǫζ(3 + 6ǫ)
Γ2(2 + 2ǫ)

Γ(4 + 4ǫ)

Γ(−1 − 2ǫ)Γ
(

3
2 + 3ǫ

)

2Γ
(

1
2 + ǫ

)

= − ζ(3)

6(4π)6
+ O(ǫ) , (3.50)

where we made use of ddp = 2πd/2Γ−1
(

d
2

)
|p|d−1d |p| and rescaled the momentum inte-

gration by q0/(x(1 − x))1/2. Similarly,

Sbb,III,b
3 = 2Ib(1)T

2µ4ǫ Γ
(

1
2 + ǫ

)

(4π)3/2−ǫ

∑

q0

∫ 1

0
dx

∫
d3−2ǫp

(2π)3−2ǫ

1

p6
[
x(1 − x)p2 + q20

]1/2+ǫ

= 2Ib(1)T
2µ4ǫ Γ

(
1
2 + ǫ

)

(4π)3/2−ǫ

2π3/2−ǫ

Γ
(

3
2 − ǫ

)
(2π)3−2ǫ

{∑

q0

(q20)
−2−2ǫ

}
×

×
{∫ 1

0
dx [x(1 − x)]3/2+ǫ

}{∫ ∞

0

p−4−2ǫ

(p2 + 1)1/2+ǫ

}

= 2Ib(1)T
2µ4ǫ Γ

(
1
2 + ǫ

)

(4π)3/2−ǫ

2π3/2−ǫ

Γ
(

3
2 − ǫ

)
(2π)3−2ǫ

(2πT )−4−4ǫ2 ζ(4 + 4ǫ)×

× Γ2
(

5
2 + ǫ

)

Γ(5 + 2ǫ)

Γ
(
−3

2 − ǫ
)
Γ(2 + 2ǫ)

2Γ
(

1
2 + ǫ

)

=
1

6(4π)6
π4

180
+ O(ǫ) . (3.51)
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The last remaining zero-mode contribution becomes

Sbb,IV,b
3 =

βT 2µ4ǫ

(4π)3/2−ǫ

Γ
(
−1

2 + 2ǫ
)

Γ(ǫ)

∑

q0

∫ 1

0
dx

∫
d3−2ǫp

(2π)3−2ǫ

(1 − x)−1+ǫ

p6
[
x(1 − x)p2 + q20

]−1/2+2ǫ

=
βT 2µ4ǫ

(4π)3/2−ǫ

Γ
(
−1

2 + 2ǫ
)

Γ(ǫ)

2π3/2−ǫ

Γ
(

3
2 − ǫ

)
(2π)3−2ǫ

{∑

q0

(q20)
−1−3ǫ

}
×

×
{∫ 1

0
dxx3/2+ǫ(1 − x)1/2+2ǫ

}{∫ ∞

0

p−4−2ǫ

(p2 + 1)−1/2+2ǫ

}

=
βT 2µ4ǫ

(4π)3/2−ǫ

Γ
(
−1

2 + 2ǫ
)

Γ(ǫ)

2π3/2−ǫ

Γ
(

3
2 − ǫ

)
(2π)3−2ǫ

(2πT )−2+6ǫ2 ζ(2 + 6ǫ)×

× Γ
(

5
2 + ǫ

)
Γ
(

3
2 + 2ǫ

)

Γ(4 + 3ǫ)

Γ
(
−3

2 − ǫ
)
Γ(1 + 3ǫ)

2Γ
(
−1

2 + 2ǫ
)

=
1

6(4π)6
π2

3
+ O(ǫ) . (3.52)

We end up with expanding the tadpole contributions Sbb,III,c
3 , Sbb,IV,c

3 and Sbb,IV,d
3 ac-

cording to Eq. (2.9),

Sbb,III,c
3 + Sbb,IV,c

3 + Sbb,IV,d
3 = 2Ib(1)

∑∫

P

Π(0)(P )

P 6
+ Ib(1)β

∑∫

P

1

(P 2)3+ǫ
+
∑∫

P

Π̃(0)(P )

P 6

=
1

12(4π)6

{
− 1

ǫ2
+

1

ǫ

[
6ζ(3) − 9

2
− 3γE − 3 ln

(
µ2

4πT 2

)]
+

+
9

2

(
ln

µ2

4πT 2

)2

+

(
27

2
+ 9 γE − 18 ζ(3)

)
ln

µ2

4πT 2
+

79

4
+

+
7π2

4
+

27 γE

2
(1 − γE) +

(
18 γE − 39 − 12

ζ ′(−1)

ζ(−1)

)
ζ(3)−

− 24 ζ ′(3) − 36 γ1

}
+ O(ǫ) , (3.53)

and collecting all parts to obtain the final result for the sum-integral Sbb
3 :

Sbb
3 =

1

12(4π)6

{
− 1

ǫ2
+

1

ǫ

[
6ζ(3) − 9

2
− 3γE − 3 ln

(
µ2

4πT 2

)]
+

9

2

(
ln

µ2

4πT 2

)2

+

+

(
27

2
+ 9 γE − 18 ζ(3)

)
ln

µ2

4πT 2
+

79

4
+

25π2

12
+
π4

45
+

27 γE

2
(1 − γE) +

+

(
18 γE − 39 − 12

ζ ′(−1)

ζ(−1)

)
ζ(3) − 24 ζ ′(3) − 36 γ1 + 0.586266(1)

}
+ O(ǫ) . (3.54)

In general, we need the ǫ expansion of master integrals up to O(ǫ) because most of the
corresponding coefficients contain poles in three dimensions, cf. Eqs. (A.2a - A.2f).
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3.2 Bosonic basketball S
bb
3,1

As a further example we consider the basketball-like sum-integral

Sbb
3,1 ≡ I3,1,0,0,1,1;0,0,0;2,0,0 , (3.55)

with an irreducible scalar product. It turns out that due to its similarity to Sbb
3 , we

can use some intermediate results obtained during the Sbb
3 computation. Let us start

by noting that

Sbb
3,1 =

∑∫

P

Π(P )
¯̄̄
Π(P ) , (3.56)

with
¯̄̄
Π(P ) ≡∑

∫

Q

Q2
0

Q6(P −Q)2
, (3.57)

and Π(P ) from Eq. (3.11). From here on, we just repeat the procedure applied to the
sum-integral Sbb

3 , i.e. separating Eq. (3.55) into possibly divergent contributions but
simple enough for an analytic evaluation and perhaps complicated contributions but
both UV and IR convergent:

Sbb
3,1 =

∑∫

P

∆Π(P )
¯̄̄
Πr(P ) +

∑∫

P

Π̃(P )P 2
0

P 6
+ 2 Ib(1)

∑∫

P

Π(P )P 2
0

P 6

= Sbb,I
3,1 + Sbb,II

3,1︸ ︷︷ ︸
=0

+Sbb,III
3,1 + Sbb,IV

3,1 ,
(3.58)

where we have taken into account that the zero-mode contribution vanishes identically

cf. Eq. (3.36). The x-space representation of
¯̄̄
Πr(P ) can be obtained immediately from

Eq. (3.31) by multiplying from the right with Q2
0:

¯̄̄
Πr(P ) =

T

23(4π)2

∫
d3r eip·r

∑

q0 6= 0

(
1 +

1

|q0|r

)
e−(|q0|+|q0−p0|)r . (3.59)

Taking once more into account that integrals without scales vanish in dimensional reg-
ularisation (cf. Eq. (3.35 - 3.38)) gives

Sbb,I
3,1 =

∑∫

P

∆Π(P )
¯̄̄
Πr(P ) (3.60)

Sbb,III
3,1 = 2 Ib(1)

∑∫

P

′

Π(T )(P )P 2
0

P 6
+ 2 Ib(1)

∑∫

P

Π(0)(P )P 2
0

P 6

≡ Sbb,III,a
3,1 + Sbb,III,b

3,1 (3.61)

Sbb,IV
3,1 =

∑∫

P

′

∆Π̃(P )P 2
0

P 6
+ Ib(1)β

∑∫

P

P 2
0

(P 2)3+ǫ
+
∑∫

P

Π̃(0)(P )P 2
0

P 6

≡ Sbb,IV,a
3,1 + Sbb,IV,b

3,1 + Sbb,IV,c
3,1 (3.62)
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As before, we start by evaluating contributions which are both UV and IR finite. Plug-
ging Eq. (3.27) and (3.59) in Eq. (3.60) results in

Sbb,I
3,1 =

T 3

8 (4π)4

∫
d3r

1

r2

(
coth r̄ − 1

r̄
− r̄

3

)∑

p0

∑

q0 6=0

(
1 +

1

|q0| r

)
e−(|p0|+|q0|+|q0+p0|)r

=
T 2

2(4π)4

∫ ∞

0
dr

(
coth r − 1

r
− r

3

)(
csch2r

4
+

(
coth r

2
− 1

2

)(
coth r +

1

r

)
−

− coth r

r
ln
(
1 − e−2r

))

≈ − T 2

2(4π)4
× 0.029779679922(1) , (3.63)

where we rescaled the integration variable by 1/2πT and used

∑

p0

∑

q0 6=0

(
1 +

1

|q0| r

)
e−(|p0|+|q0|+|q0+p0|)r

=
(3.41)

∑

q0 6=0

(
1 +

1

|q0| r

)(
|q̄0| + coth r̄

)
e−2|q0|r

= 2
∞∑

n=1

[
n+ coth r̄ +

1

r̄
+

1

n

coth r̄

r̄

]
e−2 n r̄

= 2

[
csch2r̄

4
+

(
coth r̄

2
− 1

2

)(
coth r̄ +

1

r̄

)
− coth r̄

r̄
ln
(
1 − e−2r̄

)]
. (3.64)

Using the Fourier representation of Π(T ) as in Eq. (3.43) gives

Sbb,III,a
3,1 = Ib(1)

T 2

16(4π)2

∫
d3r

1

r2

(
coth r − 1

r

) ∑

p0 6=0

(
1 +

1

|p0|r

)
r e−2 |p0| r

=
T 2

6(4π)4

∫ ∞

0
dr

(
coth r − 1

r

)(
r coth r

2
− r

2
− ln

(
1 − e−2r̄

))

≈ T 2

6(4π)4
× 0.1825395997(1) . (3.65)

The last remaining non-trivial contribution can be obtained via Eq. (3.62), (3.25) and
(3.28) and reads

Sbb,IV,a
3,1 =

T 2

8(4π)5

∫
d3r

1

r3

∑

p0 6=0

{
r̄csch2r̄ + (2 + |p̄0|r̄)(|p̄0| + coth r̄)−

− 1

r̄
(3 + 3|p̄0|r̄ + p̄2

0r̄
2) − r̄

3
(1 + |p̄0|r̄)

}(
1 +

1

|p0|r

)
e−2|p0| r

=
T 2

4(4π)4

∫ ∞

0
dr

1

r

∞∑

n=1

{
r csch2r + (2 + n r)(n+ coth r)−

57



− 1

r
(3 + 3n r + n2 r2) − r

3
(1 + n r)

}(
1 +

1

n r

)
e−2 n r

≈ − T 2

2(4π)4
× 0.00201064(1) . (3.66)

Expanding the tadpole contributions Sbb,III,c
3,1 , Sbb,IV,c

3,1 and Sbb,IV,d
3,1 according to Eq. (2.9)

yields

Sbb,III,b
3,1 + Sbb,IV,b

3,1 + Sbb,IV,c
3,1 = 2Ib(1)

∑∫

P

Π(0)(P )P 2
0

P 6
+ Ib(1)β

∑∫

P

P 2
0

(P 2)3+ǫ
+
∑∫

P

Π̃(0)(P )P 2
0

P 6

=
T 2

32(4π)4

{
1

ǫ2
+

1

ǫ

[
41

6
+ γE + 3 ln

(
µ2

4πT 2

)
+ 2

ζ ′(−1)

ζ(−1)

]
+

+
9

2

(
ln

µ2

4πT 2

)2

+

(
41

2
+ 3 γE + 6

ζ ′(−1)

ζ(−1)

)
ln

µ2

4πT 2
+

+
231

12
+

13π2

13
+
γE

6
(33 − 45γE) +

ζ ′(−1)

ζ(−1)
(2 γE + 15) +

+ 2
ζ ′′(−1)

ζ(−1)
− 16 γ1

}
+ O(ǫ) . (3.67)

Summing up all contributions results in

Sbb
3,1 =

T 2

32(4π)4

{
1

ǫ2
+

1

ǫ

[
41

6
+ γE + 3 ln

(
µ2

4πT 2

)
+ 2

ζ ′(−1)

ζ(−1)

]
+

9

2

(
ln

µ2

4πT 2

)2

+

+

(
41

2
+ 3 γE + 6

ζ ′(−1)

ζ(−1)

)
ln

µ2

4πT 2
+

231

12
+

13π2

12
+
γE

6
(33 − 45γE) +

+
ζ ′(−1)

ζ(−1)
(2 γE + 15) + 2

ζ ′′(−1)

ζ(−1)
− 16 γ1 + 0.4648994(1)

}
+ O(ǫ) . (3.68)

3.3 Mixed basketball S
bf
2,1

We have already encountered two different categories of master integrals appearing in
this computation (cf. Chapter 4). We close this chapter by computing the last remaining
‘prototype’, Sbf

2,1 defined in Eq. (3.6). With the following definition

Π̄f(P ) ≡ ∑∫

{Q}

1

Q4(Q− P )2
, (3.69)

we can write Sbf
2,1 as

Sbf
2,1 =

∑∫

P

Π(P )Π̄f(P ) . (3.70)

It should be noted that the computation for Sbf
2,1 is very similiar to Sbb

2 given in [42],
except the fact that we replaced the ‘inner’ bosonic Matsubara sum by the corresponding
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fermionic one. As a consequence, due to the absence of zero-modes, the separation of
Eq. (3.70) simplifies to

Sbf
2,1 =

∑∫

P

∆Π(P )Π̄f(P ) + 2 Ib(1)
∑∫

{P}

Π(P )

P 4
+
∑∫

{P}

Π̃(P )

P 4

= Sbf,I
2,1 + Sbf,III

2,1 + Sbf,IV
2,1 ,

(3.71)

where we have interchanged the order of integrations and made use of Eq. (3.19) and
(3.20). As in section 3.2, with Eq. (3.13) and (3.21) we get

Sbf,I
2,1 =

∑∫

P

∆Π(P )Π̄f(P ) , (3.72)

Sbf,III
2,1 = 2 Ib(1)

∑∫

{P}

Π(T )(P )

P 4
+ 2 Ib(1)

∑∫

{P}

Π(0)(P )

P 4

≡ Sbf,III,a
2,1 + Sbf,III,b

2,1 , (3.73)

Sbf,IV
2,1 =

∑∫

{P}

∆Π̃(P )

P 4
+ Ib(1)β

∑∫

{P}

1

(P 2)2+ǫ
+
∑∫

{P}

Π̃(0)(P )

P 4

≡ Sbf,IV,a
2,1 + Sbf,IV,b

2,1 + Sbf,IV,c
2,1 . (3.74)

Expressing Eq. (3.69) in Fourier representation yields

Π̄f(P ) =
T

2(4π)2

∫
d3r

1

r

∑

q0,f

1

|q0|
e−(|q0|+|q0−p0|)r , (3.75)

where q0,f refers to fermionic Matsubara frequencies. Let us start with evaluating Sbf,I
2,1

Sbf,I
2,1 =

T 3

2(4π)4

∫
d3r

1

r3

(
coth r̄ − 1

r̄
− r̄

3

)∑

p0,b

∑

q0,f

1

|q0|
e−(|p0|+|q0|+|q0−p0|)r

=
T 2

(4π)4

∫ ∞

0
dr

1

r

(
coth r − 1

r
− r

3

)[
4 arccoth er coth r + csch r

]

≈ − T 2

(4π)4
× 0.185119(1) , (3.76)

where the mixed bosonic/fermionic sum is given by

∑

p0,b

∑

q0,f

1

|q0|
e−(|p0|+|q0|+|q0−p0|)r =

∑

q0,f

e−|q0|r

|q0|
∑

p0,b

e−(|p0|+|q0−p0|)r

=
∑

q0,f

e−2|q0|r

|q0|

(
|q̄0| + coth r̄

)

=
1

2πT

[
∞∑

n=1

e−2( 1
2
+n)r̄

(
1 +

coth r̄
1
2 + n

)
+

−1∑

n=−∞

e2(
1
2
+n)r̄

(
1 − coth r̄

1
2 + n

)
+
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+ e−r̄ (1 + 2 coth r̄)

]

=
1

2πT

[
4 arccoth er coth r + csch r

]
. (3.77)

In Eq. (3.77) we interchanged the order of summations and used Eq. (3.41) for the usual
bosonic sum. Expressing 1/P 4 and Π(T )(P ) in Fourier representation via Eqs. (3.23),(3.13)
and using Eq. (3.73) yields

Sbf,III,a
2,1 = Ib(1)

T 2

(4π)3

∫
d3r

1

r2

(
coth r̄ − 1

r̄

)∑

p0,f

e−2|p0|r

|p0|

=
4

3

T 2

(4π)4

∫ ∞

0
dr

(
coth r − 1

r

)
arccoth er

≈ 4

3

T 2

(4π)4
× 0.287113(1) . (3.78)

We obtain Sbf,IV,a
2,1 by repeating the calculation above but with Eq. (3.28) instead of

Π(T )(P )

Sbf,IV,a
2,1 =

T 2

2(4π)5

∫
d3r

1

r4

∑

p0,f

1

|p0|

{
r̄csch2r̄ + (2 + |p̄0|r̄)(|p̄0| + coth r̄)−

− 1

r̄
(3 + 3|p̄0|r̄ + p̄2

0r̄
2) − r̄

3
(1 + |p̄0|r̄)

}
e−2|p0| r

=
T 2

2(4π)4

∫ ∞

0
dr

1

r2

[
4 arccoth er

(
rcsch2r + 2coth r − 3

r
− r

3

)
+

+ csch r

(
r coth r − 1 − r2

3

)]

≈ − T 2

(4π)4
× 0.00652384(1) . (3.79)

The fermionic tadpoles can be expressed in terms of the corresponding bosonic ones via
Eq. (2.10) and then easily expanded in ǫ according to Eq. (2.9):

Sbf,III,b
2,1 + Sbf,IV,b

2,1 + Sbf,IV,c
2,1 = 3 Ib(1)β

(
24ǫ+1 − 1

)∑∫

P

1

(P 2)2+ǫ
+ β̃

(
26ǫ−1 − 1

)∑∫

P

1

(P 2)1+2ǫ

=
T 2

8(4π)4

{
1

ǫ2
+

1

ǫ

[
3 ln

µ2

4πT 2
+

37

12
+ γE + 4 ln 4 + 2

ζ ′(−1)

ζ(−1)

]

+ ǫ0 fct(lnµ, lnT )

}
+ O(ǫ) , (3.80)
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where we leave out the lengthy expression indicated by fct(ln µ, lnT ). The result for Sbf
2,1

reads

Sbf
2,1 =

T 2

8(4π)4

{
1

ǫ2
+

1

ǫ

[
3 ln

µ2

4πT 2
+

37

12
+ γE + 4 ln 4 + 2

ζ ′(−1)

ζ(−1)

]
+

+ ǫ0 fct(lnµ, lnT ) + 1.529395(1)

}
+ O(ǫ) . (3.81)

We conclude with a few remarks. In order to complete the calculation of the remaining
masters shown in Eq. (3.6) we have to compute either the fermion basketball sum-integral
Sff

2 or the other mixed basketball sum-integral Sbf
2 . The first one can be obtained just

by replacing the bosonic Π(P ) in Eq. (3.70) by the corresponding fermionic version

Πf(P ) ≡ ∑∫

{Q}

1

Q2(P −Q)2
, (3.82)

and the latter one simply by carrying out the Sbb
2 computation given in [42] with an

‘outer’ fermionic sum instead of a bosonic sum. The same holds for

Sbb
3 = I3,1,0,0,1,1;0,0,0;0,0,0 ,

Sbf
3 ≡ I3,1,0,0,1,1;0,0,1;0,0,0 ,

Sff
3 ≡ I3,1,0,0,1,1;1,1,0;0,0,0 ,

Sbf
3,1 ≡ I1,1,0,0,1,3;0,0,1;0,0,0 ,

(3.83)

with
Sbb

3 = 2−3−6ǫ
[
Sbb

3 + 3Sbf
3 + 3Sbf

3,1 + Sff
3

]
, (3.84)

which are needed for the Π′
3 computation. Another important class of master integrals

are those with irreducible scalar products and only one propagator with power more
than one

Sbb
i ≡ Ii,1,0,0,1,1;0,0,0;... ,

Sbf
i ≡ Ii,1,0,0,1,1;0,0,1;... ,

Sff
i ≡ Ii,1,0,0,1,1;1,1,0;... ,

Sbf
i,1 ≡ I1,1,0,0,1,i;0,0,1;... ,

(3.85)

where the dots stands for permutations of irreducible scalar products, e.g.

Π3 : i = 3 ⇒ 2, 0, 0 | 0, 2, 0 | 0, 0, 2 | . . . ,
Π′

3 : i = 4 ⇒ 2, 0, 0 | 0, 2, 0 | 0, 0, 2 | . . . . (3.86)

All basketball-like sum-integrals of this type can be evaluated exactly parallel to the
above ones. The remaining master integrals (i.e. with dots on two different lines) can be
obtained by deriving analogous representations for new functions Π′(P ) and Π̃′(P ) as in
Eqs. (3.19),(3.21) and then proceeding as in the examples above.
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4 Results and discussion

This chapter is primarily concerned with discussing the three-loop results obtained by the
methods introduced in Chapter 2. However, before we focus on the three-loop results,
we would like to point out that all one- and two-loop results given in [31] have been
confirmed by our computation. Our results can be found in Appendix A.1.

4.1 ΠE3 and Π′
T3 reduction

The Taylor coefficient ΠE3 is needed in order to compute the O(g6) correction to m2
E. As

indicated in Chapter 2, we perform the whole reduction in d dimensions with a general
gauge parameter ξ. We observed that the longitudinal part vanishes identically

ΠL3 = 0, (4.1)

and verified the gauge parameter independence of Eq. (1.92) up to O(g6). The corre-
sponding expression reads (with CA = Nc, CF = (N2

c − 1)/(2Nc), TF = Nf/2)

ΠE3 = C3
A

[
α1I2,1,0,0,1,1;0,0,0;0,0,0 + α2I2,2,0,0,1,1;0,0,0;0,0,2 + α3I3,1,0,0,1,1;0,0,0;0,2,0

+α4I3,1,0,0,1,1;0,0,0;2,0,0 + α5I4,1,0,0,1,1;0,0,0;1,3,0 + α6I5,1,0,0,1,1;0,0,0;6,0,0

]

+TFCACF

[
α7I1,1,0,0,2,1;0,0,1;0,0,0 + α8I1,1,0,0,2,2;0,0,1;2,0,0 + α9I2,1,0,0,1,1;0,0,1;0,0,0+

α10I2,1,0,0,1,1;1,1,0;0,0,0 + α11I2,1,0,0,2,1;0,0,1;0,2,0 + α12I2,1,0,0,2,1;0,0,1;2,0,0+

α13I2,2,0,0,1,1;0,0,1;1,1,0 + α14I2,2,0,0,1,1;0,0,1;2,0,0 + α15I3,1,0,0,1,1;0,0,1;0,2,0+

α16I3,1,0,0,1,1;0,0,1;1,1,0 + α17I3,1,0,0,1,1;0,0,1;2,0,0 + α18I3,1,0,0,1,1;1,1,0;2,0,0+

α19I3,1,0,0,2,1;0,0,1;1,3,0 + α20I3,2,0,0,1,1;0,0,1;0,4,0 + α21I4,1,0,0,1,1;0,0,1;1,3,0+

α22I4,1,0,0,1,1;0,0,1;2,2,0 + α23I4,1,0,0,1,1;0,0,1;4,0,0 + α24I4,2,0,0,1,1;0,0,1;6,0,0+

α25I5,1,0,0,1,1;0,0,1;3,3,0

]

+TFC
2
F

[
α26I1,1,0,0,2,1;0,0,1;0,0,0 + α27I1,1,0,0,2,2;0,0,1;2,0,0 + α28I1,1,0,0,3,1;0,0,1;1,1,0+

α29I2,1,0,0,1,1;0,0,1;0,0,0 + α30I2,1,0,0,1,1;1,1,0;0,0,0 + α31I2,1,0,0,2,1;0,0,1;0,2,0+

α32I2,1,0,0,2,1;0,0,1;2,0,0 + α33I2,2,0,0,1,1;0,0,1;1,1,0 + α34I2,2,0,0,1,1;0,0,1;2,0,0+

α35I3,1,0,0,1,1;0,0,1;0,2,0 + α36I3,1,0,0,1,1;0,0,1;1,1,0 + α37I3,1,0,0,1,1;0,0,1;2,0,0+

α38I3,1,0,0,1,1;1,1,0;2,0,0 + α39I3,1,0,0,2,1;0,0,1;1,3,0 + α40I3,2,0,0,1,1;0,0,1;0,4,0+

α41I4,1,0,0,1,1;0,0,1;1,3,0 + α42I4,1,0,0,1,1;0,0,1;2,2,0 + α43I4,1,0,0,1,1;0,0,1;4,0,0+

α44I4,2,0,0,1,1;0,0,1;6,0,0 + α45I5,1,0,0,1,1;0,0,1;3,3,0 + α46I5,1,0,0,1,1;0,0,1;5,1,0

]

+T 2
FCA

[
α47I2,1,0,0,1,1;1,1,0;0,0,0 + α48I2,2,0,0,1,1;1,1,0;0,0,2 + α49I3,1,0,0,1,1;1,1,0;0,2,0+

α50I3,1,0,0,1,1;1,1,0;2,0,0 + α51I4,1,0,0,1,1;1,1,0;1,3,0 + α52I5,1,0,0,1,1;1,1,0;6,0,0

]
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+T 2
FCF

[
α53I2,1,0,0,1,1;1,1,0;0,0,0 + α54I2,2,0,0,1,1;1,1,0;0,0,2 + α55I3,1,0,0,1,1;1,1,0;0,2,0+

α56I3,1,0,0,1,1;1,1,0;2,0,0 + α57I5,1,0,0,1,1;1,1,0;6,0,0

]

+TFC
2
A

[
α58I1,1,0,0,2,1;0,0,1;0,0,0 + α59I1,1,0,0,2,2;0,0,1;2,0,0 + α60I1,1,0,0,3,1;0,0,1;1,1,0+

α61I1,1,0,0,3,1;0,0,1;2,0,0 + α62I1,1,0,0,4,1;0,0,1;3,1,0 + α63I1,1,0,0,4,1;0,0,1;4,0,0+

α64I2,1,0,0,1,1;0,0,1;0,0,0 + α65I2,1,0,0,1,1;1,1,0;0,0,0 + α66I2,1,0,0,2,1;0,0,1;0,2,0+

α67I2,1,0,0,2,1;0,0,1;2,0,0 + α68I2,1,0,0,3,1;0,0,1;0,4,0 + α69I2,1,0,0,3,1;0,0,1;3,1,0+

α70I2,1,0,0,3,1;0,0,1;4,0,0 + α71I2,2,0,0,1,1;0,0,1;0,0,2 + α72I2,2,0,0,1,1;0,0,1;1,1,0+

α73I2,2,0,0,1,1;0,0,1;2,0,0 + α74I3,1,0,0,1,1;0,0,1;0,0,2 + α75I3,1,0,0,1,1;0,0,1;0,2,0+

α76I3,1,0,0,1,1;0,0,1;1,1,0 + α77I3,1,0,0,1,1;0,0,1;2,0,0 + α78I3,1,0,0,1,1;1,1,0;2,0,0+

α79I3,1,0,0,2,1;0,0,1;0,4,0 + α80I3,1,0,0,2,1;0,0,1;1,3,0 + α81I3,2,0,0,1,1;0,0,1;0,4,0+

α82I4,1,0,0,1,1;0,0,1;0,2,2 + α83I4,1,0,0,1,1;0,0,1;0,4,0 + α84I4,1,0,0,1,1;0,0,1;1,1,2+

α85I4,1,0,0,1,1;0,0,1;1,3,0 + α86I4,1,0,0,1,1;0,0,1;2,2,0 + α87I4,1,0,0,1,1;0,0,1;4,0,0+

α88I4,2,0,0,1,1;0,0,1;6,0,0 + α89I5,1,0,0,1,1;0,0,1;2,4,0 + α90I5,1,0,0,1,1;0,0,1;3,3,0+

α91I5,1,0,0,1,1;0,0,1;4,0,2 + α92I5,1,0,0,1,1;0,0,1;5,1,0 + α93I5,1,0,0,1,1;0,0,1;6,0,0

]

+ (1loop)3
[
ξ0 + ξ1 + ξ2

]
, (4.2)

where we leave out trivial contributions indicated by (1loop)3 and introduced a short-
hand for the rational functions appearing by α1, ..., 93(d). The above expression leaves us
with 46 (6 bosonic + 40 fermionic) basketball-like sum-integrals emphasised in red. This
number depends significantly on the basis we choose. Expressing certain combinations
of integrals shown above in terms of others could reduce the number of masters to
∼ 25 but with the disadvantage of introducing spectacles-type integrals and basketball-
type integrals with non-vanishing ‘central’ lines. The last line of Eq. (4.2) indicates
symbolically that the gauge dependence is restricted to 1-loop structures as it should be
in order to cancel against the one- and two-loop contributions given in Appendix A.1
via Eq. (1.92). Finally, the transverse part vanishes identically

ΠT3 = 0 . (4.3)

Unfortunately, due to its complexity (cf. Eq. (2.37)), we are forced to perform the re-
duction of Π′

T3 in Feynman gauge. As before, we observed

Π′
L3 = 0 (4.4)

and the relevant transverse part reads

Π′
T3 = C3

A

[
β1I2,2,0,0,1,1;0,0,0;0,0,0 + β2I3,1,0,0,1,1;0,0,0;0,0,0 + β3I3,2,0,0,1,1;0,0,0;0,0,2+

β4I4,1,0,0,1,1;0,0,0;0,2,0 + β5I4,1,1,1,1,0;0,0,0;0,2,2 + β6I5,1,0,0,1,1;0,0,0;2,2,0+

β7I5,1,0,0,1,1;0,0,0;4,0,0

]

+TFCACF

[
β8I1,1,0,0,2,2;0,0,1;0,0,0 + β9I1,1,0,0,3,1;0,0,1;0,0,0 + β10I1,1,0,0,3,2;0,0,1;2,0,0+

β11I1,1,0,0,4,1;0,0,1;2,0,0 + β12I2,1,0,0,2,1;0,0,1;0,0,0 + β13I2,1,0,0,3,1;0,0,1;0,2,0+

β14I2,1,0,0,3,1;0,0,1;2,0,0 + β15I2,2,0,0,1,1;0,0,1;0,0,0 + β16I2,2,0,0,1,1;1,1,0;0,0,0+
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β17I3,1,0,0,1,1;0,0,1;0,0,0 + β18I3,1,0,0,1,1;1,1,0;0,0,0 + β19I3,1,0,0,2,1;0,0,1;0,2,0+

β20I3,1,0,0,2,1;0,0,1;1,1,0 + β21I3,1,0,0,3,1;0,0,1;4,0,0 + β22I3,2,0,0,1,1;0,0,1;0,2,0+

β23I3,2,0,0,1,1;0,0,1;1,1,0 + β24I4,1,0,0,1,1;0,0,1;0,2,0 + β25I4,1,0,0,1,1;0,0,1;1,1,0+

β26I4,1,0,0,1,1;0,0,1;2,0,0 + β27I4,2,0,0,1,1;0,0,1;4,0,0 + β28I5,1,0,0,1,1;0,0,1;2,2,0+

β29I5,1,0,0,1,1;0,0,1;3,1,0 + β30I5,1,0,0,1,1;0,0,1;4,0,0 + β31I5,1,0,0,1,1;1,1,0;4,0,0+

β32I6,1,0,0,1,1;0,0,1;4,2,0 + β33I6,1,0,0,1,1;0,0,1;6,0,0

]

+TFC
2
F

[
β34I1,1,0,0,2,2;0,0,1;0,0,0 + β35I1,1,0,0,3,1;0,0,1;0,0,0 + β36I2,1,0,0,2,1;0,0,1;0,0,0+

β37I2,1,0,0,3,1;0,0,1;2,0,0 + β38I2,2,0,0,1,1;0,0,1;0,0,0 + β39I2,2,0,0,1,1;1,1,0;0,0,0+

β40I3,1,0,0,1,1;0,0,1;0,0,0 + β41I3,1,0,0,1,1;1,1,0;0,0,0 + β42I3,1,0,0,2,1;0,0,1;1,1,0+

β43I3,2,0,0,1,1;0,0,1;0,2,0 + β44I3,2,0,0,1,1;0,0,1;1,1,0 + β45I4,1,0,0,1,1;0,0,1;1,1,0+

β46I4,1,0,0,1,1;0,0,1;2,0,0 + β47I4,2,0,0,1,1;0,0,1;4,0,0 + β48I5,1,0,0,1,1;0,0,1;3,1,0+

β49I5,1,0,0,1,1;0,0,1;4,0,0 + β50I5,1,0,0,1,1;1,1,0;4,0,0 + β51I6,1,0,0,1,1;0,0,1;6,0,0

]

+T 2
FCA

[
β52I2,2,0,0,1,1;1,1,0;0,0,0 + β53I3,1,0,0,1,1;1,1,0;0,0,0 + β54I3,2,0,0,1,1;1,1,0;0,0,2+

β55I4,1,0,0,1,1;1,1,0;0,2,0 + β56I4,1,1,1,1,0;0,1,1;0,2,2 + β57I5,1,0,0,1,1;1,1,0;2,2,0+

β58I5,1,0,0,1,1;1,1,0;4,0,0

]

+T 2
FCF

[
β59I2,2,0,0,1,1;1,1,0;0,0,0 + β60I3,1,0,0,1,1;1,1,0;0,0,0 + β61I3,2,0,0,1,1;1,1,0;0,0,2+

β62I4,1,0,0,1,1;1,1,0;0,2,0 + β63I5,1,0,0,1,1;1,1,0;2,2,0 + β64I5,1,0,0,1,1;1,1,0;4,0,0

]

+TFC
2
A

[
β65I1,1,0,0,2,2;0,0,1;0,0,0 + β66I1,1,0,0,3,1;0,0,1;0,0,0 + β67I1,1,0,0,3,2;0,0,1;2,0,0+

β68I1,1,0,0,4,1;0,0,1;2,0,0 + β69I2,1,0,0,2,1;0,0,1;0,0,0 + β70I2,1,0,0,3,1;0,0,1;0,2,0+

β71I2,1,0,0,3,1;0,0,1;2,0,0 + β72I2,2,0,0,1,1;0,0,1;0,0,0 + β73I2,2,0,0,1,1;1,1,0;0,0,0+

β74I3,1,0,0,1,1;0,0,1;0,0,0 + β75I3,1,0,0,1,1;1,1,0;0,0,0 + β76I3,1,0,0,2,1;0,0,1;0,2,0+

β77I3,1,0,0,2,1;0,0,1;1,1,0 + β78I3,1,0,0,3,1;0,0,1;4,0,0 + β79I3,2,0,0,1,1;0,0,1;0,0,2+

β80I3,2,0,0,1,1;0,0,1;0,2,0 + β81I3,2,0,0,1,1;0,0,1;1,1,0 + β82I4,1,0,0,1,1;0,0,1;0,0,2+

β83I4,1,0,0,1,1;0,0,1;0,2,0 + β84I4,1,0,0,1,1;0,0,1;1,1,0 + β85I4,1,0,0,1,1;0,0,1;2,0,0+

β86I4,1,1,1,1,0;0,0,1;0,2,2 + β87I4,2,0,0,1,1;0,0,1;4,0,0 + β88I5,1,0,0,1,1;0,0,1;2,0,2+

β89I5,1,0,0,1,1;0,0,1;2,2,0 + β90I5,1,0,0,1,1;0,0,1;3,1,0 + β91I5,1,0,0,1,1;0,0,1;4,0,0+

β92I5,1,0,0,1,1;1,1,0;4,0,0 + β93I6,1,0,0,1,1;0,0,1;4,2,0 + β94I6,1,0,0,1,1;0,0,1;6,0,0

]

+ (1loop)3ξ0 , (4.5)

where we emphasised (7 bosonic and 34 fermionic) master integrals in red. It should be
noted that the occurence of spectacles-type integrals above can be seen as an indication
of an incomplete reduction. The last term in Eq. (4.5) stands symbolically for trivial
(1loop)3 contributions and due to the Feynman gauge, of course, proportional to ξ0.
However, also with a general gauge parameter, all gauge dependent contributions should
vanish because there is no contribution via Eq. (1.101).
The last remaining coefficient Π′

E3 is comparable in terms of the appearing master in-
tegrals to the above one for Π′

T3. We leave out its explicit expression because it is not
needed for the three-loop corrections to m2

E or g2
E .

65



4.2 Conclusions and Outlook

We have successfully shown the feasibility of calculating the next-to-next-to-leading or-
der (NNLO) contributions for both matching coefficients m2

E and g2
E . The reduction by

means of Laporta’s method leaves us with approximately 40 to a large extent unknown
basketball-like sum-integrals per coefficient. However, as demonstrated in Chapter 3,
the computation of those is solely a question of man-power. We strongly believe that
a semi-automatic application of Arnold & Zhai’s method would be the most promising
approach to deal with the remaining master integrals.

On the other hand, there are still problems we should pay attention to. The first task
would be to check general gauge independence of Π′

T3 i.e. the cancellation of all gauge
dependent contributions to Π′

T3 and, of course, Π′
L3 = 0. Currently, the limiting factor

is the pure bosonic basketball-type reduction. Furthermore, it would also be interesting
to see if the still remaining spectacles-type integrals can be expressed through simpler
ones, which we strongly believe to be the case.

In conclusion it should be stressed that future calculations in finite temperature QCD
(e.g. O(g6) pressure) depend on more sophisticated reduction methods and especially a
systematic approach to dealing with hundreds of multi-loop master sum-integrals. More-
over, we believe that this thesis has shown that, while the combinatoric- and algebraic
part seems to be under algorithmic control, the second part, i.e. the reduction, requires
new methods, for which the computation outlined here can serve as an ideal — but
already non-trivial — playground in order to develop the necessary tools.
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A Appendix

A.1 Taylor coefficients

The one-loop coefficients up to second derivative read

ΠT1(0) = 0 , (A.1a)

ΠE1(0) = (d− 2)
[
CA(d− 2)Ib(1) − 2Nf If (1)

]
, (A.1b)

Π′
T1(0) =

2Nf

3
If (2) +

CA

6
(d− 26)Ib(2) , (A.1c)

Π′
E1(0) =

Nf

3
(d− 2)If (2) − CA

[
34 − 7d+ d2

6
+ (4 − d)ξ

]
Ib(2) , (A.1d)

Π′′
T1(0) =

CA

3

[
21

5
− 1

10
d+ 2 ξ − 1

4
ξ2
]
Ib(3) −

4Nf

15
If (3) , (A.1e)

Π′′
E1(0) =

CA

3

[
27

5
− 9

10
d+

1

10
d2 + ξ (d− 4) +

ξ2

4
(d− 7)

]
Ib(3) +

Nf

15
(2 − d)If (3) ,

(A.1f)

while the two-loop coefficients up to first derivative are given by

ΠT2(0) = 0 , (A.1g)

ΠE2(0) = (d− 2)(d − 4)

{
(1 + ξ)

[
2 If (1) − (d− 2)CA Ib(1)

]
CAIb(2)+

+ 2NfCF

[
Ib(1) − If (1)

]
If (2)

}
, (A.1h)

Π′
T2(0) =

(d− 4)(d − 5)

(d− 8)(d − 6)(d − 3)(d − 1)

{
(36 − 58d + 8d2)C2

A I
2
b (2)−

− 4
[
4CF + (8 − 8d+ d2)CA

]
NfIb(2) If (2) −

[(
d3

2
− 15d2

2
+ 33d− 32

)
CA−

− (68 − 68d+ 15d2 − d3)CF

]
NfI

2
f (2)

}

+
(d− 2)

3(8 + (d− 9)d)

{
(176 − 33d+ d2)

[
(2 − d)CAIb(1) + 2Nf If (1)

]
CA Ib(3)−

− 4(d − 7)(d− 2)CFNf

[
Ib(1) − If (1)

]
If (3)

}
, (A.1i)
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Π′
E2(0) =

(d− 4)

(d− 8)(d − 6)(d − 3)(d − 1)

{[
−276 + 484d − 216d2 +

77

2
d3 − 5

2
d4

]
N2

c I
2
b (2)

+

[ (
80 − 126d + 67d2 − 14d3 + d4

)
CA +

(
80 − 56d+ 8d2

)
CF

]
Nf Ib(2) If (2)

+ (d− 2)

[ (
16 + 17d− 10d2 + d3

)
CA +

(
18 + 19d − 10d2 + d3

)
CF

]
Nf I

2
f (2)

}

+
(d− 4)

24(d − 3)

[ (
−324 + 184d − 40d2 + 4d3

)
ξ +

(
96 − 57d + 9d2

)
ξ2
]
C2

AI
2
b (2)

− 1

3

(
8 − 6d+ d2

)
ξ CANf Ib(2) If (2) +

(d− 2)

3(8 − 9d+ d2)

{(
20 − 38d+ 13d2 − d3

)
×

× CFNf

[
If (1) − Ib(1)

]
If (3) +

[ (
−256 + 142d − 32d2 + 2d3

)
+
(
− 16 + 34d

− 20d2 + 2d3
)
ξ +

(
−56 + 71d− 16d2 + d3

)
ξ2
] [CA

2
Ib(1) −Nf If (1)

]
CAIb(3) ,

(A.1j)

where ξhere = 1 − ξstandard. As an example we give the coefficients for the bosonic
contribution to ΠE3:

α1 = 156d3 − 3530d2 +
97081d

4
+

1775

8(d− 7)
+

120

d− 6
− 20115

16(d − 5)
+

666

d− 4
−

− 5927087

528(d − 3)
− 9016

99(3d − 20)
− 3377681

72
, (A.2a)

α2 = 72d2 − 4839d

4
− 3525

16(d − 7)
+

128

d− 6
− 9600

d− 4
+

1503803

176(d − 3)
− 1120

11(3d − 20)
+

11713

2
,

(A.2b)

α3 = −66d2 +
4511d

4
− 6225

16(d − 7)
+

688

d− 6
− 455977

176(d − 3)
+

4480

11(3d − 20)
− 4459 , (A.2c)

α4 = 970d2 − 223195d

12
+

5025

16(d− 7)
− 1136

3(d− 6)
− 76744

d− 4
+

16092929

176(d − 3)
− 21280

99(3d − 20)
+

+
1554067

18
, (A.2d)

α5 = − 567

11(d − 3)
+

26880

11(3d − 20)
− 12 − 675

d− 7
, (A.2e)

α6 =
237056

d− 4
− 147456

d− 3
− 24576 +

17408

d− 6
. (A.2f)
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A.2 Vertices of QCD in background field gauge

(a) QQQ (b) AAA (c) QAA (d) QQA (e) ψ̄Qψ (f) ψ̄Aψ

(g) c̄Qc (h) c̄Ac (i) c̄QQc (j) c̄QAc (k) c̄AAc (l) QQQA

(m) QQAA (n) QAAA (o) AAAA (p) QQQQ

Figure A.1: Vertices of QCD in the background field gauge (A = background field, Q =
fluctuating field, c, c̄ = ghost field)

A.3 Selected three-loop self-energy diagrams

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: Selected three-loop self-energy diagrams in background field gauge. The
diagrams entirely composed of 3-gluon vertices contain 1−2.5 million terms.
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A.4 Computation details

We perform the reduction on a linux cluster with 16 dual-core Intel Xeon 3.00GHz
processors each with 4 GB RAM and use FORM 3.2(May 21 2008), FERMAT 3.9.8c.

Topology Dimension Suggestions Run-time

Mercedes Π3 96 8 mins
Mercedes Π′

3 300 3 hrs
Spectacles Π3 5500 1-3 weeks
Spectacles Π′

3 13000+ 2+ months
Basketball Π3 15500 1 month
Basketball Π′

3 15500+ 2+ months

Table A.1: Computing time for different topologies and Taylor coefficients.
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Figure A.3: Run-time behaviour for purely bosonic Basketball topology: The red curve
shows the overall CPU-time needed to process the i-th suggestion and possi-
ble re-substitutions. The green curve displays only the CPU-time to process
the i-th suggestion and the blue curve stands for the number (×5) of new
relations which are found during the i-th suggestion.
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Figure A.4: Run-time behaviour for purely bosonic Spectacles topology: The red curve
shows the overall CPU-time needed to process the i-th suggestion and possi-
ble re-substitutions. The green curve displays only the CPU-time to process
the i-th suggestion and the blue curve stands for the number (×5) of new
relations which are found during the i-th suggestion.

Let us try to get a rough estimation for the total amount of computing ressources we
used for this project:

T ∼ 0.1 × 3 · 109
︸ ︷︷ ︸
∼0.1×Xeon

× 14︸︷︷︸
jobs

× 2.6 · 106
︸ ︷︷ ︸
1month

≈ 1016 flop .
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A.5 Example Code

1 id I ( fb ( s1 ? , s2 ? , s3 ? , s4 ? , s5 ? , s6 ? ) , f c ( sc1 ? , sc2 ? , sc3 ? ) , fq0 ( sq1 ? , sq2 ? , sq3 ? ) ) =
2 Ia ( fb ( s 1 , s 2 , s 3 , s 4 , s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 ( s q1 , s q2 , s q3 ) )
3 −((p0 )ˆ( sq1 )∗ ( p0−q0 )ˆ( sq2 )∗ ( p0−r0 )ˆ( sq3 ))∗
4 ( Ia ( fb ( s 1 , s 4 , s 5 , s 2 , s 3 , s 6 ) , f c ( sc1,mod ( sc2+sc1,2 ) , mod ( sc3+sc1,2 ) ) ) ) ;
5
6 id Ia ( fb ( s1 ? , s2 ? , s3 ? , s4 ? , s5 ? , s6 ? ) , f c ( sc1 ? , sc2 ? , sc3 ?))∗ p0ˆ s7 ?∗q0ˆ s8 ?∗ r0 ˆ s9 ? =
7 Ia ( fb ( s 1 , s 2 , s 3 , s 4 , s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 ( s 7 , s 8 , s 9 ) ) ;

Listing A.1: Symmetry shown in Fig. 2.4 in FORM notation

1 id I ( fb ( s1 ? p o s , s 2 ? p o s , s 3 ? p o s , s 4 ? p o s , s 5 ? p o s , s 6 ? pos ) , f c ( 1 , 1 , 1 ) ,
2 fq0 ( sq1 ? , sq2 ? , sq3 ? ) ) =
3 ((− r0 )ˆ( sq1 )∗ ( q0−r0 )ˆ( sq2 )∗ ( p0−r0 )ˆ( sq3 )∗ Ib ( fb ( s 5 , s 4 , s 1 , s 6 , s 3 , s 2 ) , f c ( 0 , 0 , 1 ) ) ) ;
4 ∗−−−−s h i f t ( f c ( 1 , 1 , 1 ) −> f c (0,0,1))−−−−∗
5
6 id Ib ( fb ( s1 ? , s2 ? , s3 ? , s4 ? , s5 ? , s6 ? ) , f c ( sc1 ? , sc2 ? , sc3 ?))∗ p0ˆ sq1 ?∗q0ˆ sq2 ?∗ r0 ˆ sq3? =
7 I ( fb ( s 1 , s 2 , s 3 , s 4 , s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 ( s q1 , s q 2 , s q3 ) ) ;

Listing A.2: Fermion shift I...;1,1,1;... → I...;0,0,1;... shown in Fig. 2.5 in FORM
notation

1 id I ( fb ( s1 ? p o s , s 2 ? p o s , s 3 ? p o s , s 4 ? neg0 , s 5 ? p o s , s 6 ? pos ) , f c ( sc1 ? , sc2 ? , sc3 ? ) ,
2 fq0 ( sq1 ? , sq2 ? , sq3 ?))=
3 (−q0 )ˆ( sq2 )∗(−p0 )ˆ( sq3 )∗(− r0 )ˆ( sq1 )∗
4 ( Id ( fb ( s 3 , s 2 , s 1 , s 6 , s 5 , s 4 ) , f c ( s c 3 , s c 2 , s c 1 ) ) ) ;
5
6 id Id ( fb ( s1 ? , s2 ? , s3 ? , s4 ? , s5 ? , s6 ? ) , f c ( sc1 ? , sc2 ? , sc3 ?))∗ p0ˆ sq1 ?∗q0ˆ sq2 ?∗ r0 ˆ sq3? =
7 I ( fb ( s 1 , s 2 , s 3 , s 4 , s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 ( s q1 , s q 2 , s q3 ) ) ;

Listing A.3: Shift I1,1,1,0,1,1;... → I1,1,1,1,1,0;... in FORM notation

1 id I ( fb ( s1 ? , s2 ? , s3 ? , s4 ? , s5 ? , s6 ? ) , f c ( sc1 ? , sc2 ? , sc3 ? ) , fq0 ( sq1 ? , sq2 ? , sq3 ? ) ) =
2 +Ia ( fb(−1+ s 1 , s 2 , s 3 , 1+ s 4 , s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 ( s q1 , s q2 , s q3 ))∗(− s4 )
3 +Ia ( fb(−1+ s 1 , s 2 , s 3 , s 4 , 1+ s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 ( s q1 , s q2 , s q3 ))∗(− s5 )
4 +Ia ( fb (1+ s 1 , s 2 , s 3 , s 4 , s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 (2+ sq1 , s q2 , s q3 ))∗ (2∗ s1 )
5 +Ia ( fb ( s 1 ,−1+s2 , s 3 , 1+s4 , s5 , s6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 ( s q1 , s q2 , s q3 ) )∗ ( s4 )
6 +Ia ( fb ( s 1 , s 2 ,−1+s3 , s4 , 1+s5 , s6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 ( s q1 , s q2 , s q3 ) )∗ ( s5 )
7 +Ia ( fb ( s 1 , s 2 , s 3 , 1+ s 4 , s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 (1+ sq1 ,1+sq2 , sq3 ))∗(−2∗ s4 )
8 +Ia ( fb ( s 1 , s 2 , s 3 , 1+ s 4 , s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 (2+ sq1 , s q2 , s q3 ))∗ (2∗ s4 )
9 +Ia ( fb ( s 1 , s 2 , s 3 , s 4 , 1+ s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 (1+ sq1 , sq2 , 1+sq3 ))∗(−2∗ s5 )

10 +Ia ( fb ( s 1 , s 2 , s 3 , s 4 , 1+ s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 (2+ sq1 , s q2 , s q3 ))∗ (2∗ s5 )
11 +Ia ( fb ( s 1 , s 2 , s 3 , s 4 , s 5 , s 6 ) , f c ( s c 1 , s c 2 , s c 3 ) , fq0 ( s q1 , s q2 , s q3 ))∗(−1− s5−s4−2∗s1+d ) ;
12 ∗−−−−IBP ( dk1,k1)−−−−∗

Listing A.4: Integration by parts relation in FORM notation
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