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“A complete three-loop calculation of the free energy therefore has the special significance

that it is the best anyone will ever do with perturbation theory.”

from: P. Arnold and C. Zhai, Phys. Rev. D 50 (1994) 7603

In the past couple of years, we have progressed to the four-loop level. In the following, the

major breakthroughs and challenges will be presented, under the subjective light of my own

contributions to the field.
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Contents

1 Abstract 1

2 List of publications presented in this thesis 2

3 Introduction 4

4 Status of the QCD pressure: Details 10

4.1 Contributions from the ultra-soft scale g2T , i.e. from MQCD . . . . . . . . 11

4.2 Contributions from the soft scale gT , i.e. from EQCD . . . . . . . . . . . . 13

4.3 Contributions from the hard scale 2πT , i.e. from hard QCD . . . . . . . . . 15

4.4 Putting everything together . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Presentation of the papers 21

6 (External) References 28

7 Full list of own publications 31

8 Curriculum vitae 36

8.1 Scientific expert tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8.2 External Funding (“Drittmittel”) . . . . . . . . . . . . . . . . . . . . . . . 38

8.3 Teaching experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Reprints of publications [YS1] – [YS16] 41

i



Chapter 1

Abstract

In this cumulative Habilitation thesis, I have collected and discussed the publications that

came out of my research during the last five years.

Evolving around the main theme of weak-coupling expansions in Quantum Chromody-

namics (QCD) at finite temperature, one of the key achievements of this research line is the

successful implementation of four-loop perturbative computations.

This level of precision allows to make progress with the long-standing problem of incor-

porating long-distance contributions into the thermal QCD pressure, an observable that is

phenomenologically relevant in heavy ion physics, cosmology as well as astrophysics.

Furthermore, as an interesting example of technology transfer, the same higher-order

perturbative techniques could be applied to observables relevant for (zero-temperature) collider

physics, for example to the electroweak rho parameter, and to threshold effects of heavy quarks

in the strong coupling constant.
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Chapter 3

Introduction

• QCD

Quantum Chromodynamics (QCD) has been established more than 30 years ago, as the

theory that describes the strong interaction which binds quarks and gluons into hadrons, such

as protons and pions. Besides its overwhelming phenomenological success, QCD is one of

the most outstanding achievements of theoretical particle physics. Its property of asymptotic

freedom singles it out to be the only quantum field theory that is believed to be mathematically

well-defined.

However, QCD is extremely difficult to solve analytically. While its Lagrangian is for-

mulated in terms of quark and gluon fields, the hadronic world around us corresponds to

complicated bound states of these fundamental degrees of freedom. Indeed, even after more

than 30 years of intense efforts, the only hope for reliably deriving fundamental properties of

nature (such as the proton mass) from first principles are large-scale numerical lattice Monte

Carlo simulations. These numerical studies of the theory utilize the most powerful computer

systems available, and in fact even drive developments in computing technology.

QCD has deep consequences in other contexts (than hadrons) as well: Its properties

determine the expansion of the early universe, corresponding to times between 10−10s to

1s after the big bang, which is of clear phenomenological significance for relic densities of

various forms of dark matter appearing in cosmology [1]. Interestingly, in current and future

heavy ion collision experiments (RHIC, Brookhaven National Lab; LHC, CERN, starting 2007)

matter with properties similar to those in the early universe can be created and studied in

the laboratory, hinting towards a nearly ideal hydrodynamic expansion [2]. In another context,

QCD determines the properties of (extremely) dense matter, such as that in the cores of

neutron stars. Compact star phenomenology is of central interest in astrophysics, driven by
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many new observations.

The properties of a hot, expanding system (be it in heavy ion collisions or in cosmology)

are determined by the equation of state (EoS). In its conceptually simplest form, the EoS gives

the pressure p of the system as a function of the temperature T and the baryon chemical

potential µ. Other quantities such as energy density or baryon density can be derived from the

pressure via basic thermodynamic relations, rendering it one of the most fundamental objects

of finite temperature field theory.

• Pressure perturbatively

Given this motivation, there have been impressive efforts on the determination of the hot QCD

pressure over the past 25 years or so. Due to asymptotic freedom, at high enough temperatures

the coupling is guaranteed to be small. Hence, perturbation theory should become applicable,

and the pressure should be expressible as an expansion in the renormalized gauge coupling g. In

the extreme limit g → 0, one obtains the familiar Stefan-Boltzmann (SB) result, describing the

pressure of a gas of non-interacting particles. At phenomenologically relevant temperatures,

corrections to this limit become important.

The first of these corrections, being of orders O(g2) and O(g3), have been computed

already in 1978-79 [3, 4]. Showing very slow convergence, it was clear however that a deeper

expansion was needed. The next contribution, of O(g4 ln g), has been computed in 1983 [5].

Completing the full O(g4) result presented an outstanding challenge, however, that was only

met by a 3-loop calculation in 1994 [6]. It turned out that the next term in the series, O(g5),

was much more accessible [7]. The order O(g6) then represents another qualitative increase

in difficulty. As pointed out by Linde already in 1980 [8], at this order one meets genuine

infrared divergences, making this order inaccessible to a purely perturbative expansion.

Nevertheless, the availability of several orders in the expansion allows to experiment with

different resummations [9], in order to improve convergence properties. Another avenue is to

abandon the strict weak-coupling expansion, and try to find improved resummation schemes,

in the hope to achieve better convergence. There has been quite some impressive work along

these lines during the last few years (for a review, see [10]).

• Pressure on the lattice

Lattice Monte Carlo methods, on the other hand, have proven to work for determining the hot

QCD pressure, at least when the effects of quarks are neglected [11, 12], which formally rep-

resents the limit of QCD with infinitely heavy quarks. Unfortunately, this approach works only

up to rather low temperatures (T <∼ 1GeV, which is still small for cosmological applications).

Including the effects of light quarks into this numerical approach represents a formidable task,
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due to the difficulties of computing fermionic determinants, and due to the even harder sign

problem if one allows for non-zero chemical potential. First results in the same temperature

range are available, but they still contain uncontrolled systematic errors [13].

While the lattice approach to full QCD is plagued with the problems just mentioned, it is

worth noting that there are already definite qualitative results: It has become clear that there

is no sharp phase transition between the quark-gluon plasma phase at high temperatures and

our low-temperature hadronic world (for a recent review, see [14]). By adiabatically changing

the parameters (T , µ and quark masses m), one can smoothly change from one “phase”

to the other. Therefore, to learn about the different regions of the phase diagram, and to

understand under which circumstances QCD looks more hadronic than deconfined, it is not

anymore sufficient to concentrate on a small section around some “transition”, but rather to

try to sample the system’s behavior in as large a parameter range as possible.

• Combined method

One of the options to confront the difficult situation is to combine perturbative and numerical

methods. A key observation is that QCD at high temperatures is a multiscale system, exhibiting

three parametrically distinct momentum scales: the purely perturbative “hard” scale p ∼ 2πT ,

as well as the two “soft scales”, p ∼ gT, g2T , which are generated dynamically and are related

to collective plasma phenomena. Given this scale hierarchy, perturbation theory can be used

to construct effective field theories for the low-energy soft modes, a process that is called

dimensional reduction [15, 16, 17] since the effective theories turn out to be three-dimensional.

In practice, integrating out the hard modes p ∼ πT , (which in QCD amounts to all

quarks, as well as all gluonic degrees of freedom except for the so-called zero Matsubara

modes), one arrives at a three-dimensional (3d) effective theory containing the dynamical

scales p ∼ gT, g2T . This effective theory, being a 3d gauge theory coupled to an adjoint

Higgs field, is called “Electrostatic QCD” (EQCD). In principle one can go even further and

integrate out the soft modes p ∼ gT from EQCD, getting a 3d pure Yang-Mills theory,

containing the dynamical scale p ∼ g2T . This effective theory, dubbed “Magnetostatic QCD”

(MQCD), is purely non-perturbative [8] and hence has to be treated numerically, e.g. by lattice

Monte Carlo simulations.

Note that, since all effects of fermions have already been mapped out in the first reduction

step, numerical treatment is required only for a 3d purely bosonic theory within this setup, a

task that is evidently much more realistic than performing a full 4d QCD simulation. Hence,

one could hope to be able to apply the combined method in a wide temperature range, while

treating fully dynamical quarks with their physical properties (masses and chemical potentials).
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• Status

Motivated by the prospects of the combined method just described, we have tackled a number

of different open tasks that are needed to incorporate the longest-distance (MQCD) contri-

butions into the QCD pressure.

Notably, the logarithmically enhanced four-loop contributions from all scales are now

available [YS4], corresponding to O(g6 ln g) in the weak-coupling expansion of the pressure.

This result has in the meantime been generalized to include small chemical potentials [18].

Furthermore, a number of milestones on the way to the main goal, accounting for the full

orderO(g6), have already been reached, leaving a single well-defined perturbative computation

to be done, which does not pose any conceptual problems, but is technically demanding.

Apart from purely theoretical interest, reaching the full order O(g6) would greatly improve

the accuracy of the result for the pressure [YS4]. The main reason is that then, for the first

time, all physical length scales have contributed. In chapter 4, the present status of the QCD

pressure will be described in great detail.

• Methods

To include the logarithmically enhanced O(g6 ln g) contributions into the pressure [YS4], we

had to deal with evaluating four-loop vacuum graphs in perturbation theory. Hence, a large

amount of work had to be invested into implementing methods that could cope with the

corresponding level of complexity. To this end, we used the computer algebra program FORM

[19], which enabled us to deal with very large intermediate expressions. To start off, a method

for efficiently generating the Feynman graphs needed was implemented [YS2]. Faced with

millions of integrals to evaluate, we then constructed an automatized routine which, based on

the general method of integration by parts (IBP) [20] combined with lexicographic ordering

[21], reduced the huge number of different integrals to a few “master” integrals [YS3]. In

EQCD, these master integrals were then computed manually [YS5], while for MQCD (where

proper care had to be taken to screen infrared divergences), the relevant integrals have been

obtained manually first [YS6], and later been confirmed in a fully automated fashion [YS7]

utilizing the method of numerically solving recurrence relations [21] for the required class of

integrals.

To drive the precision towards inclusion of the full order O(g6), the techniques that are

needed span an even wider field. First of all, to determine the non-perturbative contribution

of MQCD, numerical simulations had to be performed [YS9]. To reach the continuum limit,

all ultraviolet divergences of the relevant operator had to be known, a task that in a 3d

theory can be performed exactly by computing a finite number of terms. This required a
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four-loop computation in lattice regularization [YS8], a daunting task that could however be

mastered by using a radically different expansion method, Numerical Stochastic Perturbation

Theory (NSPT) [22]. Furthermore, to match between the lattice and continuum regularization

schemes, a comparable lattice-regularized computation should be performed with properly

screened gauge field propagators. While the final result is not yet available, we have shown

that NSPT has the potential to deal with this challenge as well [YS14].

Furthermore, a number of purely perturbative (continuum-) matching parameters for the

effective theory setup are needed to a certain precision, requiring on the technical side the

systematic classification, reduction and evaluation of one- and two-loop sum-integrals without

[YS11] and with [YS16] masses and chemical potentials. Note that, at least for the massless

case, many sum-integrals have been evaluated up to the three-loop level already [6, 18]. The

final matching parameter to be computed requires the evaluation of four-loop sum-integrals.

It is unfortunately not yet clear which approach would be optimal for tackling this challenge,

be it an algorithmic reduction via IBP, a numerical treatment, or a combination of both, or

whether even a completely independent idea would be needed.

• Technology transfer

Apart from driving the knowledge of thermodynamic quantities to a new level, there are other

viable directions to put the acquired perturbative techniques to work. Generalizing the methods

of generating, reducing and integrating Feynman diagrams to allow for different actions and

observables, we were able to compute the two-loop static potential of QCD, checking existing

results in the singlet sector, while obtaining new results in the octet sector [YS10], which

naturally appears in computations of heavy quarkonium spectra and decay rates.

Another main avenue for “technology transfer” is the determination of corrections to

observables studied in collider physics. A first example is the R–ratio (defined as σ(e+e− →
hadrons)/σ(e+e− → µ+µ−) ), which is connected to the imaginary part of the photon self-

energy Π(q2) . A practical strategy to calculate its higher-order corrections is to compute

different limits, to then reconstruct the full answer using analyticity arguments and threshold

behavior [23]. The most difficult part of this program, the small–momentum expansion of

Π(q2) up to α3
s, requires the treatment of 4-loop vacuum integrals.

The next example are QCD corrections to the ρ–parameter, which is proportional to the

difference of the Z– and W–self-energies at zero momentum [24]. This fundamental parameter

is sensitive to e.g. m2
top through loop corrections, and hence requires an accurate theoretical

determination, in order to be a significant discriminator for ‘new physics’.

As a third example, note that threshold effects of heavy quarks in the running of the

strong coupling constant αs, conveniently parameterized by so-called decoupling parameters,
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are related to vacuum polarization functions at zero external momentum [25]. Being a most

fundamental parameter in the Standard model, it is clear that a precise knowledge of αs and

its scale dependence is needed, hence requiring high-order calculations.

In [YS12], [YS13] and [YS15] we have demonstrated the use of our methods in these

fields.



Chapter 4

Status of the QCD pressure: Details

The QCD pressure, being the central pillar of my research during the last few years, and hence

constituting the main driving force behind all technical development sketched above, certainly

deserves to be discussed in more detail. In this chapter, I will therefore present all necessary

details in a unified notation, while linking them to the papers presented here as well as to the

literature.

As already explained in the Introduction, thermal (equilibrium) QCD possesses three dis-

tinct physical scales, two of them generated dynamically. The contributions to the pressure

(and to any other thermodynamic observable) from each of these scales can be obtained from

carefully constructing and matching a series of effective theories ([26],[YS4]).

The theories under consideration are (hard) QCD, Electrostatic QCD (EQCD) and Mag-

netostatic QCD (MQCD), governing physics on length scales 1/T , 1/gT and 1/g2T , re-

spectively. While the first two are amenable to perturbative calculations, MQCD is purely

non-perturbative and has to be treated on the lattice. Viewing the gauge coupling g(T ) as

parametrically small (which is certainly justified at asymptotically high temperatures), these

three scales are well separated, and can hence be dealt with individually via the effective the-

ory setup. Schematically, for the pressure one can write pQCD = pE + pM + pG, where each

contribution depends on the matching scales. This scale-dependence will cancel in the sum,

rendering pQCD a well-defined physical observable.

Below, we specify the contributions to the MS pressure pQCD = pG + pM + pE [26] from

each physical scale individually, for the case of gauge group SU(Nc) and Nf quark flavors.

We will work at zero quark masses mqi
= 0 and vanishing chemical potentials µf = 0, and

display all dependence on the MS scale µ̄2 = 4πe−γ0µ2 by L ≡ ln µ̄
4πT

. Effects due to finite

quark masses ([4, 27],[YS16]) and chemical potentials [28, 18], as well as generalizations to

10
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the Standard Model [29] are available in the literature, but will not be discussed here.

4.1 Contributions from the ultra-soft scale g2T , i.e. from

MQCD

Ultra-soft physics is not accessible by perturbative methods, due to the unscreened transverse

gluonic sector, which would lead to severe infrared problems [8]. This sector is governed by a

three-dimensional pure gauge theory. Its only parameter is the dimensionful 3d gauge coupling

g2
M , which we write as ĝ2

M ≡ Ncg2
M

16π2T
. The screening length gets generated non-perturbatively,

making a numerical lattice Monte-Carlo treatment necessary. The detailed setup for how to

incorporate the ultra-soft contribution into the physical pressure by a carefully defined mixture

of perturbative and non-perturbative coefficients is explained in detail in [YS16]. The result

is

pG(T )

µ−2ε
= dA16π2T 4ĝ6

M

[
8αG

(
1

8ε
+ L + ln

N2
c

4πĝ2
M

+ 1

)
+

1

3

+ [pert]− [nspt] + [non-pert] +O(ε)
]
, (4.1)

where dA = N2
c −1, and αG = 43

96
− 157

6144
π2 ([YS4],[YS6]) is a perturbative 4-loop coefficient.

The three coefficients enclosed in square brackets originate from measuring the 3d YM pressure

on the lattice and matching the result to the MS scheme. To be more precise, they are the

following.

• The first number stems from a non-perturbative lattice Monte-Carlo measurement of

the 3d plaquette in pure SU(Nc) theory [YS9],

[non-pert] =
(4π)4

8dAN6
c

lim
β→∞

{
β4
〈
1− 1

Nc

Tr P
〉

a

−
[
c1β

3 + c2β
2 + c3β + c4 ln β

]}
(4.2)

= 10.7(4) at Nc = 3 ,

where β = 2Nc

g2
Ma

denotes the dimensionless lattice coupling, and c1..4 are divergences of the 3d

lattice-regularized plaquette which can be computed in lattice perturbation theory. They read

c1 =
dA

3
, (4.3)

c2 =
dA

(4π)2

(
−8π2

9
+ 5.25449N2

c

)
, (4.4)

c3 = dA

(
[0.04978944(1)] + [−0.04289464(7)]N2

c + [0.0147397(3)]N4
c

)
(4.5)
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= 6.8612(2) at Nc = 3 ,

c4 =
dAN6

c

(4π)4
64αG . (4.6)

The number in c2 is a sum of typical 2-loop (infinite–volume) lattice integrals ([30],[YS9]),

−2

3

(
Σ2

4
− πΣ− π2

2
+ 4κ1 +

2

3
κ5

)
≈ 5.25449 , (4.7)

with (K is the complete elliptic integral of first kind) ([31, 32],[YS9])

Σ =
1

π2

∫ π

0
d3x

1∑
i sin

2 xi

(4.8)

=
8

π

(
18 + 12

√
2− 10

√
3− 7

√
6
)
K2

(
(2−

√
3)2(

√
3−
√

2)2
)
≈ 3.1759114 , (4.9)

κ1 =
1

4π4

∫ π/2

−π/2
d3xd3y

∑
i sin

2 xi sin
2(xi + yi)∑

i sin
2 xi

∑
i sin

2(xi + yi)
∑

i sin
2 yi

≈ 0.958382(1) , (4.10)

κ5 =
1

π4

∫ π/2

−π/2
d3xd3y

∑
i sin

2 xi sin
2(xi + yi) sin2(yi)∑

i sin
2 xi

∑
i sin

2(xi + yi)
∑

i sin
2 yi

≈ 1.013041(1) . (4.11)

The coefficient c3 has been estimated by numerical stochastic perturbation theory (NSPT)

for Nc = 3 [YS8] and, with higher numerical accuracy and full Nc dependence, computed

from 3-loop diagrams in lattice perturbation theory [33]. In principle, it would be nice to know

the full Nc-dependence of Eq. (4.2).

• The second number stems from an estimation of (the sum of all) 4-loop vacuum di-

agrams in lattice perturbation theory by NSPT [22], with the IR divergence regulated by

massive gluon- and ghost-propagators (mass term m2

2
A2 and m2c̄c in the action) [YS14].

NSPT works on a finite lattice of volume (aL)3, so the infinite–volume limit has to be taken

first to ensure that the IR is regulated by the mass term only. A very preliminary result is [34]

[nspt] =
(4π)4

8dAN6
c

lim
am→0

lim
L→∞


〈
1− 1

Nc

Tr P
〉

am

∣∣∣∣∣
β−4 term

− c4 ln
1

am

 (4.12)

=
(4π)4

8dAN6
c

[
c′40 + c′41N

2
c + c′42N

4
c + c′43N

6
c

]
≈ 4π4

729
30 in Feynman gauge at Nc = 3 .

To match the precision obtained for [non-pert], this number should be estimated with at

least 2% accuracy. It would be nice to know all four coefficients, in Feynman gauge, either by

a direct diagrammatic evaluation, or by doing NSPT for (at least) four different values of Nc.

• The third number stems from a matching 4-loop computation in the (3−2ε)d continuum

theory, regulated in the IR by gluon- and ghost-masses, with gauge parameter ξ. Gauge
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dependence, introduced by the IR regulator, is guaranteed to cancel against that in [nspt].

The result reads

∑
[4loop YM vac diags] = g6dAN3

c

(
1

m
J
)4 {αG

ε
+ [pert] +O(ε)

}
(4.13)

where J is the 1-loop massive tadpole integral
∫
p 1/(p2 + m2). We choose Feynman gauge

ξ = 1 which here leads to modified propagators 1/p2 → 1/(p2 + m2), and obtain [35]

[pert] = −3.73134481146281478501 in Feynman gauge (4.14)

where the number can be expressed in terms of 18 fully massive 4-loop scalar master integrals

([YS3],[YS7]). For general ξ, we would have to calculate vacuum diagrams with two mass

scales (m2 and ξm2), which presently is beyond our computational capabilities.

The matching condition for the 3d gauge coupling reads ([36, 37],[YS11])

ĝ2
M ≡ Ncg

2
M

16π2T
= ĝ2

E

1− 1

12

ĝ2
E

m̂E

− 17

288

ĝ4
E

m̂2
E

− 2−n̂

24

ĝ2
Eλ̂

(1)
E

m̂2
E

− 3n̂−1

24

ĝ2
Eλ̂

(2)
E

m̂2
E

+O(
ĝ8

E

m̂3
E

),(4.15)

where n̂ ≡ N2
c−1
N2

c
. For the g6 pressure, only the leading coefficient is relevant.

4.2 Contributions from the soft scale gT , i.e. from EQCD

Soft-scale physics is governed by a three-dimensional gauge theory, coupled to an adjoint Higgs

field. This adjoint Higgs theory possesses a small number of dimensionful coupling constants,

which are related to the parameters of full QCD (being g2 and T ) by the equations given

below. The contribution of this sector to the pressure is given by

pM(T )

µ−2ε
= dA16π2T 4

{
m̂3

E

[
1

3
+O(ε)

]
+ ĝ2

Em̂2
E

[
− 1

4ε
+
(
−L +

1

2
ln m̂2

E + ln 2− 3

4

)
+O(ε)

]
+ ĝ4

Em̂E

[(
−89

24
− π2

6
+

11

6
ln 2

)
+O(ε)

]

+ ĝ6
E

[
αM

(
1

ε
+ 8L− 4 ln m̂2

E − 8 ln 2
)

+ βM +O(ε)
]

+ λ̂
(1)
E m̂2

E

[
n̂− 2

4
+O(ε)

]
+ λ̂

(2)
E m̂2

E

[
1− 3n̂

4
+O(ε)

]
+ O(ĝ8

Em̂−1
E , λ̂2

Em̂E)
}

, (4.16)
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with the 4-loop coefficients αM = 43
32
− 491

6144
π2, βM = −311

256
− 43

32
ln 2 − 19

6
ln2 2 + 77

9216
π2 −

491
1536

π2 ln 2 + 1793
512

ζ(3) + γ10 = −1.391512 [YS5], where γ10 is the leading coefficient of a

finite 3d scalar 4-loop integral that is known numerically only [YS5],

γ10 = (4π)4
∫ ∞

−∞

d3x1

(2π)3

d3x2

(2π)3

d3x3

(2π)3

d3x4

(2π)3

1

(x1 − x3)2

1

(x2 − x3)2
×

× 1

x2
1 + 1

1

x2
2 + 1

1

(x1 − x4)2 + 1

1

(x2 − x4)2 + 1

1

(x3 − x4)2 + 1
(4.17)

= 0.171007009753(1) , (4.18)

and the matching parameters are [31, 26]

m̂2
E ≡

(
mE

4πT

)2

= ĝ2
[
α̃E4 + (2α̃E4L + α̃E5) ε +O(ε2)

]
+ ĝ4

[(
2β̂0α̃E4L+α̃E6

)
+(6β̂0α̃E4L

2+β̃
(L)
E2 L+β̃E2)ε+O(ε2)

]
+ O(ĝ6) , (4.19)

ĝ2
E ≡

Ncg
2
E

16π2T
= ĝ2 + ĝ4

[(
2β̂0L + α̃E7

)
+ (2β̂0L

2 + 2α̃E7L + β̃E3)ε +O(ε2)
]

+ ĝ6
[
4β̂2

0L
2 + 2

(
β̂1 + 2β̂0α̃E7

)
L + γ̃E1 +O(ε)

]
+O(ĝ8) , (4.20)

λ̂
(1)
E ≡ N2

c λ
(1)
E

16π2T
= ĝ4 [4 +O(ε)] +O(ĝ6) , (4.21)

λ̂
(2)
E ≡ Ncλ

(2)
E

16π2T
= ĝ4

[
4

3
(1− z) +O(ε)

]
+O(ĝ6) , (4.22)

where we have used the beta-function coefficients β̂0 = 11−2z
3

, β̂1 = 34
3
− 10

3
z − zn̂ and, for

brevity, set z ≡ Nf/Nc. Writing Zn ≡ ζ ′(−n)/ζ(−n), the coefficients read [26, 16, 38]

α̃E4 =
2 + z

6
, (4.23)

α̃E5 = 2α̃E4Z1 +
z

6
(1− 2 ln 2) , (4.24)

α̃E6 =
1

3
α̃E4(6β̂0γ0 + 5 + 2z − 8z ln 2)− z

2
n̂ , (4.25)

α̃E7 = 2β̂0γ0 +
1

3
− 8

3
z ln 2 , (4.26)

as well as ([39],[YS11])

β̃
(L)
E2 = 4β̂0α̃E4(2γ0 + Z1) +

1

9
(20 + 29z + 2z2)− 2z (n̂ + 3 ln 2)− 4

3
z2 ln 2 ,(4.27)

β̃E2 =
1

4
β̂0α̃E4

(
+π2 − 16γ1

)
+

2

3
α̃E4Z1(6β̂0γ0 + 5 + 2z − 8z ln 2)

+
2

9
γ0(5 + 10z − (19 + 2z)z ln 2) +

2

9
+

z

18
(7 + 6 ln 2− 16 ln2 2)
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+
z2

9
(1− 2 ln 2 + 4 ln2 2)− z

6
n̂(3 + 6γ0 + 6Z1 + 10 ln 2) , (4.28)

β̃E3 =

(
π2

4
− 4γ1

)
β̂0 +

2

3
γ0 −

8

3
ln 2(ln 2 + 2γ0)z , (4.29)

γ̃E1 = 2β̂1γ0 + α̃2
E7 +

341

18
− 10

9
ζ(3)

− z

9
(43 + 24 ln 2 + 5ζ(3))− z

12
n̂(23 + 80 ln 2− 14ζ(3)) , (4.30)

where the γn are expansion coefficients of the Zeta function ζ(1−ε) = −1
ε
+
∑∞

n=0
εn

n!
γn (note

that γ0 ≡ γE = 0.577216). For the g6 pressure, the ĝ6 terms of Eq. (4.20) are irrelevant.

4.3 Contributions from the hard scale 2πT , i.e. from hard

QCD

Hard-scale physics can be treated perturbatively, in a simple g2-expansion, without the need

for resummations, thermal masses, or hard thermal loops. This is due to all IR effects being

properly incorporated into EQCD and MQCD, and is one of the main conceptual advantages

of using the effective theory setup. The contribution to the pressure from hard momentum

scales reads

pE(T )

µ−2ε
= dA16π2T 4 1

16

1

45

{
α̃E1 + ĝ2 [α̃E2 +O(ε)]

+ ĝ4
[
α̃E4

180

ε
+ (180 · 6α̃E4 + 2β̂0α̃E2)L + α̃E3 +O(ε)

]

+ ĝ6

 β̃
(div)
E1

ε
+ β̃

(L2)
E1 L2 + β̃

(L)
E1 L + β̃E1 +O(ε)

+O(ĝ8)

 , (4.31)

with ideal-gas coefficient α̃E1 = 1 + 7
4

z
n̂

, α̃E2 = −5
4
(4 + 5z) [3], and [6]

α̃E3 = 180(α̃E4)
2γ0 + 5

[(
116

5
+

220

3
Z1 −

38

3
Z3

)
+

z

2

(
1121

60
− 157

5
ln 2 +

146

3
Z1 −

1

3
Z3

)
+

z2

4

(
1

3
− 88

5
ln 2 +

16

3
Z1 −

8

3
Z3

)
+

z

4
n̂
(

105

4
− 24 ln 2

)]
, (4.32)

and unknown coefficients βE1, which can be determined e.g. by a 4-loop computation of

vacuum diagrams in thermal QCD. Since pQCD is physical, the divergent and scale-dependent

parts of βE1 are related to the other coefficients introduced in the above, serving as a valuable
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check on this open computation. Specifically, from 2-loop running of the 4d gauge coupling

ĝ2 ≡ Ncg
2(µ̄)

16π2
= ĝ2(µ̄0) + ĝ4(µ̄0)(−2β̂0`) + ĝ6(µ̄0)(4β̂

2
0`

2 − 2β̂1`) , (4.33)

where ` ≡ ln µ̄
µ̄0

= L− ln µ̄0

4πT
, one can already fix

β̃
(div)
E1 = 180

[
4β̂0α̃E4L + α̃E6 + α̃E4α̃E7 − 4(αG + αM)

]
, (4.34)

β̃
(L2)
E1 = 180

[
28β̂0α̃E4

]
+ 4β̂2

0 α̃E2 , (4.35)

β̃
(L)
E1 = 180

[
4α̃E6 + 8α̃E4α̃E7 − 2β̂0α̃E5 − 32(αG + αM) + β̃

(L)
E2

]
+ 2β̂1α̃E2 + 4β̂0α̃E3 . (4.36)

The remaining g6-coefficient, β̃E1 however, entails a four-loop computation of all connected

vacuum diagrams involving quarks, gluons and ghosts, a computation that has so far not

been tackled due to the formidable task of solving many genuine 4-loop sum-integrals. From

diagrammatic arguments, it is clearly a polynomial in z = Nf/Nc,

β̃E1 = #0 + z#1 + z2#2 + z3#3 , (4.37)

and we will in the following indicate how two of its coefficients (the first and last) can be

crudely estimated numerically already.

4.4 Putting everything together

Expanding in ε, all poles cancel, as they should. In practice we make use of Eqs. (4.15),(4.19)

and (4.20) to re-expand all terms with a factor 1/ε or L in Eqs. (4.1) and (4.16) in terms of

ĝ2. After cancellation of the poles (and taking into account terms like 1
ε
· ε), we can now take

the limit ε → 0 in Eqs. (4.19), (4.20), whence

m̂2
E = ĝ2α̃E4 + ĝ4

[
2β̂0α̃E4L + α̃E6

]
+O(ĝ6) , (4.38)

ĝ2
E = ĝ2 + ĝ4

[
2β̂0L+α̃E7

]
+ ĝ6

[
4β̂2

0L
2+2

(
β̂1+2β̂0α̃E7

)
L+γ̃E1

]
+O(ĝ8) . (4.39)

Collecting explicit logarithms L, they precisely cancel the scale dependence of ĝ2 up to

the order of the computation, and can hence be absorbed by writing

g̃2 = ĝ2 + ĝ42β̂0L + ĝ6(4β̂2
0L

2 + 2β̂1L) +O(ĝ8) . (4.40)
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Figure 4.1: Left panel: The normalized QCD pressure pQCD/pSB at Nf = 0 plotted versus the

effective coupling g̃ from Eq. (4.40). The g̃6 coefficient depends on an unknown parameter ∆

as defined in Eq. (4.45), and the different curves correspond to choosing ∆ = −2000 (lowest

curve) to ∆ = +12000, in steps of 2000. Left panel: The same, plotted versus ln T
Tc

. The

black dots correspond to lattice data from [11].

Note that this coupling is explicitly scale independent to the order we are working, ∂ln µ̄2 g̃2 =

O(g̃8). We now have the full pressure as a sum of its ultra-soft, soft and hard parts as

pQCD = dAπ2T 4
{
16p̂us + 16p̂s +

1

45
p̂h

}
, (4.41)

p̂us = ĝ6
M

[
8αG

(
ln

N2
c

4πĝ2
M

+ 1

)
+

1

3
+ [pert]− [nspt] + [non-pert]

]
, (4.42)

p̂s = m̂3
E

1

3
+ ĝ2

Em̂2
E

[
ln(2m̂E)− 3

4

]
+ ĝ4

Em̂E

[
−89

24
− π2

6
+

11

6
ln 2

]

+ ĝ6
E [βM − 8αM ln(2m̂E)] + λ̂

(1)
E m̂2

E

n̂− 2

4
+ λ̂

(2)
E m̂2

E

1− 3n̂

4
, (4.43)

p̂h = α̃E1 + g̃2α̃E2 + g̃4 [α̃E3 − 180α̃E5]

+ g̃6
[
β̃E1 − 180

(
β̃E2 + α̃E4β̃E3 + α̃E5α̃E7

)]
. (4.44)

The g6 coefficient of pQCD hence depends on a constant

∆ ≡ β̃E1 ± 720δNP ± 384.826δNSPT , (4.45)

where we recall that β̃E1 stands for the result of the open 4-loop computation, and the δ

parameterize the error-bars of the numerical constants from Eqs. (4.3,4.13) as [10.7 ± δNP]

and [30 ± δNSPT], respectively. Assuming that the NSPT computation will finally have an

error-bar of about 2%, which is comparable in precision to the lattice error-bar δNP = 0.4,

∆ = β̃E1±600. In the following, we will for simplicity set δNP = δNSPT = 0, remembering the

induced error-bar on β̃E1. Using the same coupling as in ph, the above matching conditions
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now read

m̂2
E = g̃2α̃E4 + g̃4α̃E6 +O(g̃6) , (4.46)

ĝ2
E = g̃2 + g̃4α̃E7 + g̃6γ̃E1 +O(g̃8) , (4.47)

λ̂
(1)
E = g̃44 +O(g̃6) , (4.48)

λ̂
(2)
E = g̃4 4

3
(1− z) +O(g̃6) . (4.49)

We would now like to plot the result for pQCD. Identifying the non-interacting (ideal-

gas; Stefan-Boltzmann) limit as pSB = dAT 4 π2

45
α̃E1, we could display the normalized pressure

pQCD/pSB as a function of the coupling g̃, for fixed Nf . This is done in the left panel of Fig. 4.1,

at Nf = 0 and for various ∆. Our goal, however, should be to try to make contact to existing

lattice determinations of the full pressure, where typically pQCD/pSB is given as a function of

T/Tc. Continuum-extrapolated lattice data exist for Nf = 0 only, so in the following we will

restrict to this special case. Aiming for this rather phenomenological comparison, we evidently

need to make some choices, specified below.

We use the running 4d coupling from the exact solution of the 2-loop RGE equation,

ĝ2(µ̄) =
−β̂0/β̂1

1 + W−1

(
− β̂2

0

β̂1
exp

[
−1− 2

β̂2
0

β̂1
(L + ln 4πT

Λ
MS

)
]) . (4.50)

Here, W−1(z) is one of the two real branches of the Lambert W function (see e.g. [40] and

the left panel of Fig. 4.2; W (z) is the function that satisfies W exp(W ) = z). Note that

the above solution entails two choices: The branch of the W -function and the integration

constant were chosen in accord with asymptotic freedom (note that the argument of W

→ 0− for µ̄ → ∞) and the ‘usual’ definition of ΛMS (being the absence of a 1/ ln2 µ̄ term

in the asymptotic expansion of ĝ(µ̄) at large µ̄). Indeed, at large L̂ = ln µ̄
Λ

MS
the expansion

W−1(−ε) = ln ε− ln ln 1
ε
+O(1/ ln ε) reproduces ĝ2(µ̄) = 1/(2β̂0L̂+ β̂1

β̂0
ln(2L̂)+O(L̂−1)) =

1
2β̂0L̂

− β̂1 ln(2L̂)

4β̂3
0 L̂2 +O(L̂−3) , in accord with e.g. Ref. [41].

Although in principle all dependence on the renormalization scale µ̄, entering through L,

is of higher order, in practice we need to fix it once we need numerical values for the coupling

g̃. Following [YS11], we choose the scale µ̄ by the principle of minimal sensitivity applied to

the 1-loop result for ĝ2
E, and then estimate the scale-dependence by a variation of a factor

of δµ = [0.8..2.0] around this µ̄opt, obtaining L = − α̃E7

2β̂0
+ ln µ̄

µ̄opt
. The slightly asymmetric

choice of δµ here reflects the fact that the 1-loop ĝ2
E falls off more steeply on one side of the

plateau than on the other.

To compare with continuum-extrapolated lattice data [11], we use Tc

Λ
MS

= 1.22 δTc where

δTc = [0.9..1.1] encompasses the central values and error bars of estimates of this quantity
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Figure 4.2: Left panel: The two real branches of W (z) versus z. The upper (dashed) branch

is W0(z), the lower (solid) branch is W−1(z). Right panel: The effective coupling g̃ from

Eq. (4.40) plotted versus ln T
Tc

, using the choices explained in Sec. 4.4. The upper/lower curve

corresponds to the uncertainty in scale choice stemming from fixing µ̄ and determining Tc/ΛMS

with (δµ, δTc) = (2.0, 0.9)/(0.8, 1.1), the bigger effect coming from the latter parameter.

from different lattice collaborations (for a summary of the different methods and results, see

[YS11]). This would translate into a horizontal error bar for the lattice data when plotted

against T/ΛMS.

In the right panel of Fig. 4.2, we have plotted the effective coupling g̃ as defined in

Eq. (4.40), converted to a function of ln T
Tc

. Note that its value is smaller than 0.2 even at

Tc.

The normalized pressure pQCD/pSB, converted to a function of ln T
Tc

along the lines above,

is displayed in the right panel of Fig. 4.1. For comparison, the continuum-extrapolated lattice

data of Ref. [11] has been included as black dots. The figure suggests a value for the Nf = 0

coefficient of the unknown constant β̃E1, #0 ≈ 8500 ± 600, bearing in mind the error bar

defined in Eq. (4.45).

4.5 Outlook

We have currently no idea what the 4-loop hard-scale coefficient β̃E1 is, even though it can

be computed diagrammatically. As already mentioned above, it should be a polynomial in

z = Nf/Nc, β̃E1 = #0 + z#1 + z2#2 + z3#3, where only a single (ring) diagram contributes

to #3, suggesting it as the first test-case for 4-loop sum-integral technology.

It seems possible to give an estimate of the highest-Nf contribution to β̃E1 from the

large-Nf solution for the pressure, since terms of order g6N3
f originate from the hard-
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scale pressure pE only. In [42] this was attempted by fitting the numerically known ex-

act large-Nf pressure with a polynomial in g. This results in #3 = 45
8π2 [+20(2)] −

20
9

ln 2
(
1 + 12γ0 − 364

5
ln 2 + 16Z1 − 8Z3

)
≈ [+36(1)], where the terms proportional to ln 2

originate from translating the choice of renormalization scale µ̄ = πT of [42] to our definition

of β̃E1, where powers of L = ln µ̄
4πT

were subtracted out.

Furthermore, fitting the full g6 pressure at Nf = 0 and Nc = 3 to lattice data around 4Tc

[11] suggests a value #0 ≈ 8500±600, if one takes the conjecture for granted that all higher-

order corrections sum up to a subdominant contribution. There is no guarantee whatsoever

that this conjecture holds, making a perturbative computation of the #i unavoidable. We

take the above check against the lattice data as indication that the effective theory setup has

a chance to analytically describe the transition from temperatures as low as a few times Tc

to infinite temperatures, in terms of computable corrections to the ideal-gas limit.



Chapter 5

Presentation of the papers

with identification of own contributions

• [YS1] Resumming Long-Distance Contributions to the QCD Pressure

In this paper, we propose a method for summing the slowly convergent perturbative series

for the QCD pressure by employing numerical lattice Monte Carlo techniques within EQCD.

The idea is to perform a lattice measurement of the adjoint Higgs condensates 〈Tr A2
0〉 and

〈(Tr A2
0)

2〉 along a line in the EQCD parameter space that corresponds to keeping 4d physics

fixed. This has to be supplemented with two perturbative computations of those condensates,

in lattice and continuum regularization schemes, respectively, allowing then for taking the

continuum limit, and for subtracting out the scheme difference. Note that the condensates

are nothing but different derivatives of the EQCD pressure, making it possible to integrate

back to the pressure.

While this “derivative method” is employed in 4d simulations of the full pressure as well,

there is an important conceptual difference: while in 4d, the integration constant is fixed to be

zero at some small temperature, hence introducing an ambiguity (which is numerically small

however), we can fix the 3d integration constant perturbatively at very high temperature, in

principle to arbitrary precision. In practice, there remains sensitivity to unknown higher-order

coefficients in that integration constant of course, which can (and do) become relevant when

they are evolved to lower temperatures.

Having the status of a proof of principle, this paper offers a number of possible extensions,

such as including higher-order perturbative corrections, and/or other condensates, which will

hopefully be attacked in the near future.

My main contribution to the project was on the perturbative and the conceptual sector,

21
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while I was not involved in the lattice simulation part.

• [YS2] Simple way to generate high order vacuum graphs

The enumeration of Feynman diagrams contributing to a specific loop order together

with a derivation of the accompanying symmetry factors seems to be the ’trivial’ part of

any perturbative calculation. At higher orders, it is our experience however that an efficient

algorithmic setup of this initial step proves necessary. This does not only assure completeness

of the required set of diagrams, but it also has the potential of streamlining the subsequent

integration step considerably by grouping together sets of related diagrams, thereby avoiding

an unnecessary repetition of subdiagram computations.

The main idea is to utilize the very efficient notion of skeleton (2-particle-irreducible,

2PI) diagrams to achieve the above-mentioned grouping (into so-called skeleton and ring

diagrams). For simplicity, let us explain the main point using a generic bosonic φ3 +φ4 theory

here. The skeleton expansion for the free energy as a functional of the full propagator D reads

−F [D] = −1

2

(
Tr ln D−1 + Tr Π[D]D

)
+ Φ[D] .

Here Φ[D] collects all 2PI vacuum diagrams. The full propagators D are related to their

corresponding self-energies by D−1 = ∆−1 − Π where ∆ are the free propagators. The

partition function has an extremal property, such that the variation of F with respect to the

full propagator vanishes, giving a relation between skeletons and self-energies, ∂D Φ[D] =
1
2

Π[D]. Pictorially, this corresponds to obtaining a self-energy by “cutting a propagator” in

all possible ways in the set of vacuum skeletons. Hence, knowing the skeletons alone provides

full information.

In this paper, we have succeeded in giving a closed formula from which all skeletons can

be generated. This is most useful for an algorithmic implementation, and even systematizes

the generation of combinatorical (“symmetry”) factors in an efficient way.

I was involved in all levels of this project.

• [YS3] Automatic reduction of four-loop bubbles

In this paper, I report on an implementation of an algorithm that reduces two generic

classes of (up to) four-loop vacuum Feynman integrals to a small number of so-called master

integrals. To be more explicit, these classes are single-mass-scale scalar momentum integrals,

whose integrands consist of products of either fully massive scalar progagators 1/(p2 + m2),

or of a mixture of massive and massless propagators.

While the general method, relying on integration by parts and lexicographic ordering, is

much more flexible, these specific examples have been chosen since they are precisely the
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structures that arise in the two effective theories EQCD and MQCD. For both classes, I

have identified the relevant master integrals, opening the way to tackle this important set of

integrals in realistic higher-loop calculations.

I am the only author of this paper.

• [YS4] Pressure of hot QCD up to g6 ln(1/g)

In this paper, we report on the successful calculation of the highest coefficient for the

QCD pressure that can be computed in perturbation theory alone. It corresponds to the

logarithmically enhanced four-loop contributions. This computation combines a number of

different highly technical steps (such as higher-order vacuum diagram generation, automatized

algebra, reduction to master integrals, and actual analytic evaluation of the latter) for the

first time, in a physically relevant setup. Most of the details are given in the other papers

discussed here.

Phenomenologically, the result gives very encouraging hints that the effective theory setup

does indeed have a chance to correctly describe the pressure in a huge temperature interval,

once the full order O(g6) is known.

I assumed a key role in most calculations needed for the realization of this project.

• [YS5] Four–loop vacuum energy density of the SU(Nc) + adjoint Higgs

theory

Here, we give details about a well-defined subset of the calculation needed in the previous

paper. We provide explicit expressions for the vacuum energy density of EQCD, and not only

enumerate the EQCD parameters that will be needed for the full O(g6) of the QCD pressure,

but also give most of them in an analytic form.

Furthermore, we discuss the evaluation of master integrals in an expansion around d =

3−2ε dimensions in quite some detail, providing formulae which are useful for a more generic

set of massive integrals than the specific ones we encountered in this concrete calculation.

I assumed a key role in most calculations needed for the realization of this project.

• [YS6] Tackling the infrared problem of thermal QCD

Here, I give details about a well-defined subset of the calculation needed in [YS4]. I

discuss the steps that have been performed in order to get the MQCD contribution the the

four-loop logarithmically enhanced terms in the QCD pressure.

While the generic techniques that were employed are in complete analogy to the those

decribed above, I would like to highlight one very interesting point that occurred in the

computation: While the final result for the overall divergence of the sum of all diagrams
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seemed to contain finite parts of fully massive four-loop master integrals that are not yet

known, checking the cancellation of the gauge parameter (in principle a 9th order polynomial)

revealed one linear relation between those unknowns. This linear relation then in fact absorbed

all unknowns from the final result.

I am the only author of this paper.

• [YS7] High-precision evaluation of four-loop vacuum bubbles in three dimen-

sions

In this work, we employ an interesting and very generic method to numerically compute

ε expansions of master integrals to – in principle – arbitrary depth and precision. We test this

algorithm on the set of fully massive scalar vacuum integrals in 3d, which corresponds to the

integrals needed for (the properly infrared-regularized version of) MQCD, and obtain many

new coefficients.

The technique starts from deriving recurrence relations for suitably generalized master

integrals, introducing one extra dimensionless parameter. To derive these recurrence relations,

we use techniques analogous to those that were employed for the reduction step in earlier

calculations. After formally solving a hierarchy of recurrence relations in terms of factorial

series and computing a sufficient number of initial (or boundary) values, the infinite series

representing each master integral can be truncated, and the remaining finite (but large)

number of terms can then be summed up numerically.

I was responsible for all but the last (numerical) part of this project.

• [YS8] 3-d lattice Yang-Mills free energy to four loops

Lattice perturbation theory can be useful to evaluate renormalization constants, and to

match between lattice and continuum schemes, in order to permit incorporating lattice mea-

surements into the (continuum) QCD pressure. Due to superrenormalizability, a 3d theory

can actually be renormalized exactly, to all orders, by only computing a finite number of

potentially divergent diagrams. To complete the renormalization program for the plaquette

in 3d pure gauge theory, the four leading terms of its expansion around the continuum limit

(β = 2Nc/(ag2) →∞) are actually needed,

〈1− ΠP 〉 =
c1

β
+

c2

β2
+

c3

β3
+

c4

β4
+ . . . .

Doing a diagrammatic expansion in lattice regularization to this order seems to be a formidable

problem.

Using the method of Numerical Stochastic Perturbation Theory (NSPT), however, allows

to obtain numerical estimates for these coefficients, which might be sufficiently precise for
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practical use. In this paper, we determine all four coefficients by this method, with an error

that increases with the loop order, and reaches about 1.5% for c4.

I played a rather minor role in this project, delivering perturbative (continuum) coefficients,

and being more involved on the conceptual level. All numerical work originates from my

collaborators.

• [YS9] Plaquette expectation value and gluon condensate in three dimensions

To obtain the non-perturbative contribution to the QCD pressure, we perform lattice

measurements in MQCD. The observable we consider here is the elementary plaquette ex-

pectation value. As already mentioned above, the theory being super-renormalisable, one can

match the lattice regularization scheme exactly to the continuum (MS) scheme. This requires

a perturbative 4-loop computation on the lattice which, unfortunately, has not been completed

yet. Knowing all the divergences, we could however already perform a stable continuum limit,

getting a result that awaits the perturbative coefficient.

I played a minor role only in this project, since I was not involved in the large-scale

numerical simulations that formed the core of it.

• [YS10] Two-loop static QCD potential for general colour state

This paper summarizes a non-trivial 4d calculation, which could interestingly be per-

formed by a generalization of the techniques that were discussed above in the framework of

dimensionally reduces effective theories.

As a result, while checking an older result for the static singlet potential, we were able to

obtain a new coefficient for the octet case at the two-loop level.

I assumed a key role in most calculations needed for the realization of this project.

• [YS11] Two-loop QCD gauge coupling at high temperatures

We determine new coefficients for two of the matching coefficients that occur in the

dimensional reduction step from QCD to EQCD, via a systematic expansion in the gauge

coupling. Some of the obtained coefficients contribute to the O(g6) part of the pressure, and

hence represent further building blocks on the road to this level of precision.

Knowing the relation between QCD and EQCD gauge couplings to this precision actually

allows to assess the performance of the effective theory setup by comparing predictions for

the spatial string tension to 4d lattice measurements of the same quantity. We find good

agreement, down to surprisingly low temperatures.

I was involved in all parts of this project.
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• [YS12] High-precision epsilon expansions of single-mass-scale four-loop vac-

uum bubbles

Following the same strategy employed already in the 3d paper [YS7], we now obtain

numerical results for expansions of master integrals in four dimensions. We treat a larger

class of integrals here, to set the stage for actual four-loop computations in the framework

of Standard Model precision tests. As a service to the community, we furthermore collect all

results that are known analytically, making them available in computer-readable form as well.

As an amusing twist, we even used the integer-relation finding algorithm PSLQ combined

with educated guesses about the number content of certain integrals, to uncover analytical

values from our high-precision numerics. Most of these new analytical values have now been

proven to be correct by completely orthogonal methods.

I was responsible for all but the numerical part of this project.

• [YS13] Four-loop singlet contribution to the electroweak rho parameter

The electroweak ρ parameter measures the relative strengths of the charged and neutral

currents. Being a parameter vital for precision tests of the Standard Model, we have determined

a (gauge-invariant) subset of four-loop contributions. The choice of our class of diagrams is

motivated by the relatively large contribution of the corresponding set at the 3-loop level.

Again, we were able to use all the computational technology outlined above even in this

4d setting. As a result, we find a satisfyingly small correction to the ρ parameter, signalling

good convergence of the perturbative series.

I assumed a key role in most calculations needed for the realization of this project, except

for the diagram generation step.

• [YS14] Four-loop plaquette in 3d with a mass regulator

This paper documents a generalization of the above Ref. [YS8]. Aiming at fully incor-

porating MQCD into the QCD pressure, note that there is a small twist: In the absence of

sufficient infrared screening of the 3d gluonic fields, for technical reasons a mass term had to

be introduced into the continuum calculation, cf. [YS6]. Hence, to cancel the induced effect,

the perturbative matching computation on the lattice side has to be performed with exactly

the same regulator.

Hence, we demonstrate that NSPT is capable of dealing with a massive regulator. While

we analyze data up to the three-loop level only, it becomes clear that, given a sufficient amount

of computing time, the four-loop result that is needed to match the continuum scheme in

MQCD can be obtained with this method.
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Again, my role in this project was delivering perturbative (continuum) coefficients, and

being involved on the conceptual level.

• [YS15] Four-Loop decoupling relations for the strong coupling

The strong coupling constant αs is a most fundamental parameter in the Standard Model.

Its precise value as well as scale dependence are vitally important for many theoretical pre-

dictions. To incorporate effects of heavy quarks into its running, it is convenient to define

matching (or decoupling) parameters, which arise from comparing an effective (Nf−1)-quark

theory with the original one. As usual, this matching can be performed accurately in pertur-

bation theory.

Like above, we could make use of our reduction and integration techniques, enabling us

to write down an analytic value for the four-loop correction to the decoupling constant for αs.

I assumed a key role in most calculations needed for the realization of this project, except

for the diagram generation step.

• [YS16] Quark mass thresholds in QCD thermodynamics

We derive two-loop expressions for some of the coefficients entering the QCD pressure in

the effective theory setup, including quark masses mi and chemical potentials µi. Our results

can be given in terms of a minimal set of basic integrals, which in certain limits like T → 0

or mi → 0 reduce to analytically known terms.

These general expressions then allow us to give phenomenological results for thermody-

namic quantities for QCD and the Standard Model, accounting correctly for physical quark

mass effects.

I was involved in most calculations needed for the realization of this project.
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[35] Y. Schröder, unpublished.

[36] K. Farakos, K. Kajantie, K. Rummukainen and M. E. Shaposhnikov, Nucl. Phys. B 425

(1994) 67.

[37] P. Giovannangeli, Phys. Lett. B 585 (2004) 144; Nucl. Phys. B 738 (2006) 23.

[38] S. z. Huang and M. Lissia, Nucl. Phys. B 438 (1995) 54; ibid. 480 (1996) 623.
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The strict coupling constant expansion for the free energy of hot QCD plasma shows bad convergence
at all reasonable temperatures, and does not agree well with its 4D lattice determination. This has recently
led to various refined resummations, whereby the agreement with the lattice result should improve, at the
cost of a loss of a formal agreement with the coupling constant expansion and particularly with its large
infrared sensitive “long-distance” contributions. We show here how to resum the dominant long-distance
effects by using a 3D effective field theory, and determine their magnitude by simple lattice Monte Carlo
simulations.

DOI: 10.1103/PhysRevLett.86.10 PACS numbers: 11.10.Wx, 11.10.Kk, 12.38.Gc, 12.38.Mh
Introduction.—At temperatures above 200 MeV, the
properties of matter described by the laws of QCD are
expected to change. The system should look more like a
collection of free quarks and gluons than a collection of
their bound states, such as mesons. It is a challenge to find
observables which would clearly manifest this change,
and hopefully also be directly or indirectly measurable in
heavy ion collision experiments.

From the theoretical point of view, one of the simplest
observables witnessing the change is the free energy of
the plasma, or its pressure [1]. Indeed, according to the
Stefan-Boltzmann law, the value of the free energy counts
the number of light elementary excitations in the plasma,
be they quarks and gluons, or mesons.

The reality is somewhat more complicated. Interactions
change the Stefan-Boltzmann law, so that pressure is no
longer proportional to the number of degrees of freedom.
And in fact, interactions are strong. An explicit compu-
tation of the free energy to order O �g5T4� [2–4] shows
that there are large corrections, with alternating signs, such
that convergence is poor at any reasonable temperature. Of
course, at least without light dynamical fermions, the full
pressure can still be obtained with 4D finite temperature
lattice simulations [1]. However, in order to really under-
stand the properties of the QCD plasma phase, one should
also have some analytical understanding of the origin of
this result.

A way of at least understanding why the convergence
is poor is the observation that, when as � g2��4p� ø 1,
the system undergoes dimensional reduction [4–9], and its
static long wavelength “soft” or “light” degrees of freedom
can be described by a three-dimensional (3D) effective
field theory,

L3D �
1
2 TrF2

ij 1 Tr�Di , A0�2 1 m2
D TrA2

0 1 lA�TrA2
0�2,

where m2
D � g2T2, lA � g4T are parameters computed

perturbatively up to optimized next-to-leading-order level
0031-9007�01�86(1)�10(4)$15.00
(see below). This effective theory is confining, and there-
fore nonperturbative [10,11]. In [4], L3D was used to re-
produce the perturbative free energy up to order O �g5T4�
[2,3], and the bad convergence was shown to be due pre-
cisely to these degrees of freedom.

Our objective here is to study the free energy of QCD
by including the dominant, badly convergent contributions
from L3D nonperturbatively, to all orders, by using lattice
Monte Carlo simulations. In this way, we can find out
how important the combined effect of the badly convergent
series really is in the free energy.

It is important to keep in mind that infrared sensitive ef-
fects can be different in various quantities. For instance,
the free energy is dominated by ultraviolet degrees of free-
dom, and the long-distance effects we study here may turn
out to be subdominant. Thus it would be wrong to con-
clude that any approach which manages to reproduce the
numerical data for the free energy in a satisfactory way
would also reproduce other quantities. A good testing
ground for this is the longest static correlation lengths in
the QCD plasma: they are fully nonperturbative, but it is
already known that the results of 4D simulations [12] are
reproduced precisely by the infrared degrees of freedom
that we employ in L3D [6,9,13].

The relation of our approach to the other recent ap-
proaches for the determination of the free energy of QCD
[14–16] can be described as follows. At present, these
approaches do not reproduce the known O �g5T4� result
in the limit of a weak coupling, nor do they account for
any genuine nonperturbative contributions. Thus large
infrared effects are suppressed without an a priori justifi-
cation; the justification comes a posteriori through the rea-
sonable agreement with numerical data. Our results here
attempt to provide a theoretical understanding of why the
long-distance contributions need not be important in the
QCD pressure.

Method.—The pressure or the free energy density of
QCD is a quantity which formally gets contributions
© 2000 The American Physical Society
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from both short-distance physics �l & �pT �21� and long-
distance physics �l * �gT �21�. The separation of the free
energy into these two different types of contributions was
discussed in detail in [4]. Interactions between the short-
and long-distance modes account for the parameters of the
effective long-distance theory L3D, and in addition there
is an additive part coming directly from the short-distance
modes, as we will presently specify.

To describe the effects of the short-distance modes in
detail, we find it useful to introduce the dimensionless pa-
rameters y � m2

D�g4
3 , x � lA�g2

3, where g2
3 is the gauge

coupling within the effective theory. In terms of the physi-
cal parameters T , LMS of QCD, next-to-leading-order
“fastest apparent convergence” optimized perturbation
theory tells that [9] (for a number of flavors, Nf � 0, and
colors, Nc � 3),

g2
3

T
�

8p2

11 ln�6.742T�LMS�
, (1)

x �
3

11 ln�5.371T�LMS�
, y �

3
8p2x

1
9

16p2 .

(2)

The result of [4], Eq. (36), can now be expressed as
follows. Using the MS scheme with the scale parameter
m3D, let us compute the dimensionless quantity

FMS�x, y� � 2
1

Vg6
3

ln

∑Z
DA exp

µ
2

Z
d3x L3D

∂∏
,

(3)

where V is the volume. The pressure can then be expressed
as (we have here again put Nf � 0, Nc � 3)
p�T � � p0�T � 3

∑
1 2

5
2

x 2
45

8p2

µ
g2

3

T

∂3

3

µ
FMS�x, y� 2 24

y
�4p�2 ln

m3D

T

∂∏
,

(4)

where p0�T � � �p2T4�45� �N2
c 2 1 1 �7�4�NcNf� is the

noninteracting Stefan-Boltzmann result. The m3D depen-
dence here is canceled by that in FMS�x, y�.

A few comments on Eq. (4) are in order. First, the term
proportional to y could also be written as �O �x2�, and at
the present level of accuracy there is no unique way of
making a distinction. We have chosen the present form
because the relatively large logarithmic term is then dealt
with in connection with FMS, whereby cancellations occur.
Second, strictly speaking, ln�m3D�T � should be replaced
with ln�m3D�T � 1 d, but d � gE 2 ln2 2 41�2160 2

�17�72� ln2p 2 �37�36� �lnz �0�2� 1 �19�72� �lnz �0�4� �
1.35 3 1024 can be ignored for all practical purposes.
Finally, with the expressions available at present, the
relation in Eq. (4) has an error starting at order O �g6�,
corresponding to O �1��4p�4� within the parentheses.
This correction is, however, from short-distance physics
alone, and we shall ignore it here.

By using Eqs. (1), (2), and (4), the perturbative short-
distance contribution to the pressure has been accounted
for to a satisfactory level, and we are left with evaluating
the long-distance part, FMS�x, y�. The perturbative expres-
sion for FMS�x, y� is known up to the 3-loop level, cor-
responding to O �g5T 4� accuracy in p�T �. Adding terms
involving the scalar self-interaction x to the result of [4],
we can write
FMS�x, y�
dA

�
y3�2

4p

∑
2

1
3

∏
1

y
�4p�2

∑
CA

µ
3
4

2
1
2

ln4y 1 ln
m3D

g2
3

∂
1

dA 1 2
4

x

∏

1
y1�2

�4p�3

∑
C2

A

µ
89
24

2
11
6

ln2 1
p2

6

∂
2 CA

dA 1 2
2

µ
1
2

2 ln4y

∂
x 1

dA 1 2
2

µ
10 2 dA

4
2 ln16y

∂
x2

∏

1
DFMS�x, y�

dA
, (5)
where dA � N2
c 2 1, CA � Nc, and DFMS�x, y� accounts

for the higher-order corrections. In terms of the 4D cou-
pling constant, all contributions involving x in Eq. (5) are
of order O �g6� or higher, while the terms �y3�2, y lny,
y1�2 are of orders g3, g4 ln�1�g�, g5, respectively.

As is well known [2–4], the convergence of the pertur-
bative expansion in Eq. (5) is quite poor when values of
x, y corresponding to any reasonable physical temperature
T�LMS are chosen. For future reference, we illustrate this
in Fig. 1. We have used Eqs. (1), (2), and (4) together with
terms up to order y1�2 in Eq. (5).

The idea of our approach of improving the determination
of FMS�x, y� is the following. We write

DFMS�x, y� � DFMS�x0, y0�

1
Z y

y0

dy

µ
≠DFMS

≠y
1

dx
dy

≠DFMS

≠x

∂
, (6)
where y � y�x� is defined in Eq. (2). The partial deriva-
tives are now given by adjoint Higgs field condensates:

≠DFMS

≠y
�

ø
TrA2

0

g2
3

¿
MS

2

ø
TrA2

0

g2
3

¿
MS,pert

, (7)

where �TrA2
0�g2

3	MS,pert is the perturbative result up to
O � y21�2�, obtained by taking a derivative of Eq. (5) with
respect to y. In the case of ≠DFMS�≠x, a similar relation
is obtained but with the condensate ��TrA2

0�2	.
On the other hand, with a computation in lattice

perturbation theory, a condensate measured in lattice
Monte Carlo simulations can be related to the conden-
sates �TrA2

0	MS, ��TrA2
0�2	MS. Because of the super-

renormalizable nature of L3D, such analytical relations
can be computed exactly near the continuum limit [17,18].
11
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FIG. 1. The pressure in Eq. (4), with the long-distance part
from Eq. (5) included in various loop orders. The 4D lattice
results are from the first reference in [1]. It should be noted
that they have a normalization ambiguity at low temperatures
T & Tc allowing for a small shift of the curve.

Thus, we need to evaluate the condensates on the lattice,
transform the result to the MS scheme, and perform finally
the integration in Eq. (6) numerically. When added to
DFMS�x0, y0�, we obtain a nonperturbative result, which
we can plug into Eq. (4).

What remains is to determine the integration constant
DFMS�x0, y0�. The idea is that, despite the bad conver-
gence shown in Fig. 1, at high enough temperatures the
form of DFMS�x0, y0� is known. Indeed, inspecting the
general structure of Eq. (5), we know that

DFMS�x0, y0� �
e0

�4p�4 dAC3
A

∑
1 1 O

µ
x0

CA
,

CA

4py
1�2
0

∂∏
.

(8)
Here e0, containing an unknown logarithmic depen-
dence on y0, represents the famous nonperturbative
O �g6T4� term [10]. Suppose now that we choose
T 
 T0 � 1011LMS, corresponding to x0 � 1.0 3 1022,
y0 � 3.86. Then the higher-order terms in Eq. (8) are
expected to be subdominant, since CA��4py

1�2
0 � � 0.1

and x0�CA � 0.01, and we only need to know e0.
The main error sources of this nonperturbative and un-

ambiguous setup are as follows.
(a) Even though, in principle, an independent nonper-

turbative determination of e0 is possible, for instance, by
measuring the condensate �TrF2

ij	 along the lines in [19],
doing this systematically requires a 4-loop computation in
lattice perturbation theory, and this is beyond our scope
here. Therefore we will treat e0 as a free integration con-
stant whose magnitude will be fixed below.

(b) Because of the smallness of x�CA, we will also
ignore here the term arising from ≠DFMS�≠x in Eq. (6).

(c) The numerical procedure introduces small statistical
errors, as well as systematic errors, from the extrapolations
to the infinite volume and continuum limits.

(d) Finally, we should of course remember that the ef-
fective theory L3D loses its accuracy when higher-order
12
operators, not included, become important. In fact, for
Nf � 0 the QCD phase transition is related to the so-called
Z�3� symmetry [11,20], and this symmetry is not fully re-
produced by L3D [9,21] without all of the higher-order
operators. There are many indications, however, that the
effective theory should be rather accurate down to low tem-
peratures, T � 2Tc [6,9,13]. Below that, some other ef-
fective description may apply (see, e.g., [22]).

Numerical results.—After this background, we show
in Fig. 2 the difference in Eq. (7), measured with lattice
simulations. This result is then used in Eq. (6) to obtain
DFMS�x, y�. When added to Eqs. (4) and (5), we obtain
Fig. 3. As discussed above, the boundary value at (almost)
infinite temperature, determined by e0, is for the moment
a free parameter.

We observe that at low temperatures the outcome de-
pends strongly on the value of e0. The correct value would
appear to be e0 � 10.0 6 2.0. Even then, the present re-
sults lose their accuracy at T � 5Tc, but seem to work well
above this. Exploiting the full power of the dimensionally
reduced theory down to its limit T � 2Tc would also ne-
cessitate the inclusion of ��TrA2

0�2	.
Discussion.— In 4D lattice simulations, there is a (nu-

merically small) ambiguity in the determination of the
pressure, because only pressure differences can be mea-
sured, and thus an integration constant has to be specified
at low temperatures in a nonperturbative regime. Here we
fix the integration constant by starting from the opposite
direction, from very high temperatures. This allows us to
determine all quantities in terms of T�LMS and the num-
ber of fermion flavors, without ambiguities. We can also
address a huge range of temperatures, unlike 4D simula-
tions which can only go up to T � a few 3 Tc.

The result of our procedure is summarized by
Eqs. (4)–(7) and Fig. 3. We draw two important conclu-
sions. The first is that the outcome depends strongly on
the nonperturbative contribution of order O �g6T 4� [10],

0.0 1.0 2.0 3.0 4.0

y

0.0

0.1

0.2

0.3

0.4
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02 > 

− 
<A

02 > pe
rt
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10

(T/Λ
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β
G
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3−32

3

β
G

=24, vol=24
3−32

3

β
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=32, vol=32
3−64

3

continuum limit

FIG. 2. The difference in Eq. (7). Here bG � 6��g2
3a�, where

a is the lattice spacing, and the continuum limit corresponds to
the extrapolation bG ! `.
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FIG. 3. The pressure after the inclusion of DFMS�x, y� from
Eq. (6). Statistical errors are shown only for e0 � 10.

as can be observed from the e0 dependence in Fig. 3.
The value of e0 could, in principle, be determined by a
well-defined procedure, although in practice it is a project
of considerable technical complication. But our present
study provides an estimate for what the result should be.
The order of magnitude O �10� seems reasonable, since
it is known from other contexts such as the Debye mass
[13] that nonperturbative constants tend to be large.

The second is that, when the large nonperturbative
O �g6T4� term is summed together with the set of all
higher-order terms determined via �TrA2

0	, then these
long-distance contributions almost cancel at T * 30LMS.
Indeed, the sum, the curve with e0 � 10 in Fig. 3, does
not differ much from the term O � y1�2� in Fig. 1. For
smaller temperatures, 5LMS & T & 30LMS, on the other
hand, only our numerical results are trustworthy.

Finally, we also find that, although the dependence on
the effective scalar self-coupling x is of high perturbative
order, in practice it is expected to play a role as one ap-
proaches Tc. Its contribution can be obtained from the
condensate ��TrA2

0�2	. To relate this to the MS scheme re-
quires again a perturbative 4-loop computation.

Let us end with a philosophical note. When one wants
to understand 4D simulation results, one could argue that
one should aim at almost fully analytical resummations
[14–16]. However, we suspect that these are unavoid-
ably specific for the particular observable considered: they
may work for the entropy or pressure because the result
is short-distance dominated, but would fail, for instance,
for Debye screening where long-distance effects are domi-
nant. It seems to us that it may ultimately be more useful
to obtain a unified understanding of the relevant degrees of
freedom in the system, even if some observables have to
be evaluated numerically.
This work was supported by the TMR Network, Fi-
nite Temperature Phase Transitions in Particle Physics,
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We describe an efficient practical procedure for enumerating and regrouping vacuum Feynman graphs of a
given order in perturbation theory. The method is based on a combination of Schwinger-Dyson equations and
the two-particle-irreducible~‘‘skeleton’’! expansion. The regrouping leads to skeletons containing only free
propagators, together with ‘‘ring diagrams’’ containing all the self-energy insertions. As a consequence, rela-
tively few diagrams need to be drawn and integrations carried out at any single stage of the computation and,
in low dimensions, overlapping ultraviolet and infrared subdivergences can be cleanly isolated. As an illustra-
tion we enumerate the graphs contributing to the four-loop free energy in QCD, explicitly in a continuum and
more compactly in a lattice regularization.
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I. INTRODUCTION

There are many physics contexts where multiloop Fe
man diagram computations are carried out. In QED one g
up to the four-loop level~for reviews see, e.g.,@1#! because
experiments are so precise. In particle physics phenome
ogy, particularly QCD, one goes up to the four-loop lev
~see, e.g.,@2#! because the coupling constant is not small.
studying critical phenomena in the simplest O(N) condensed
matter systems, one goes up to the five-loop level~see, e.g.,
@3#! because the effective expansion parameter is not sm

Studies of QCD at a finite temperatureT are faced with a
similar challenge. Indeed, the coupling constant expans
converges even worse than at zero temperature requirin
least T@103 LQCD to make any sense at all@4,5#. So far,
though, only the resummed three-loop level has been rea
for the simplest physical observable, the free energy@6#, be-
cause a broken Lorentz symmetry makes the analysis m
more complicated than in the cases mentioned above. In
even in principle only one more order is~partly! computable,
and then the expansion breaks down completely@7#. Multi-
loop computations are not useless, though: the infrared p
lems can be isolated to a simple three-dimensional~3D! ef-
fective field theory@8# and studied nonperturbatively the
@9#, but to convert the results to physical units from latti
regularization still necessitates a number of fixed-order p
turbative computations@10,11,12#.

As the loop order increases, so does the computatio
effort. The sheer enumeration of various diagrams and t
symmetry factors becomes nontrivial. The group-theore
and Lorentz structures of single graphs are involved. Fina

*Email address: keijo.kajantie@helsinki.fi
†Email address: mikko.laine@cern.ch
‡Email address: york.schroder@helsinki.fi
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the scalar integrals remaining are hard to evaluate ana
cally. It is therefore clear that, ideally, one would like
automatize the whole procedure~for a review of the current
status see, e.g.,@13#!.

In this paper we concentrate on the first step of any m
tiloop computation, the enumeration of various Feynm
diagrams. This step should be the easiest to automatize, s
all one needs is a straightforward evaluation of Wick co
tractions. Indeed, various packages, such asFEYNARTS @14#
andQGRAF @15#, are available for determiningn-point func-
tions in a given particle physics model.

For vacuum graphs in condensed matter systems a sim
approach is possible. For the quartic O(N) scalar model the
combinatorics is not yet too hard, but variants thereof
ready require some work. Consequently, graphical al
rithms have been developed at four-loop order and bey
for a number of simple models@16#.

In many cases, though, a straightforward generation of
full set of diagrams of a given loop order may not be t
ideal way to go. In realistic theories there are very ma
graphs, and all integrals would have to be evaluated on
same footing. This is almost impossible, particularly if ma
different masses appear.

Here we wish to present what would seem to us to b
maximally manageable setup. All vacuum graphs are ge
ated, but they are cleanly separated into two groups: one
two-particle-irreducible~2PI! ‘‘skeletons’’ with free propaga-
tors, and the other, of ‘‘ring diagrams’’ with various sel
energy insertions~see also@17#!. The self-energies, in turn
are directly obtained from lower order skeletons. We fi
that this setup economizes the generation of the vari
graphs quite significantly. We also point out that in low d
mensions, relevant for statistical physics applications, the
tegrations remaining are qualitatively different in the tw
sets.

As an illustration of the setup, we enumerate the diagra
©2002 The American Physical Society08-1
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contributing to the four-loop free energy of finite temperatu
QCD ~as well as QED and the symmetric phases of the e
troweak theory and scalar electrodynamics!. We hope,
though, that the setup may be applicable to some other c
as well. That is why we wish to separate it from the evalu
tion of the integrals arising in the finiteT context@18#, spe-
cific for that physical situation.

Our plan is the following. We summarize our basic no
tion in Sec. II, reorganize the standard skeleton expansio
Sec. III, review the Schwinger-Dyson equations forn-point
and vacuum graphs in Sec. IV, and combine them with
modified skeleton expansion to obtain a generating form
for skeleton diagrams in Sec. V. The corresponding res
are given for a lattice regularization of a generic model
Sec. VI. As an illustration, we show the loop expansion
the free energy of QCD and related models in Sec. VII.
discuss some basic properties of our setup and conclud
Sec. VIII.

II. NOTATION

Let us start by introducing a concise notation. While t
method is valid for any theory, we explicitly give all equ
tions for a genericw31w4 model. Later on we discuss mor
specific examples within this class, in particular QCD,
well as some extensions of this class. The generic class
includes the electroweak sector of the standard model, b
in its symmetric and its spontaneously broken phase.

The partition function is defined as

Z@J#5E Dw eS@w#1Jw, ~1!

whereS@w# is the action,

S@w#52
1

2
w iD i j

21w j1
1

3!
g i jkw iw jwk1

1

4!
g i jkl w iw jwkw l ,

~2!

and summations over various indices, numbering~real sca-
lar! fields and their internal and spacetime structures,
implied. Two comments are in order. First, we will for th
moment not display fermions explicitly. As far as vacuu
graphs are concerned, they do not introduce any comp
tions apart from the usual overall minus sign for each clo
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loop and can thus be introduced only at the end@19#. Second,
one should notice that the sign conventions in Eqs.~1!, ~2!
are such that in the case of Euclidean actions,g i jkl is typi-
cally negative.

For a theory with a broken symmetry, the inverse fr
propagatorD21 and the couplingsg i jk ... are functions of the
order parameter, but otherwise there are no essential com
cations. We return to this point in Sec. IV A.

The partition functionZ@J# in Eq. ~1! is the generating
functional for full Green’s functions,Gn

full5dJ
nZ@J#uJ50 . As

usual, we define

W@J#5 ln Z@J#, ~3!

the generating functional of connected Green’s functio
Gn

conn5dJ
nW@J#uJ50 . Finally, one can define the effective a

tion via

Seff@f#5W@J#2fJ, f5dJW@J#, ~4!

which generates 1PI Green’s functions,Gn
1PI

5df
n Seff@f#uf50. Note, in particular, thatdfSeff@f#52J. The

vacuum, or free energyF ~made dimensionless by a divisio
with the temperatureT!, can be obtained from any of th
generating functionals as

F52 ln Z@0#52W@0#52Seff@0#. ~5!

From the basic relationsf5dJW@J#, dfSeff@f#52J, it
follows that

dJ
2W@J#df

2 Seff@f#521. ~6!

Defining, as usual, the ‘‘proper’’ self-energy by

df
2 Seff@f#[2D211P, ~7!

we see from Eq.~6! that dJ
2W@J# is the full propagator:

dJ
2W@J#[D@f#5

1

D212P
[D1DPD1DPDPD1¯ .

~8!

We shall use here the following notation for free and f
propagators, the proper self-energy, as well as general
vertices:
~9!

~10!

~11!

~12!

~13!
8-2
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III. SKELETON EXPANSION WITH FREE PROPAGATORS

We next review the skeleton expansion for the free ene
F @20,21# and modify it such that full propagators can b
replaced with free propagators@17#. By a skeleton we mean
a 2PI vacuum diagram: one that remains connected eve
any two lines are cut. The skeleton expansion has been
as the starting point also in@17#.

It can be shown@20,21# that the loop expansion for Eq
~5! can be written as

F@D#5(
i

ci~Tr ln Di
211TrP i@D#Di !2F@D#, ~14!

where i 5$bosons, fermions%, cboson51/2, andcfermion521.
Here F@D# collects all 2PI vacuum diagrams. The fu
propagatorsDi are related to their corresponding se
energies byD215D212P @cf. Eq. ~8!#, whereD are the
free propagators. BothF, P, andF can be regarded as func
tionals of the full propagators. The partition function has
extremal property, such that the variation ofF with respect to
any of the full propagators vanishes@20,21,22#, giving a re-
lation between skeletons and self-energies:

dDi
F@D#5ciP@D#. ~15!

Here we have introduced the implicit notation that whene
a term is multiplied byci , the P’s andD’s following it are
assumed to carry the same subscript. Pictorially, Eq.~15!
corresponds to getting a self-energy by ‘‘cutting a propa
tor’’ in all possible ways in the set of vacuum skeleton
Hence knowing the skeletons alone provides full inform
tion.

In Eqs. ~14!, ~15!, it is the full propagatorsD which ap-
pear in the skeleton graphs and self-energies. We would
stead like to obtain skeletons with free propagators. As a
step in this direction, we expandD in terms of the self-
energy insertionsP@D#, D5DSn>0(PD)n, to get

F5(
i

ciTrF ln D211 (
n>2

S 12
1

nD ~PD!nG
2FFD (

n>0
~PD!nG . ~16!

We then have to evaluateP@D#.
To go forward more explicitly, we restrict ourselves to t

five-loop level here. Let the subscriptn denote the loop or-
der, and writeP5Sn>1Pn . It turns out that we need at mos
P3 . In a straightforward way, we obtain

P15P1@D#[P1
irr@D#, ~17!

P25P2
irr@D#1~P1

irr@D1DP1
irrD#!2

[P2
irr@D#1P2

red~1!@D#, ~18!
04500
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P35P3
irr@D#1~P2

irr@D1DP1
irrD#!3

1~P1
irr@D1DPD1DP1

irrDP1
irrD#!3

[P3
irr@D#1P3

red~1!@D#1P3
red~2!@D#, ~19!

wherePn
irr aren-loop 1PI graphs, whilePn

red(m) are obtained
by cutting m lines in a lower orderPn

irr@D# and dressing
them appropriately:

P2
red~1!@D#5~DP1

irrD! jdD j
P1

irr@D#, ~20!

P3
red~1!@D#5~DP1

irrD! jdD j
P2

irr@D#

1~DP2D1DP1
irrDP1

irrD! jdD j
P1

irr@D#,

~21!

P3
red~2!@D#5

1

2
~DP1

irrD! j~DP1
irrD!kdD j

dDk
P1

irr@D#.

~22!

For the explicit diagrammatic characteristics ofP2
red~1! , see

Sec. V B.
It is easy now to unfold the loop expansion also f

F@D#5Sn>2Fn , the last term in Eq.~16!. Up to the five-
loop level, we can write

~F2@D# !n<55„F2@D1D~P11P21P3!D

1D~P11P2!D~P11P2!D

1DP1DP1DP1D#…n<5 , ~23!

~F3@D# !n<55„F3@D1D~P11P2!D

1DP1DP1D#…n<5 , ~24!

~F4@D# !n<55~F4@D1DP1D#!n<5 , ~25!

~F5@D# !n<55F5@D#, ~26!

where the arguments are to be Taylor expanded, with
derivatives obeying@cf. the diagrammatic identity Eq.~15!,
evaluated with free propagators#

dD i
Fn@D#5ciPn21

irr @D#, ~27!

and higher ones bringing back reducible self-energies,
fined in Eqs.~20!–~22!.

Inserting these expansions into Eq.~16!, we finally get, up
to the five-loop level,
8-3



K. KAJANTIE, M. LAINE, AND Y. SCHRÖDER PHYSICAL REVIEW D65 045008
2F52(
i

ciTr ln D211F2@D#1F3@D#1(
i

ciTrF1

2
~DP1!2G1F4@D#1(

i
ciTrF1

3
~DP1!3

1DP1DS P2
red1

1

2
P2

red~1!D G1F5@D#1(
i

ciTrF1

4
~DP1!41~DP1!2DS P2

irr1
1

2
P2

red~1!D
1

1

2
DP2

irrD~P2
irr1P2

red~1!!1DP1DS P3
irr1

1

2
P3

red~1!1
1

3
P3

red~2!D G ~28!

or, written diagrammatically~and denoting byF0 the noninteracting result!,

~29!
o
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Here a circle withn inside denotesPn
irr , a squarePn

red~1! ,
and a double squarePn

red~2! . We will term the skeletons with
free propagators,Fn@D#, irreducible. Note that the numeri-
cal factors in front of various types of ring diagrams do n
appear to trivially follow from any simple symmetry argu
ment ~particularly in the case of reducible self-energy ins
tions!, but are best worked out explicitly via the Taylor e
pansions we have described.

Equation ~29! is the starting point of our setup. It ex
presses the free energy in an economic way in terms of
irreducible skeletonsFn@D#: either as direct contribution
or as self-energy insertions obtained from the same skele
via Eqs.~27! and~20!–~22!. We note that at then-loop level,
one needsFn@D#, but only Pn22@D#, obtained from
Fn21@D#.

IV. SCHWINGER-DYSON EQUATIONS WITH FULL
PROPAGATORS

Next, we need to generate the skeletonsFn@D#, needed in
Sec. III. To do that, we first review briefly the general set
of Schwinger-Dyson~SD! equations, converted to our nota
tion. The SD equations will then play a central role in o
main result, Eq.~49!, which is an explicit formula allowing
for a systematic generation of all skeletonsFn@D#—in prin-
ciple to any order. In this section, we follow closely the ve
enjoyable presentation by Cvitanovic´ @19#.

A. General n-point functions

The basic SD equation for the generating functionalZ@J#
of full Green’s functions derives from the trivial fact that th
integral of a total derivative vanishes:
04500
t

-

e

ns

r

05E Dw dweS@w#1Jw5~S8@dJ#1J!Z@J#. ~30!

For the generating functional of the connected Green’s fu
tions, Eq.~3!, one gets

05S8@W8@J#1dJ#1J. ~31!

Finally, for the effective action, Eq.~4!, we use from Sec. II
thatW8@J#5f, dJ5(df/dJ)df5W9@J#df5D@f#df , and
J52Seff8 @f# to obtain

Seff8 @f#5S8@f1D@f#df#. ~32!

Puttingf→0 on the right-hand side, this gives the SD equ
tion for the one-point function, while taking derivatives wit
respect tof on both sides of Eq.~32! and puttingf→0 only
afterwards generates SD equations for higher-point Gre
functions,

Gn
1PI5df

n21S8@f1D@f#df#uf50 . ~33!

HereD@f# is in Eq. ~8!, and we note that

dfD@f#5D@f#~df
3 Seff@f#!D@f#. ~34!

A note may be in order here concerning theories w
spontaneously broken symmetries. In that case,f corre-
sponds to the fluctuating field around some reference va
v, typically v[^w&. The quantity we should ultimately b
computing is the free energy density as a function
v: i.e., the effective potentialV(v)5F/(volume). Then
everything goes as before: we still putf→0 in the equa-
8-4
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tions above after differentiation, while the condensatev ap-
pears as a parameter in the free propagators as well as i
cubic and quartic couplings in Eq.~2! @the termJw linear in
w in Eq. ~1! need not be changed@23##. The graphs also
remain the same: only 1PI graphs, generated by the l
expansion in Eq.~29!, are to be included@23#. Tadpole-type
graphs often associated with broken symmetries would o
be generated if we want to reexpand the value ofV(v) at the
broken minimum in a strict loop expansion: writingV
5Sn>0Vn , v5Sn>0vn , such thatV08(v0)50, implies

V~v !uV8~v !505V0~v0!1V1~v0!1FV22
1

2

~V18!2

V09
G

v5v0

1FV32
V18V28

V09
1

1

2

~V18!2V19

~V09!2 2
1

6

~V18!
3V0-

~V09!
3 G

v5v0

1FV42
1

2

~V28!
212V18V38

V09
1

1

2

2V18V28V191~V18!2V29

~V09!2

2
1

6

3~V18!2~V19!213~V18!2V28V0-1~V18!3V1-

~V09!3
f
o
it

nt

t
f

04500
the
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1
1

24

12~V18!3V19V0-1~V18!4V099

~V09!4 2
1

8

~V18!4~V0-!2

~V09!5 G
v5v0

1¯ ,

~35!

where the latter terms inside the square brackets corresp
to various tadpole graphs, with obvious notation: 1/V09 is
the free propagator of the Higgs particle with a vanishi
momentum,V18(V19) is a one-loop diagram with one leg~two
legs!, V0- is a three-vertex, etc.

Let us now illustrate the structure of Eq.~33! for the
generic model in Eq.~2!. Starting from Eq.~2!, writing down
indices, and employing Eq.~34!, we obtain, for the right-
hand side of Eq.~32!,

df i
S52D i j

21f j1
1

2
g i jk~f jfk1D jk!1

1

6
g i jkl ~f jfkf l

1D jkf l1Dklf j1Dl j fk

1D jmDknDlodfm
dfn

dfo
Seff@f#!. ~36!

We now take further derivatives according to Eq.~33!. Put-
ting f50 after each differentiation, we thus obtain the sta
dard equations@written in the notation of Eqs.~9!–~13!#
~37!

~38!

~39!

~40!

~41!
ns
lar
ally.

D

where ‘‘cyclic (n1 ,n2 ,...) ’’ denotes cyclic permutations o
the legs numbered. We have not written down the two-lo
terms in Eq.~41!, since they are not needed in our explic
four-loop demonstration below. Likewise, all higher-poi
1PI functions Gn

1PI, n>5, start with one-loop graphs in
the model of Eq.~2! and will again not contribute a
this order; they will for F5 , as well as in the model o
p
Sec. VI.

Let us stress that in a local theory the manipulatio
needed in Eq.~33! can essentially be made using regu
derivatives and can thus easily be implemented algebraic
Introducing furthermore\ as a loop counting parameter@24#
allows for an iterative solution of the corresponding S
equations.
8-5
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B. Vacuum diagrams

The SD formalism above provides equations relat
n-point Green’s functions. To incorporate vacuum diagram
one can use another simple trick: scaling. Noting that, e
Z@J# is a functional of all interaction parameters present
the action,Z@J,g i j ,g i jk ,...#, one can derive hosts of rela
tions by varying any of these parameters.

A most useful example is to rescale the entire action
S@w#→(1/\)S@w# and then vary\:

2\]\ ln Z@J#5 K 1

\
S@w#L 5

1

Z@J#

1

\
S@dJ#Z@J#. ~42!

Rewriting this in the ‘‘connected’’ language~recallW5 ln Z!,

2\]\W@J#5
1

\
S@W8@J#1dJ#, ~43!

allows one to finally go over to 1PI functions~]\W5]\Seff

1Seff8 ]\f1J]\f5]\Seff , W85f, anddJ5W9df5D@f#df!:
ns

te

04500
g
,
.,

s

2\]\ Seff@f#5 K 1

\
S@w#L 5

1

\
S@f1D@f#df#. ~44!

The free energyF52Seff@0# can now be obtained by settin
f50 and integrating over\.

Noting again that after a rescaling of the integration va
ables an expansion in\ is equivalent to the loop expansio
@24#, one can integrate the left-hand side of Eq.~44! by
*\(1/\)@¯#, but on the right-hand side one integrates ov
the loop number. Writing

2Seff@0#5F5F01F int5F01 (
n>2

Fn
int , ~45!

wheren counts the number of loops, it follows that

Fn
int5

1

n21
$S@f1D@f#df#uf50%n, n>2. ~46!

Illustrating Eq.~46! for our generic theory in Eq.~2!, we get
loser

e need
ll
n

as
~47!

where we again use the notation of Eqs.~9!–~13!.
In principle the whole loop expansion can now be generated from Eq.~47!, using Eqs.~38!–~41!. The n-loop vacuum

diagrams are expressed in terms of 1PIn-point functions, which in turn are governed by a set of SD equations. Looking c
at it, though, it is somewhat of a mess: one has to expand full propagators in terms of free ones and theP’s, use SD equations
to iterate loops forP’s, which brings back full propagators, etc. Fortunately, none of this is necessary for Eq.~29!, as we now
explain.

V. GENERATING THE IRREDUCIBLE SKELETONS F†D‡

The key observation for combining Schwinger-Dyson equations and the skeleton notation in a useful way is that w
to extract from Eq.~47! only a specific partF@D#: we already know, by Eq.~29!, what all the rest combines into. But then fu
propagators can be replaced by free propagators in all but the first term in Eq.~47!. Indeed, any self-energy insertion withi
one of the other graphs leads to a two-particle-reducible~2PR! diagram. For the same reason, the 1PI vertices in Eq.~47! can
be iterated by using the SD equations of the form in Eqs.~40!, ~41!, but with free propagators. More precisely, it goes
follows.

To generate theirreducible skeletonsF@D# from Eq. ~47!, it is sufficient to expand the first term as

~48!

where in the second step Eq.~38! was used. Taking into account the minus sign in the relation ofF andF@D# @cf. Eq. ~29!#
and writing again the loop expansion asF5Sn>2Fn , one finally obtains a closed exact equation

~49!
Equation~49! is our main result. It generates all skeleto
of all orders in the theory of Eq.~2!, once Eqs.~40!, ~41! are
used~with free propagators!. The skeletons, in turn, genera
self-energies via Eq.~27! and the analogues of Eqs.~20!–
~22!. Inserted finally into Eq.~29!, we obtain the free
energyF.
8-6
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A. Vacuum skeletons up to the five-loop level

The procedure of working out Eq.~49! is simple and me-
chanical and can, at least up to the four-loop level, even
carried out by hand, as we shall demonstrate. The only c
plication arising is the identification of equivalent topologie
the same graph can be written in very many different wa
In order to deal with this situation, it appears easiest to
sign an algebraic notation for the different topologies, rat
than a mere graphical one. For example, one can coun
numbers of three-point and four-point vertices appearing
the graph, and within those equivalence classes, one can
04500
e
-

:
s.
s-
r
he
n
use

a matrix notation for how the vertices are connected. T
significant entries of the matrix can be ordered to a sin
number, and by doing the same for all possible orderings
the vertices, a unique representative~say, the smallest of
such numbers! can be assigned to each topology. For an
plicit implementation of this kind of a procedure, see t
second paper in@16#.

Let us now explicitly work out the diagram classes in E
~49! up to the four-loop level. For the first one, inserting E
~40! gives either a two-loop graph, or three-loop graphs to
iterated further on, or directly four-loop graphs:
o

lementing
~50!

Here the further iterations give

~51!

~52!

~53!

We have dropped five-point functions each time they appear, since in the model of Eq.~2!, they start with a one-loop term, s
that diagrams containing them generate higher loop orders.

The second class in Eq.~49! only contributes toF2@D# and is trivial. For the third class in Eq.~49!,

~54!

For the fourth class, we only need the one-loop terms in Eq.~41!,

~55!

Collecting finally these different contributions together with coefficients according to Eq.~49!, we get

~56!

~57!

~58!

Proceeding to higher loop orders, an automatized treatment proves essential, for the reasons outlined above. Imp
our generic formulas as well as an ordering algorithm separating topologies inFORM @25#, we obtain in a straightforward way
8-7
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the complete set of five-loop skeletons,

~59!

Note once more that these skeletons are all that is needed for generating the loop expansion for the full free e
discussed above.

B. Self-energies up to the two-loop level

Now that we haveFn@D# in Eqs.~56!–~59!, irreducible as well as reducible self-energies can easily be obtained with
~27!, ~20!–~22!, etc. For bosonic particles, for instance (ci5

1
2 ), we get

~60!

~61!

~62!

etc. Note that the outcome of the derivative in Eq.~27! must be symmetric in all~bosonic! indices. The three and four-loo
self-energies could be derived fromF4 andF5 , respectively, but we choose not to give them here, since they are not ne
for the set of four-loop vacuum diagrams that we will display explicitly in Sec. VII.

With Eqs.~60!–~62!, the ring diagrams in Eq.~29! are readily written down.

VI. GENERIC MODEL ON THE LATTICE

So far we have considered the generic model in Eq.~2!. However, in a lattice regularization of gauge theories, hig
vertices appear as well, without spoiling renormalizability. At the generic level, it is straightforward to add such coupl
the theory in Eq.~2!. We can include, e.g., terms up to;(1/8!)g i jklmnopw iw jwkw lwmwnwowp , as would arise in lattice
perturbation theory for SU(N) gauge theories, if one keeps terms contributing to four-loop vacuum graphs. Such compu
would be needed when one converts results of three-dimensional numerical Monte Carlo studies from lattice to co
regularization@10#.

In this case, everything goes as before, except for the appearance of extra vertices in the SD equations, as well
~49!. We shall here simply spell out the final results, without rewriting explicitly the modified SD equations. We obta
following additional skeletons:

~63!

~64!
045008-8
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as well as the additional irreducible self-energy

~65!

where we again assumedci5
1
2 .

VII. APPLICATIONS: QCD, QED, SQED, ELECTROWEAK THEORY

As an application of the generic formulas derived above, we consider in this section SU(N) gauge theory with fermions an
a scalar field. This class includes QCD and QED~where graphs containing scalar propagators and, in the latter case,
field self-interactions are to be dropped out!, as well as the electroweak theory and scalar electrodynamics~SQED!. For
brevity, we display here only the vertices appearing in the symmetric phases of the latter theories. We mostly use the
of QCD, referring to the gauge fields as gluons, etc.

The Lagrangian is specified by giving Feynman rules for the free propagators and free vertices,

~66!

where gluons~scalars! are denoted by wavy~straight! lines. Both quarks and ghosts are denoted here by dotted lines
Feynman rules for them are different, but the symmetry factors agree—the only exception being diagrams with more
closed fermion loop, in which case both ghosts and quarks can appear in the same diagram simultaneously, red
symmetry by an obvious factor.

We do not here write down counterterms explicitly. Coupling constant counterterms can be viewed as a part of the c
quartic couplings, while wave function and mass counterterms can be treated as a part of theirreducible self-energiesPn

irr ,
making their appearance only in ring diagrams according to Eq.~29!.

Let us first note that once we write down the summation over the field content explicitly in Eq.~2!, the ‘‘natural’’ symmetry
factors in front of the vertices change. For instance, writing the four-point vertex in the case of two sets of field$w i%
→$Ai%1$Ba%, and using the symmetry ofg i jkl , one gets
t

ph

tly

er
qs.

ept
the

out
he
s
ta-
for
1

4!
g i jkl w iw jwkw l5

1

4!
g i jkl AiAjAkAl1

1

3!
g i jkaAiAjAkBa

1
1

~2! !2 g i j abAiAjBaBb1¯ . ~67!

Similarly, writing the three-point vertex for three differen
fields, $w i%→$Ai%1$Ba%1$CM%, one finds

1

3!
g i jkw iw jwk5

1

3!
g i jkAiAjAk1

1

2!
g i j aAiAjBa

1g iaMAiBaCM1¯ . ~68!

With these conventions, each tree-level vertex in the gra
cal notation corresponds just tog i jkl , g i jka , etc., without
any symmetry factors there: all of them are shown explici
04500
i-

.

The only thing remaining is to write the summation ov
particle species explicitly also in the propagators of E
~56!–~58!,

~69!

Only the vertices allowed by the Feynman rules are k
after this substitution. This generates all the graphs, with
correct symmetry factors.

A. Vacuum skeletons up to the four-loop level

The procedure outlined above can easily be carried
explicitly, and up to the four-loop level even by hand. T
main complication is again the identification of variou
equivalent topologies, and for this a suitable algebraic no
tion may be more useful than a graphical one. As a result,
the field content in Eq.~66!, we finally obtain
8-9
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~70!

~71!

~72!

B. Self-energies up to the two-loop level

Using Eqs.~27!, ~20!, the skeletons above immediately produce the self-energies of the model in Eq.~66!. We obtain

~73!

~74!

~75!

~76!
045008-10
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~77!

~78!

~79!

~80!

~81!

C. Ring diagrams up to the four-loop level

To be exhaustive up to the four-loop level, let us finally give the set of ring diagrams for the model of Eq.~66!. While there
are no ring diagrams up to the two-loop level, from Eq.~29! we get

~82!

~83!
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Note the extremely economic structure of the skeleton
pansion of Eq.~29!: the few ring diagrams above summ
rize 22 ~276! three-loop~four-loop! diagrams.

VIII. DISCUSSION

In this paper we have described a simple practical pro
dure for systematically generating all vacuum diagrams o
given loop order in a generic field theory.

We have shown that the sum of vacuum diagrams can
written in the form of a modified skeleton expansion, E
~29!. It contains two-particle-irreducible ‘‘skeletons’’ with
free propagators, as well as various self-energy insert
inside ‘‘ring diagrams.’’ The self-energies are, in turn, det
mined by the skeletons. Thus, all one really needs is
skeletons.

The two-particle-irreducible skeletons of a given ord
are, then, generated by Eq.~49!. It contains a number of full
three-point and four-point vertices, which can in turn be e
panded using specific ‘‘irreducible’’ Schwinger-Dyson equ
tions @Eqs.~40!, ~41!, etc.#, where full propagators have bee
replaced with free propagators. In this way, all vacuu
graphs are generated simultaneously, with the correct s
metry factors. Finally, the precise particle content of t
04500
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e-
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e
.
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-
e
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-
-

-

theory one is interested in can be specified as discusse
Sec. VII. Our method is also directly applicable to theor
with spontaneous symmetry breaking, as only free propa
tors and vertices are modified; tadpole graphs are gener
by Eq. ~35!.

This iterative procedure is very straightforward and c
be automatized, but up to the four-loop level the compu
tions are easily carried out even by hand, as we have d
onstrated. Thus, we believe that our setup economizes
generation of the set of high-order vacuum diagrams, co
pared with techniques where all types of graphs have to
dealt with on the same footing, without a separation in
skeletons with free propagators and ring diagrams.

Up to this point, we have not discussed at all the integ
tions remaining to be carried out after the diagrams h
been generated. Let us end by pointing out that our setu
beneficial as far as their structure is considered, as wel
dimensions lower than 4@17#.

The point is that low-dimensional field theories of th
type in Eq.~2! are superrenormalizable. In fact, ford52,3,
only the two-point function suffers from ultraviolet diver
gences, as can be seen by simple power counting. There
the skeleton graphs, which by definition do not have a
genuine two-point functions inside them, do not contain a
8-11
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ultraviolet divergences in subdiagrams. The ring diagra
on the other hand, do have ultraviolet divergences in sub
grams. Note, in particular, that sincePn

irr ,Pn
red(m) come with

different symmetry factors in Eq.~29!, the counterterms in
Pn

irr , which make the wholePn finite, do not in general
immediately cancel all the ultraviolet subdivergences of
ring diagrams.

Consequently, various ring diagram classes can contrib
to the overall divergences of the vacuum graphs with pot
tially infrared sensitive coefficients, coming from the oth
parts of the final integration, while skeleton diagrams cann
Fortunately, the ring diagram integrations are simpler th
et

tt.

.

s.

ni-

sh

04500
s,
a-

e

te
-

r
t.
n

those in the skeleton graphs, and this problem can thus
dealt with in a tractable setting@18#.
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We give technical details about the computational strategy employed in a recently completed investigation of 
the four-loop QCD free energy. In particular, the reduction step from generic vacuum bubbles to master integrals 
is described from a practical viewpoint, for fully massive as well as QED-type integrals. 

1. I n t r o d u c t i o n  

Vacuum integrals, i.e. integrals without exter- 
nal momenta  (often also called tadpoles or bub- 
bles), constitute an important  class of multi-loop 
Feynman integrals. While the per turbat ive ex- 
pansion of quantities like the free energy can be 
directly expressed in terms of vacuum integrals, 
they also serve as essential building blocks for 
many other computations,  being the coefficient 
functions in asymptot ic  expansions of diagrams 
with external legs, and encoding the ultraviolet 
behavior of multi-scale integrals. 

A typical per turbat ive calculation proceeds in 
four conceptually independent steps. First, all 
relevant diagrams including their combinatoric 
factors are generated. For an algorithm that  does 
this for vacuum integrals, see [1]. Second, the 
Feynman rules of the theory under consideration 
are inserted, and the color and Lorentz algebra is 
performed. Since in general individual loop inte- 
grals are divergent, a regularization scheme has to 
be adopted, the most practical one at present be- 
ing dimensional regularization (DR). Third, lin- 
ear relations between the regularized integrals are 
exploited, to systematically reduce all integrals 
occurring in the computat ion to a small set of 
so-called master  integrals. In the framework of 
DR, the most important  class of relations can be 
derived from integration-by-parts  (IBP) identities 
[2]. Fourth, the master  integrals have to be evalu- 
ated, either, in some fortunate cases, fully analyt- 
ically, or as an expansion in terms of the regular- 
ization parameter ,  in which case and only here 

the number of dimensions d has to be specified. 
For results on the 4-loop level, see [3] (d = 4 - 2e) 

0920-5632/03/$ - see front matter © 2003 Published by Elsevier 
doi:10.1016/S0920-5632(02)02378-2 

and [4] (d = 3 -  2e). 
At higher loop orders, it is inevitable to auto- 

mate  the above setup to a large degree. There 
exist many approaches to implement automated  
perturbat ive calculations, and this is not the 
place to give a comprehensive review (see e.g. 
[5]). Instead, it is the third of the above steps 
that  we wish to elaborate on in thi~ contribution. 

A computer  algebra system tha t  is particularly 
well suited to cope with the demands of higher or- 
der perturbat ive calculations is FORM [6]. While 
by no means manda tory  to use, we have adopted 
it to implement our algorithms, and hence we 
will indicate in a few places which specific FORM 
commands turned out to be extremely helpful. 

2.  N o t a t i o n  a n d  g e n e r a l  c o n s i d e r a t i o n s  

Consider the generic vacuum topologies of 
Fig. 1. In this intuitive graphical notation, ev- 
ery line represents a propagator  (p/2 + m~)-a~, 
with integer power ai > 0, where the index i la- 
bels the different lines with momenta  pi, which 
in turn can be expressed as a linear combination 
of the g loop momenta  kj. The vertices do not 
have any structure, except for assuring momen- 
tum conservation. Each diagram can carry a non- 
trivial numerator  structure, which in the general 
case consists of powers of scalar products of the 
loop momenta.  At g loops, there are g(g + 1)/2 
different combinations ki . kj .  

Let us distinguish three different representa- 
tions of our integrals, which natural ly appear  at 
various levels of the reduction process: generic 
integrals, their standard representations, and the 
master integrals. The goal of step three is then to 

Science B.V. 
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Figure 1. The 1+1+3+10 generic vacuum topolo- 
gies up to four loops. The 0+1+2+6 factorized 
topologies are not shown here. 

formulate the algorithms which transform generic 
to standard to master integrals: 

f 
(d) l-[l<i<j<e (ki • k3) b'j 

. , + mD 

kJ)irred . b ; j  c/(d) 1-i (k~. _ ({ai}, {bij, mi}) Filter - - - ( - p ~  2 al 
l / i (  i + m i )  

Tables Z Cj (d) MasterJ d) ({mi}) (1) 

J 

Above, the label 'Filter' symbolizes a collection 
of low-level routines, whose main action is to com- 
plete squares in the numerator  and cancel against 
propagators such that  only irreducible numera- 
tors remain. At this point, it is possible to repre- 
sent an g-loop vacuum integral by a list of g(g + 1) 
non-negative numbers ({ai}, {bij ,mi}) ,  the first 
half of them collecting the powers of propagators 
a~, while the second half contains either the power 
of an irreducible numerator  (if the corresponding 
ai is zero) or the mass of the line. Furthermore, 
at this step equivalent topologies are re-labeled in 
a unique way by shifting the loop momenta, i.e. 
assigning a characteristic pat tern of zeroes among 
tile ai to each topology of Fig. 1. 

In the remainder, we will specialize on two dif- 
ferent general classes of vacuum diagrams. First, 
we will consider all lines to have the same mass, 
mi = m. This class of integrals is useful when 
computing infrared-safe quantities like renormal- 
ization coefficients, in which case the infrared sec- 
tor of individual diagrams can be regulated by in- 
troducing masses into massless propagators. Sec- 
ond, we will allow for all mi to be either zero or m, 
with the restriction that  the number of massive 
lines at each vertex be even. This includes theo- 

ries like QED and gauge+Higgs models, whence 
we call this class 'QED-like'. 

The label 'Tables' in Eq. (1) symbolizes a 
lookup in a database, which contains the neces- 
saxy relations in a tabulated form. These tables 
are the main ingredient of the reduction step, and 
their organization and generation, which system- 
atically exploits IBP identities, will be described 
in more detail below. 

The intermediate step of applying the 'Filter' 
algorithms not only serves the purpose of allowing 
for a fairly compact representation of the integral, 
but can also be used to keep the number of en- 
tries in the database, the memory requirements, 
and the CPU time needed for their derivation, in 
manageable bounds. To this end, we found it ad- 
vantageous to add further routines to the 'Filter' 
package: 

• Early detection of zeroes: massless (sub-) 
tadpoles are zero in DR, as are integrals 
whose integrand does not depend on one of 
the loop momenta. 

• Symmetrization of the integrand: use the 
full symmetry group of the corresponding 
topology to order the list, and hence enable 
early cancellations in big expressions. 

• Decouple scalar products involving the loop 
momentum of a factorized one-loop tadpole: 

kt, 1 ...k~,~ fk ~ vanishes for odd n and is pro- 
portional to a totally symmetric combina- 
tion of metric tensors g{ulu2 " 'gu~-lu~}- 
The FORM function dd_ is perfectly suited 
for this symmetrization. This eliminates 
the need to derive relations for 8 (out of 
9, the 9th being the two-loop × two-loop 
case) of the factorized topologies, since af- 
ter decoupling the numerator,  factorization 
into scalar vacuum integrals of the type of 
Eq. (1) is complete. 

• Reduce powers of factorized one-loop tad- 
poles to one: 

f ddk d - 2 a /  ddk 
(k 2 + m2) a+l  2am 2 (k 2 + m2) a 

• Employ the 'triangle relation' [2]: for in- 
tegrals involving massless lines, this helps 
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to reduce the number of different topolo- 
gies that have to be treated in the database 
considerably. 

Another potentially useful routine, which we have 
however not implemented, would be to use T- 
operators [7] in order to trade all numerator 
structure for higher dimensions of the integral 
measure, hence also immediately decoupling the 
factorized (two-loop × two-loop)-topology. 

One more practical note: To not miss cancella- 
tions, it is important  to have a unique representa- 
tion for coefficients. Partial  fractioning of terms 
like ~ and 1 1 helps here, ensuring the d--al d--a2 
coefficients ci(d) to be a sum of powers of simple 
poles ~ and powers of d. 

In principle however, all these further relations 
are redundant since they would be automatically 
covered by the IBP identities. As mentioned 
above, their sole purpose is to optimize the deriva- 
tion of relations among the integrals, to be dis- 
cussed next. 

3. R e d u c t i o n  

Integration by parts relies on the fact that an 
integral over a total derivative of any of the loop 
momenta vanishes in dimensional regularization. 
For the case of vacuum integrals, which we are 
interested in here, the IBP identities read 

ddkl"''t Op.q. ( { a i } , { b i j , m i } )  (2) 
0 = (27r)~ d 

where p, q E { k l , . . . ,  ke} cover all g2 different g- 
loop identities, and we have made use of the stan- 
dard representation introduced above. 

There are two possible general strategies imple- 
menting the IBP identities to find relations use- 
ful for reducing the integrals from their standard 
representation to master integrals. 

The first strategy is to derive general relations, 
valid for symbolic list-entries. These general sym- 
bolic relations can then be applied repeatedly to 
any integral of the specified class, no matter  how 
large the powers are, to achieve the reduction. 
In practice however, it turns out that  it is quite 
an art to shuffle IBP identities for integrals with 
symbolic indices such as to obtain useful reduc- 

@ @,:::ii© 

Figure 2. The 1+0+2+10 master  integrals of 
QED type, up to four loops. Full lines carry a 
mass m,  dotted lines are massless. All  numera- 
tors are 1, all powers of propagators are 1. Note 
that there is no two-loop representative needed. 

tion relations. In absence of a generic algorith- 
mic formulation, it involves extensive handwork, 
and typically there are many special cases to be 
considered when pre-factors vanish at special pc- 
rameter values. At lower loop orders, there are 
complete solutions, see e.g. [9] for two-loop two- 
point functions with general masses, or [10] for 
three-loop vacuum integrals with one mass. 

The second strategy, nowadays constituting the 
mainstream of higher-loop computations, is a 
more brute-force approach, which however has 
the huge advantage of being perfectly suited to 
be completely automated. The main idea is to 
write down IBP identities for specific values of 
the indices. Introducing a lexicographic order- 
ing among the integrals [8], it is then possible 
to solve every single one of the IBP identities for 
the 'most difficult' integral occurring. By starting 
from simple topologies (low number of lines), one 
systematically generates relations which express 
'difficult' integrals in terms of 'simpler' (in the 
sense of the ordering) ones. Solving art adequate 
set of fixed-index IBP relations, it is possible to 
express every integral of interest in terms of a few 
simple ones, ultimately the master integrals. 

The reason why the second strategy is suffi- 
cient for most computations is that  in practice, 
one does not meet the most general integrals, but 
only a subset, typically characterized by an upper 
cutoff on the sum of indices. Indeed, dealing with 
a concrete model like QCD, knowledge of the ver- 
tex and propagator structure allows to constrain 
the set of possible indices ({ai}, {bij, mi}), hence 
rendering the search-space to be covered with IBP 
identities finite. 

Building up the relations proceeds as follows: 
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• Pick a list of indices ({ai}, {bij, mi}) that  is 
'simple',  typically meaning a low number of 
loops, a low number  of different lines, a low 
number of extra  powers on the propagators,  
a low number  of powers on the irreducible 
numerators.  In FORM, these lists are most 
natural ly represented by sparse tables. 

• Generate  the first of the IBP identities. 

• Call 'Fil ter '  to t ransform the resulting sum 
of integrals to the s tandard representation. 

• Label the 'most  difficult' integral, according 
to the lexicographic ordering. A global op- 
eration like that  became possible with the 
introduction of 'S-variables' in FORM v3. 

• Invert  its coefficient and multiply it into the 
equation. We do so only if we can factor- 
ize the coefficient into terms which are lin- 
ear in d, to preserve the generic structure of 
coefficients. While (at present) there is no 
factorization algorithm in FORM, we im- 
plemented one by 'guessing' zeroes, utiliz- 
ing the fact tha t  since the coefficients are 
generated by IBP, most of them have fac- 
tors ( n d +  a) where n is not bigger than the 
number of loops, and a is an integer of mod- 
erate size. To check that  no relations are 
missed when factorization fails, it is useful 
to keep track of those cases and check in the 
end. 

• Bring the most  difficult integral (having 
coefficient 1) to the left-hand-side, taking 
the generated equation as a definition. In 
FORM, this is done by the f i l l  statement.  

• Take the next IBP identity, repeat  the 
above steps. Increase list-indices. Repeat.. .  

• Write the relations found to disk in inter- 
vals. Large intervals ensure a high degree 
of re-substi tution (of relations for integrals 
that  are found later but that  appeared on 
the right-hand-sides earlier), but are risky 
when the program execution crashes. 

Solving the IBP relations one by one like de- 
scribed above seems to be simpler than solving 
large systems of linear equations at once. In the 
end, it might be advantageous to re-substi tute re- 
lations, which is possible by re-loading sets of re- 
lations into memory  and re-writing them to disk. 

Figure 3. The 0+0+0+3  fully massive master  in- 
tegrals, in addition to those 1+1+3+10  of Fig. 1, 
taken at powers and numerators  1. A dot on a 
line means it carries an extra power. 

In the end, one has to check whether the 
set of generated identities is sufficiently large to 
achieve a reduction of all integrals occurring in 
the physics problem at hand. While a first edu- 
cated guess on the maximum powers needed can 
be obtained by scanning the terms to be calcu- 
lated after application of the 'Fil ter '  package, it 
might be necessary to enlarge the set of relations 
in further runs. To this end, the t a b l e b a s e  state- 
ment of FORM, implemented in version 3.1, al- 
lows for a good control over large amounts of data  
in the form of tables and table elements. 

The resulting master  integrals are depicted in 
Fig. 2 for the 'QED-like'  case, and in Figs. 3,1 for 
the fully massive case. 

4. M a s t e r  i n t e g r a l s  

Once the reduction algorithm 'stops' ,  are we 
guaranteed to arrive at the desired minimal  set 
of master  integrals? If we had followed the path  
of deriving generic reduction relations, valid for 
symbolic indices, the answer would be yes. For 
the implementat ion in terms of specific indices, 
one can however not be absolutely sure not to 
miss a relation which would only be detected 
when increasing the upper  cutoff on indices of the 
integrand. For most  practical purposes it might 
already be sufficient to work with an incomplete, 
but small, basis. 

In the case of gauge theories, it is also amusing 
to watch the gauge-parameter  dependence as an 
indicator of how 'close' one is to the minimal set, 
since in a full reduction gauge-parameter  depen- 
dent terms cancel at an algebraic level, in d di- 
mensions, before evaluating the master  integrals. 

The basis of master  integrals is of course not 
unique, but depends on the actual choice of the 
lexicographic ordering. While we label an integral 
with unit numerator  as 's impler '  than one with in- 
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40(2d-3)(3d-4)~O(ka. k2) 2 

4 0 ( 3 d - 8 ) @ ( k l + k 2 )  2 

2(d-3)@2(kl" k2) 

= 9 0 0 ( ~ - ( 1 3 0 0 - 7 3 3 d + 5 7 d 2 ) ( ~ - 5 ( 1 6 - 4 3 d + 2 1 d 2 )  ( Q )  4 

- + 30(3d - 8) d-3  
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_(d_2) O @  + (d- 2)2 

Figure 4. Relations for a basis conversion from the set 

creased powers on the lines, one could as well have 
put priority on always reducing powers of propa- 
gators to one. The latter choice was adopted in 
a recent paper [3], where the three master inte- 
grals of Fig. 3 are replaced by ones of equivalent 
topology, but with irreducible numerators. Con- 
sequently, there must be linear relations between 
the two choices of basis, valid analytically in d di- 
mensions. From our tables, we simply read them 
off, see Fig. 4. 

5. D i s c u s s i o n  

We did not comment on the problem of so- 
called spurious poles here. Spurious poles are 
singular pre-factors, which can occur in the re- 
duction relations. They are difficult to avoid in 
general, if one is not willing to specify the dimen- 
sion yet in the reduction process. However, in our 
four-loop computation of the QCD free energy, we 
treated them after the reduction was performed 
successfully, by changing basis with the help of 
the tables. 

In principle, the package at hand can be used 
for other calculations requiring a four-loop reduc- 
tion of massive vacuum bubbles. One such ap- 
plication would be the re-evaluation of the QCD 
beta function. 

of massive masters found in [3] to our notation. 
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Pressure of hot QCD up tog6ln„1Õg…
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The free energy density, or pressure, of QCD has at high temperatures an expansion in the coupling constant
g, known so far up to orderg5. We compute here the last contribution which can be determined perturbatively,
g6ln(1/g), by summing together results for the 4-loop vacuum energy densities of two different three-
dimensional effective field theories. We also demonstrate that the inclusion of the new perturbativeg6ln(1/g)
terms, once they are summed together with the so far unknown perturbative and nonperturbativeg6 terms,
could potentially extend the applicability of the coupling constant series down to surprisingly low tempera-
tures.

DOI: 10.1103/PhysRevD.67.105008 PACS number~s!: 11.10.Wx, 05.70.Ce, 11.15.Bt, 12.38.Bx
C
ou
-
t

,
ti

e
d
e
io

ct
p-
in
a
fi
es
o

efi
ed

r
a-
to

ng

h
rg

th
h
r

-
ain
s a
to

ive
t re-
still
D

le

nd
r-
er
e
ugh

e

ffi-
ries

-

he
n
ian
I. INTRODUCTION

Because of asymptotic freedom, the properties of Q
might be expected to be perturbatively computable in vari
‘‘extreme’’ limits, such as high virtuality, high baryon den
sity, or high temperature. We concentrate here on the las
these circumstances, that is, temperaturesT larger than a few
hundred MeV.

The physics observable we consider is the pressure
minus the free energy density, of the QCD plasma. Poten
phenomenological applications include the expansion rat
the early Universe after it has settled into the standard mo
vacuum, as well as the properties of the apparently id
hydrodynamic expansion observed in on-going heavy
collision experiments, just shortly after impact.

In these environments, it turns out that the naive expe
tion concerning the validity of perturbation theory is too o
timistic. Indeed, even assuming an arbitrarily weak coupl
constantg, perturbation theory can only be worked out to
finite order in it, before the serious infrared problems of
nite temperature field theory deny further analytic progr
@1,2#. For the pressure, the problem is met at the 4-lo
order, orO(g6).

This leads to the interesting situation that there is a d
nite limit to how far perturbation theory needs to be push
So far, there are known loop contributions at ordersO(g2)
@3#, O(g3) @4#, O„g4ln(1/g)… @5#, O(g4) @6#, andO(g5) @7#.
There is also an all-orders numerical result available fo
theory with an asymptotically large number of fermion fl
vors @8#. The purpose of the present paper is to collect
gether results from two accompanying papers@9,10#, allow-
ing us to determine analytically the last remaini
perturbative contribution,O„g6ln(1/g)…, for the physical
QCD.

It must be understood that even if computed up to suc
high order, the perturbative expansion could well conve
only very slowly, requiring perhaps something likeT@ TeV,
to make any sense at all@7,11,12#. With one further coeffi-
cient available, we can to some extent now reinspect
issue. To do so we actually also need to assume somet
about the unknownO(g6) term, since the numerical facto
0556-2821/2003/67~10!/105008~9!/$20.00 67 1050
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inside the logarithm inO„g6ln(1/g)… remains otherwise un
determined. Therefore, our conclusions on this point rem
on a conjectural level, but turn out to show nevertheles
somewhat interesting pattern, which is why we would like
include them in this presentation.

Finally, it should be stressed that even if the perturbat
expansion as such were to remain numerically useless a
alistic temperatures, these multiloop computations are
worthwhile: the infrared problems of finite temperature QC
can be isolated to a three-dimensional~3D! effective field
theory @13# and studied nonperturbatively there with simp
lattice simulations@14#. However, to convert the results from
3D lattice regularization to 3D continuum regularization, a
from the 3D continuum theory to the original fou
dimensional~4D! physical theory, still necessitates a numb
of perturbative ‘‘matching’’ computations. Both of thes
steps are very closely related to what we do here, altho
we discuss explicitly only the latter one.

II. THE BASIC SETTING

We start by reviewing briefly how it is believed that th
properties of QCD at a finite temperatureT can be reduced to
a number of perturbatively computable matching coe
cients, as well as some remaining contributions from a se
of effective field theories@13#. Our presentation follows
mostly that in @11#, but there are a few significant differ
ences.

The underlying theory is finite temperature QCD with t
gauge group SU(Nc), andNf flavors of massless quarks. I
dimensional regularization the bare Euclidean Lagrang
reads, before gauge fixing,

SQCD5E
0

b\

dtE ddx LQCD, ~2.1!

LQCD5
1

4
Fmn

a Fmn
a 1c̄gmDmc, ~2.2!
©2003 The American Physical Society08-1
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where b5T21, d5322e, m,n50, . . . ,d, Fmn
a 5]mAn

a

2]nAm
a 1g fabcAm

b An
c , Dm5]m2 igAm , Am5Am

a Ta, gm
†

5gm, $gm ,gn%52dmn , andc carries Dirac, color, and fla
vor indices.

Denoting the generators of the adjoint representation
(Fa)bc52 i f abc, we define the usual group theory factors

CAdab5@FcFc#ab , CFd i j 5@TaTa# i j , ~2.3!

TAdab5Tr FaFb, TFdab5Tr TaTb, ~2.4!

dA5daa5Nc
221, dF5d i i 5TFdA /CF . ~2.5!

ObviouslyTA5CA . For the standard normalization, withNf

quark flavors,CA5Nc , CF5(Nc
221)/(2Nc), TA5Nc , TF

5Nf /2, dA5Nc
221, dF5NcNf .

We use dimensional regularization throughout this pap
The spatial part of each momentum integration measur
written as

E
p
[E ddp

~2p!d
5m22eF m̄2eS eg

4p D eE ddp

~2p!dG , ~2.6!

wherem5m̄(eg/4p)1/2, and the expression in square brac
ets has integer dimensionality. From now on we always
sume implicitly that the factorm22e is attached to some rel
evant coupling constant, so that the 4Dg2 is dimensionless,
while the dimensionalities ofgE

2 ,lE
(1) ,lE

(2) and gM
2 , to be

introduced presently, are GeV.
The basic quantity of interest to us here is minus the f

energy densityf QCD(T), or the pressurepQCD(T), defined by

pQCD~T![ lim
V→`

T

V
lnE DAm

a Dc Dc̄ expS 2
1

\
SQCDD ,

~2.7!

whereV denotes thed-dimensional volume. Boundary con
ditions over the compact time-like direction are periodic
bosons and anti-periodic for fermions. Moreover, we assu
pQCD(T) renormalized such that it vanishes atT50. To sim-
plify the notation, we do not show the infinite volume lim
explicitly in the following.

At high temperatures and a small coupling, there are p
metrically three different mass scales in the proble
;2pT,gT,g2T @13#. All the effects of the hard mass sca
;2pT can be accounted for by a method called dimensio
reduction@13,15#. Specifically,

pQCD~T![pE~T!1
T

V
lnE DAk

aDA0
a exp~2SE!, ~2.8!

SE5E ddx LE, ~2.9!

LE5
1

2
Tr Fkl

2 1Tr @Dk ,A0#21mE
2Tr A0

2

1lE
(1)~Tr A0

2!21lE
(2)Tr A0

41 . . . . ~2.10!
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Here k51, . . . ,d, Fkl5( i /gE)@Dk ,Dl #, Dk5]k2 igEAk ,
and we have used the shorthand notationAk5Ak

aT̄a,A0

5A0
aT̄a, whereT̄a are Hermitean generators of SU(Nc) nor-

malized such that TrT̄aT̄b5dab/2. Note that the quartic cou
plings lE

(1) , lE
(2) are linearly independent only forNc>4.

The relation in Eq.~2.8! contains five different matching
coefficients,pE,mE

2 ,gE
2 , lE

(1) ,lE
(2) . We are interested in the

expression forpQCD(T) up to orderO(g6T4). They will then
have to be determined to some sufficient depths, as we
specify later on. Let us here note that the leading order m
nitudes are pE;T4, mE

2;g2T2, gE
2;g2T, lE

(1);g4T, lE
(2)

;g4T.
Apart from the operators shown explicitly in Eq.~2.10!,

there are of course also higher order ones inLE. The lowest
such operators have been classified in@16#. Their general
structure is that one must add at least two powers ofDk or
gA0 to the basic structures in Eq.~2.10!. Since higher order
operators are generated through interactions with the sc
that have been integrated out,;2pT, they must also contain
an explicit factor of at leastg2. For dimensional reasons, th
schematic structure is thus

dLE;g2
DkDl

~2pT!2
LE. ~2.11!

To estimate the largest possible contributions such opera
could give, let us assume the most conservative possib
that the only dynamical scale in the effective theory is;gT.
By dimensional analysis, we then obtain a contribution

dpQCD~T!

T
;dLE;g2

~gT!2

~2pT!2
~gT!3;g7T3. ~2.12!

Therefore, all higher dimensional operators can be omit
from the action in Eq.~2.10!, if we are only interested in
computingpQCD(T) up to orderO(g6T4).

The theory in Eq.~2.10! contains still two dynamical
scales,gT,g2T. All the effects of the ‘‘color-electric’’ scale,
gT, can be accounted for by integrating outA0 @13#. Specifi-
cally,

T

V
lnE DAk

aDA0
a exp~2SE![pM~T!

1
T

V
lnE DAk

a exp~2SM!,

~2.13!

SM5E ddx LM , ~2.14!

LM5
1

2
Tr Fkl

2 1 . . ., ~2.15!

where Fkl5( i /gM)@Dk ,Dl #, Dk5]k2 igMAk , and Ak

5Ak
aT̄a.

The relation in Eq.~2.13! contains two matching coeffi
cients,pM ,gM

2 , which again have to be determined to suf
cient depths. At leading order,pM;mE

3T, gM
2 ;gE

2 . In addi-
8-2
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tion, there are also higher order operators in Eq.~2.15!. The
lowest ones can be obtained by imagining again that
apply at least two covariant derivatives to Eq.~2.15!, to-
gether with at least one factorgE

2 brought in by the interac-
tions with the massive modes. This leads to an operator

dLM;gE
2 DkDl

mE
3

LM . ~2.16!

The only dynamical scale in the effective theory bei
;g2T, dimensional analysis indicates that we then obtai
contribution of the order

dpQCD~T!

T
;dLM;gE

2 ~g2T!2

mE
3 ~g2T!3;g9T3. ~2.17!

Therefore, higher dimensional operators can again be o
ted, if we are only interested in the orderO(g6T4) for
pQCD(T).

After the two reduction steps, there still remains a con
bution from the scaleg2T:

pG~T![
T

V
lnE DAk

aexp~2SM!, ~2.18!

with SM in Eqs. ~2.14!, ~2.15!. SinceLM only has one pa-
rameter, and it is dimensionful, the contribution is of t
form

pG~T!;TgM
6 . ~2.19!

The coefficient of this contribution is, however, no
perturbative@1,2#.

In the following sections, we proceed in the opposite
rection with regard to the presentation above, from the ‘‘b
tom’’ scale g2T, producing pG(T), through the ‘‘middle’’
scalegT, producingpM(T), back to the ‘‘top’’ scale 2pT,
producingpE(T). We collect on the way all contributions u
to orderg6T4 to obtainpQCD(T)5pE(T)1pM(T)1pG(T).

III. CONTRIBUTIONS FROM THE SCALE g2T

The contribution topQCD(T) from the scalep;g2T is
obtained by using the theoryLM in Eq. ~2.15! in order to
computepG(T), as defined by Eq.~2.18!. As is well known
@1,2#, the computation involves infrared divergent integra
starting at the 4-loop level. This is a reflection of the fact th
LM defines a confining field theory. Therefore,pG(T) cannot
be evaluated in perturbation theory.

What can be evaluated, however, is the logarithmic ul
violet divergence contained inpG(T). For dimensional rea-
sons, the nonperturbative answer would have to be of
form
10500
e

a

it-

-
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-

,
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-

e

pG~T!

Tm22e
5dACA

3
gM

6

~4p!4 FaGS 1

e
18ln

m̄

2mM
D 1bG1O~e!G ,

~3.1!

where mM[CAgM
2 . Now, because of the supe

renormalizability ofLM , the coefficientaG can be computed
in 4-loop perturbation theory, even if the constant partbG
cannot@29#.

Of course, if we just carry out the 4-loop computation
strict dimensional regularization, then the result vanishes,
cause there are no perturbative mass scales in the prob
This means that ultraviolet and infrared divergences~errone-
ously! cancel against each other. Therefore, we have to
more careful in order to determineaG.

To regulate the infrared divergences we introduce by h
a mass scale,mG

2 , into the gauge field~and ghost! propaga-
tors. This computation is described in detail in@9#. Individual
diagrams contain then higher order poles, like 1/e2, as well
as a polynomial of degree up to nine in the gauge param
j. However, terms of both of these types cancel in the fi
result, which serves as a nice check of the procedure.

As a result, we obtain

pG~T!

Tm22e
'dACA

3
gM

6

~4p!4 FaGS 1

e
18ln

m̄

2mG
D 1b̃G~j!1O~e!G ,

~3.2!

where ‘‘' ’’ is used to denote that only the coefficientaG
multiplying 1/e is physically meaningful, as it contains th
desired gauge independent ultraviolet divergence, define
Eq. ~3.1!. The value of the coefficient, obtained by extensi
use of techniques of symbolic computation~implemented
@17# in FORM @18#!, is @9#

aG5
43

96
2

157

6144
p2'0.195715. ~3.3!

On the contrary, the constant partb̃G(j) depends on the
gauge parameterj, because the introduction ofmG

2 breaks
gauge invariance, and has nothing to do withbG in Eq. ~3.1!.

IV. CONTRIBUTIONS FROM THE SCALE gT

We next proceed to include the contribution from t
scalegT, contained inpM(T), as defined by Eq.~2.13!. By
construction, Eq.~2.13! assumes that all the infrared dive
gences of the expression on the left-hand side are conta
in pG(T), defined in Eq.~2.18!, and determined in Eq.~3.1!.
Therefore, if we compute the functional integr
(T/V)ln@*DAi

aDA0
a exp(2SE)# using strict dimensiona

regularization~i.e., without introducing by hand any mas
mG for the gauge fieldAi), wherebypG(T) vanishes due to
the cancellation between infrared and ultraviolet divergen
mentioned above, we are guaranteed to obtain just the in
red insensitive matching coefficientpM(T). This is exactly
the computation we need, and carry out in@10,19#. It may be
mentioned that we have checked explicitly the infrared
8-3
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sensitivity of the result, by giving an equal mass to bothA0
and Ai in the 4-loop expression for the functional integra
and then subtracting the graphs responsible forpG(T), with
the same infrared regularization. This result is also indep
dent of the gauge parameter.

Keeping terms up to orderO(g6T4), the full outcome for
pM(T) is

pM~T!

Tm22e
5

1

~4p!
dAmE

3F1

3
1O~e!G

1
1

~4p!2
dACAgE

2mE
2F2

1

4e
2

3

4
2 ln

m̄

2mE
1O~e!G

1
1

~4p!3
dACA

2gE
4mE

3F2
89

24
2

1

6
p21

11

6
ln21O~e!G

1
1

~4p!4
dACA

3gE
6FaMS 1

e
18ln

m̄

2mE
D 1bM1O~e!G

1
1

~4p!2
dA~dA12!lE

(1)mE
2F2

1

4
1O~e!G

1
1

~4p!2
dA

2dA21

Nc
lE

(2)mE
2F2

1

4
1O~e!G , ~4.1!

where@10#

aM5
43

32
2

491

6144
p2'0.555017. ~4.2!

The finite constantbM can be expressed in terms of a num
ber of finite coefficients related to 4-loop vacuum scalar
tegrals@10#, but we do not need it here.

In addition topM(T), we also need to specify the effec
tive parametergM

2 appearing inLM , to complete contribu-
tions from the scalegT. It is of the form

gM
2 5gE

2@11O~gE
2/mE!#, ~4.3!

where the next-to-leading order correction is known~see,
e.g.,@20#!, but not needed here.

V. CONTRIBUTIONS FROM THE SCALE 2 pT

The contributions from the scale 2pT are contained in the
expressions for the parameters of the previous effective th
ries, as well as inpE(T). We write these as
10500
n-

-

o-

m2epE~T!5T4S aE11g2@aE21O~e!#1
g4

~4p!2
@aE31O~e!#

1
g6

~4p!4
@bE11O~e!#1O~g8!D , ~5.1!

mE
25T2S g2@aE41aE5e1O~e2!#

1
g4

~4p!2
@aE61bE2e1O~e2!#1O~g6!D , ~5.2!

gE
25TS g21

g4

~4p!2
@aE71bE3e1O~e2!#1O~g6!D ,

~5.3!

lE
(1)5TS g4

~4p!2
@bE41O~e!#1O~g6!D , ~5.4!

lE
(2)5TF g4

~4p!2
@bE51O~e!#1O~g6!G , ~5.5!

whereg2 is the renormalized coupling. We have named e
plicitly ( aE,bE) the coefficients needed up to orderO(g6).
The actual values for those needed at orderO@g6ln(1/g)#,
denoted byaE, are given in Appendix A. The additiona
coefficients needed at the full orderO(g6) are denoted by
bE; some of these are also known~for bE4,bE5, e.g., see
@21#!. The rest of the terms contribute only beyondO(g6).

The expression forpE(T) is simply the functional integra
in Eq. ~2.7!, calculated to the 4-loop level in the modifie
minimal subtraction (MS) scheme, but without any resum
mations. The only physical scale entering is thus 2pT. The
calculation has so far been carried out only to three lo
@6,11# so thatbE1 is not known. Even when performed wit
the fully renormalized theory, the results in general cont
uncancelled 1/e poles, as explicitly seen in the 3-loop ex
pression in Eq.~A3! for aE3. These only cancel when
physical fully resummed quantity is evaluated, i.e., in t
sumpQCD5pE1pM1pG. Similarly, mE

2 ,gE
2 ,lE

( i ) can be ob-
tained, for instance, from suitable 2-, 3-, and 4-point fun
tions, respectively.

VI. THE COMPLETE RESULT

Combining now the results of Secs. III, IV, V and expan
ing in g, we arrive at
8-4
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pQCD~T!

T4m22e
5

pE~T!1pM~T!1pG~T!

T4m22e

5g0$aE1%1g2$aE2%1
g3

~4p! H dA

3
aE4

3/2J 1
g4

~4p!2 H aE32dACAFaE4S 1

4e
1

3

4
1 ln

m̄

2gTaE4
1/2D 1

1

4
aE5G J

1
g5

~4p!3 H dAaE4
1/2F1

2
aE62CA

2S 89

24
1

p2

6
2

11

6
ln2D G J 1

g6

~4p!4 H bE12
1

4
dAaE4F ~dA12!bE41

2dA21

Nc
bE5G

2dACAF1

4
~aE61aE5aE713aE4aE71bE21aE4bE3!1~aE61aE4aE7!S 1

4e
1 ln

m̄

2gTaE4
1/2D G

1dACA
3FbM1bG1aMS 1

e
18ln

m̄

2gTaE4
1/2D 1aGS 1

e
18ln

m̄

2g2TCA
D G J 1O~g7!1O~e!. ~6.1!
to
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Utilizing the expressions in Appendix A, the terms up
orderO(g5) reproduce the known result in@7#.

For the contribution at orderO(g4), the 1/e divergence in
aE3 @cf. Eq. ~A3!# and the 1/e divergence frompM(T),
shown explicitly in Eq.~6.1!, cancel. This must happen sinc
pQCD(T) is a physical quantity. The associatedm̄ ’s also can-
cel, but a physical effect ln@mE/(2pT)#; ln(gaE4

1/2) remains
@5#.

For the contribution at orderO(g6), a number of un-
known coefficients remain~thebE’s, bM , bG), but a similar
cancellation is guaranteed to take place. In addition, the
sult must be scale independent to the order it has been c
puted. The first point can be achieved bybE1 ~the otherbE’s
are finite!, so that it has to have the structure

bE1[dACA~aE61aE4aE7!
1

4e
2dACA

3~aM1aG!
1

e
1bE6,

~6.2!

wherebE6 does not contain any 1/e poles. The latter point
can be achieved by adding and subtracting ln@m̄/(2pT)#’s,
such thatm̄ gets effectively replaced by 2pT in the loga-
rithms visible in the O(g6) term in Eq. ~6.1!. The
ln@m̄/(2pT)#’s left over, together with those coming from th
bE’s, serve to cancel the effects from the 2-loop running
g2(m̄) and 1-loop running ofg4(m̄) in the lower order con-
tributions, without introducing large logarithms.

This general information is enough to fix the contributio
of order O„g6ln(1/g)… to pQCD(T). Indeed, after inserting
Eq. ~6.2! and reorganizing the logarithms appearing in t
bE’s as mentioned, there remains a logarithmic 4-loop te

pQCD~T!

T4m22e U
g6ln(1/g)

5g6
dACA

~4p!4
$~aE61aE4aE7!ln~gaE4

1/2!

28CA
2@aMln~gaE4

1/2!12aGln~gCA
1/2!#%,

~6.3!
10500
e-
m-

f

,

whereaE4 is in Eq. ~A4!, aE6 is in Eq. ~A6!, aE7 is in Eq.
~A7!, aM is in Eq. ~4.2!, and aG is in Eq. ~3.3!. Note that
there are logarithms of two types, with different non-analy
dependences on group theory factors inside them. Equa
~6.3! is our main result.

Following @7,11#, let us finally insertNc53, and give also
the numerical values for the various coefficients, for an ar
trary Nf . We obtain

pQCD~T!5
8p2

45
T4F(

i 50

6

piS as~m̄ !

p D i /2G , ~6.4!

where

p0511
21

32
Nf , ~6.5!

p150, ~6.6!

p252
15

4 S 11
5

12
Nf D , ~6.7!

p3530S 11
1

6
Nf D 3/2

, ~6.8!

p45237.2115.96Nf20.4150Nf
2

1
135

2 S 11
1

6
Nf D lnFas

p S 11
1

6
Nf D G

2
165

8 S 11
5

12
Nf D S 12

2

33
Nf D ln

m̄

2pT
, ~6.9!
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p55S 11
1

6
Nf D 1/2F2799.1221.96Nf21.926Nf

2

1
495

2
S 11

1

6
Nf D S 12

2

33
Nf D ln

m̄

2pT
G , ~6.10!

p65F2659.2265.89Nf27.653Nf
21

1485

2
S 11

1

6
Nf D

3S 12
2

33
Nf D ln

m̄

2pT
G lnFas

p
S 11

1

6
Nf D G

2475.6ln
as

p
1qa~Nf !ln

2
m̄

2pT
1qb~Nf !ln

m̄

2pT

1qc~Nf !, ~6.11!

where qa(Nf), qb(Nf), qc(Nf) are as-independent polyno-
mials in Nf . Two of them,qa(Nf), qb(Nf), can already be
written down because they just cancel them̄ dependence
arising from the terms of ordersas(m̄), as

2(m̄):

qa~Nf !52
1815

16 S 11
5

12
Nf D S 12

2

33
Nf D 2

, ~6.12!

qb~Nf !52932.9142.83Nf216.48Nf
210.2767Nf

3 .
~6.13!

The third one,qc(Nf), remains, however, unknown.

VII. THE NUMERICAL CONVERGENCE

This section is devoted to a numerical discussion of
result. Since theO„g6ln(1/g)… term cannot be given an un
ambiguous numerical meaning until theO(g6) term is speci-
fied, we have to present the result for various choices of

latter. In the relevant range ofT/LMS the outcome will de-

10500
e

e

pend sensitively, even qualitatively, on this uncompu
term. One choice will be seen to agree with 4D lattice d
down to aboutT/LMS;2 . . . 3. Since, however, dimensiona
reduction, that is, an effective description of QCD via t
theory in Eq.~2.10!, is known to break down at about thi
point, and we have only kept a finite number of terms in t
expansion following from Eq.~2.10!, this cannot really be
considered a prediction, even if the eventual computation
the O(g6) term gave just the appropriate value. It is just
observation that a smooth transition from the domain of
lidity of our results to a domain of different approximation
should be possible.

A standard procedure in the discussion of perturbative
sults would be to take the expansion in Eq.~6.4! and to study
whether its scale dependence is reduced when further or
of perturbation theory are included. As is well known sin
@6#, this fails for the pressure, unlessT@LMS. Related to
this, the numerical convergence of the perturbative exp
sion is known to be quite poor for any fixed scale choice
least for temperatures below the electroweak scale@7,11,12#.
The new term we have computed does not change this
eral pattern. But the culprit is known: it ispM(T)1pG(T)
emerging from the 3D sector of the theory, where the exp
sion parameter is onlygE

2/(pmE);g/p. In contrast, for
pE(T) as well as for, say, jet physics, the expansion para
eter isas /p, and there are good reasons to expect numer
convergence to be much better.

For these reasons, we will only discuss the sensitivity
the result on the so far unknownO(g6) coefficient, as well as
the slow convergence of the 3D sector, in the following. F
simplicity, we only consider the caseNc53, Nf50 here.

As in @14#, the actual form we choose for plotting con
tains pM(T)1pG(T) @Eqs. ~4.1!1~3.1!# in an ‘‘un-
expanded’’ form, that is, withmE, gE

2 inserted from Eqs.
~5.2!, ~5.3!, andgM

2 from Eq. ~4.3!. This means that we are
effectively summing up higher orders: theO(g3) term is
really O(g21g4)3/2, while theO„g6ln(1/g)… term contains a
FIG. 1. Left: perturbative results at various orders~the precise meanings thereof are explained in Sec. VII!, including O(g6) for an
optimal constant, normalized to the non-interacting Stefan-Boltzmann valuepSB. Right: the dependence of theO(g6) result on the~not yet
computed! constant, which contains both perturbative and nonperturbative contributions. The 4D lattice results are from@22#.
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resummed coefficient, being then effectivelyO„(g2

1g4)3ln(1/g)…. We proceed in this way because then a co
parison with numerical determinations@14# of the slowly
convergent partpM(T)1pG(T) is more straightforward, and
also because the resummations carried out reduce them̄ de-
pendence of the outcome. However, we have checked
the practical conclusions remain the same even if we
directly the expression in Eqs.~6.4!–~6.11! ~but with a larger
scale dependence!.

To be specific, the genuineO„g6ln(1/g)1g6
… contribu-

tion, which collects the effects from all the terms involvin
the bE’s, bM , bG, aM , andaG in Eq. ~6.1!, is now written
in the form ~specific for Nc53, Nf50, where mE/gE

2

;1/g),

dF pQCD~T!

Tm22e G
g6ln(1/g)

[ 8dACA
3

gE
6

~4p!4

3F ~aM12aG!ln
mE

gE
2

1dG ,

~7.1!

while the remainingO(g6) terms of Eq.~6.1! are contained
in the resummed lower order contributions. The results
shown in Fig. 1 for various values ofd. The power ofg
labelling the curves indicates the leading magnitude of
highest order resummed contribution appearing. The sca
chosen asm̄'6.7T, as suggested by the next-to-leading
der expression forgE

2 @12#. We observe that for a specifi
value ofd, the curve extrapolates well to 4D lattice data.

While Fig. 1 looks tempting, the question still remai
whether the good match to 4D lattice data with a spec
value of the constant is simply a coincidence. This issue
be fully settled only once the constant is actually comput
However, we can already inspect how the slowly converg
part of the pressure,pM1pG, really behaves.

The different finite terms in (pM1pG)/(TgE
6) are plotted

in Fig. 2. ThelE
( i ) contributions are negligible. The resul

depend then essentially only onmE
2/gE

4 , which for Nc

53, Nf50 is mE
2/gE

4'0.32log10(T/LMS)10.29. We observe
that the leading 1-loop termO(g3) is dominant forT/LMS
*10, the 3-loop termO(g5) is rather big, bigger in absolut
value than the 2-loop termO(g4) within the T-range of the
figure, while the 4-loop term is always very small. Therefo
while it is quite possible that there is again a big ‘‘odd
O(g7) contribution, it is perhaps not completely outrageo
either to hope that the convergence could also already
reasonable, once the fullO(g6) contribution is included. If
this were the case, then all higher order contributions wo
have to sum up to a small number.

Finally, it is perhaps interesting to remark that at the tim
of the numerical lattice Monte Carlo study in Ref.@14#, noth-
ing was known about the coefficientbE1, which was there-
fore set to zero@cf. Eq. ~4! in @14##, while the partpM(T)
1pG(T) was determined nonperturbatively. But this mea
10500
-
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e
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nt
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s
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e

s

that a logarithmic term coming from the scale 2pT, ;

2g6(aM1aG)ln@m̄/(2pT)#, was missed. With the scal

choicem̄[m̄E5gE
2 within results obtained withLE, this con-

verted to a missingO„g6ln(1/g)… contribution g6(2aM

12aG)ln(1/g). With the same scale choice th
nonperturbative part, on the other hand, contribu
2g6aMln(1/g) and led to the wrong curvature of the pre
sure seen at smallT/LMS. Adding the missing part, which
now has been computed, leads to a total ofg6(aM

12aG)ln(1/g), with the opposite sign and the correct~i.e.,
the one seen in 4D lattice measurements! curvature in Fig. 1
~for small values ofd). Therefore theO„g6ln(1/g)… terms
are indeed physically very relevant.

VIII. CONCLUSIONS

We have addressed in this paper the 4-loop logarith
contributions to the pressure of hot QCD. Physical~regular-
ization independent! logarithms can only arise from a ratio o
two scales. Since there are three parametrically differ
scales in the system, 2pT,gT, g2T, there are then various
types of perturbatively computable logarithms in the 4-lo
expression for the pressure:

~1! Logarithms of the typeg6ln@(2pT)/(g2T)#. The coeffi-
cient of these is computed in@9#, and given in Eq.~3.3!.

~2! Logarithms of the typeg6ln@(2pT)/(gT)#. The coeffi-
cient of these is computed in@10#, and given in Eq.~4.2!.

~3! Logarithms related to the running of the coupling co
stant in the 3-loop expression of orderO„g4ln@(2pT)/(gT)#….

Their MS coefficient can be seen in the first term in E
~6.3!, but it depends on the scheme, and can in principle e
be chosen to vanish.

Logarithms of the first and second types can be written
many ways: it may be more intuitive, for instance, to reo
ganize them as

FIG. 2. The absolute values of the various terms of the slo
convergent expansion forpM(T)1pG(T), normalized byTgE

6 .
8-7



p
r,
th
q

d,
m
a

va
fe

3
-
l

i
e-
co
lt

e

o
th

ls

o

tri
ul

n
ti
na
W
a

g

r-

KAJANTIE et al. PHYSICAL REVIEW D 67, 105008 ~2003!
g6aGlnS 2pT

g2T
D 1g6aMlnS 2pT

gT D
5g6~aM1aG!lnS 2pT

gT D 1g6aGlnS gT

g2T
D .

~8.1!

The existence of three kinds of logarithms is somewhat s
cific to non-Abelian gauge theory. In QED, in particula
none of the logarithms appear. This is due to the fact that
effective theories we have used for their computation, E
~2.10!, ~2.15!, are non-interacting@apart from a term;A0

4 in
Eq. ~2.10!, which does not lead to logarithms#. Therefore we
have nothing to add to the knownO(g5) QED result ob-
tained in @23#. In the f4 scalar theory, on the other han
there is a logarithm of the second type, and also one so
what analogous to the third type. Their coefficients were
ready computed in@24#.

There are interesting checks that can be made on the
ous logarithms mentioned, using methods completely dif
ent from those employed here. For instance, logarithms
the first and second types could in principle be seen with
lattice Monte Carlo methods@25,26#, as well as with stochas
tic perturbation theory@27#. A very interesting analytica
check would be to compute the 4-loop free energy directly
4D in strict dimensional regularization, but without any r
summation. By definition, this computation produces the
efficientbE1 in Eq. ~5.1! @11#, and one check is that the resu
must contain the 1/e divergences shown in Eq.~6.2!.

To complete the free energy from the current lev
O„g6ln(1/g)… to the full level O(g6) would require signifi-
cantly more work than the computation presented here. M
specifically, there are contributions from all the scales in
problem, ranging from 2pT ~the coefficientsbE1, . . . ,bE5),
through gT ~the coefficient bM), down to the non-
perturbative scaleg2T ~the coefficientbG). This then re-
quires carrying out 4-loop finite temperature sum-integra
4-loop vacuum integrals ind5322e, 4-loop vacuum inte-
grals in 3D lattice regularization, and lattice simulations
the pure 3D gauge theory in Eq.~2.15!. Nevertheless, given
the potentially important combined effect of all these con
butions, as indicated by Fig. 1, such computations wo
clearly be well motivated.

ACKNOWLEDGMENTS

This work was partly supported by the RTN networkSu-
persymmetry and the Early Universe, EU Contract no.
HPRN-CT-2000-00152, by the Academy of Finland, Co
tracts no. 77744 and 80170, by the DOE, under Coopera
Agreement no. DF-FC02-94ER40818, and by the Natio
Science Foundation, under Grant no. PHY99-07949.
thank KITP, Santa Barbara, where part of this work was c
ried out, for hospitality.

APPENDIX: MATCHING COEFFICIENTS

In Eqs.~5.1!–~5.5! we have defined a number of matchin
coefficients, theaE’s and bE’s. For theaE’s, the following
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expressions can be extracted from@11,15,28#:

aE15
p2

180
~4dA17dF!, ~A1!

aE252
dA

144S CA1
5

2
TFD , ~A2!

aE35
dA

144
FCA

2 S 12

e
1

194

3
ln

m̄

4pT
1

116

5
14g1

220

3

z8~21!

z~21!

2
38

3

z8~23!

z~23!
D

1CATFS 12

e
1

169

3
ln

m̄

4pT
1

1121

60
2

157

5
ln218g

1
146

3

z8~21!

z~21!
2

1

3

z8~23!

z~23!
D

1TF
2 S 20

3
ln

m̄

4pT
1

1

3
2

88

5
ln214g1

16

3

z8~21!

z~21!

2
8

3

z8~23!

z~23!
D 1CFTFS 105

4
224ln2D G , ~A3!

aE45
1

3
~CA1TF!, ~A4!

aE55
2

3
FCAS ln

m̄

4pT
1

z8~21!

z~21!
D

1TFS ln
m̄

4pT
1

1

2
2 ln21

z8~21!

z~21!
D G , ~A5!

aE65CA
2 S 22

9
ln

m̄eg

4pT
1

5

9
D 1CATFS 14

9
ln

m̄eg

4pT
2

16

9
ln211D

1TF
2 S 2

8

9
ln

m̄eg

4pT
2

16

9
ln21

4

9
D 22CFTF, ~A6!

aE75CAS 22

3
ln

m̄eg

4pT
1

1

3
D 2TFS 8

3
ln

m̄eg

4pT
1

16

3
ln2D .

~A7!

Note that with our notation, the 1-loop running of the reno
malized coupling constant goes as

g2~m̄ !5g2~m̄0!2
2

3
~11CA24TF!

g4~m̄0!

~4p!2
ln

m̄

m̄0

. ~A8!
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1. Introduction

The theory we study in this paper is the euclidean SU(Nc) gauge + adjoint Higgs theory,

defined in continuum dimensional regularisation by the action

SE ≡

∫

ddxLE , (1.1)

LE ≡
1

2
TrF 2

kl +Tr[Dk, A0]
2 +m2 TrA2

0 + λ(TrA2
0)

2 , (1.2)

where k, l = 1, . . . , d, Dk = ∂k − igAk, Ak = Aa
kT

a, A0 = Aa
0T

a, Fkl = (i/g)[Dk , Dl], and

T a are the hermitean generators of SU(Nc), normalised as TrT aT b = δab/2. Summation

over repeated indices is understood. We could have taken the scalar potential also in the

form λ1(TrA
2
0)

2+λ2 TrA
4
0, but the two quartic terms are independent only for Nc ≥ 4 and

thus, to avoid further proliferation of formulae, we will set λ2 = 0 here, denoting λ ≡ λ1.

For the moment we keep d general, but later on we write d = 3− 2ε, and expand in ε¿ 1.

– 1 –
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The observable we would like to compute for the theory in eq. (1.2) is its partition

function, or “vacuum energy density”,

f(m2, g2, λ) ≡ − lim
V→∞

1

V
ln

∫

DAkDA0 exp(−SE) . (1.3)

Here V is the d-dimensional volume. The phase diagram of the system described by SE

has a “disordered”, or symmetric phase and, depending on Nc, various kinds of symmetry

broken phases [1, 2]. Our aim is to determine the perturbative expansion for f up to 4-loop

order in the symmetric phase, expanding around Aa
0 = Aa

k = 0; the 3-loop result is known

already [3, 4]. The result will depend on Nc through dA ≡ N2
c − 1, CA ≡ Nc.

The main motivation for the exercise described comes from finite temperature QCD. In-

deed, the simplest physical observable there, the free energy density or minus the pressure,

has been computed perturbatively up to resummed 3-loop level [5, 6], but the expansion

converges very slowly, requiring probably temperatures T ÀTeV to make any sense at

all [5, 6, 3, 7]. Moreover, at the 4-loop level the expansion breaks down completely [8, 9].

Multiloop computations are not useless, though: these infrared problems can be isolated

into the three-dimensional (3d) effective field theory in eq. (1.2) [10], and studied non-

perturbatively there with simple lattice simulations [4]. However, to convert the results

from lattice regularisation to 3d continuum regularisation, and from the 3d continuum the-

ory to the original 4d physical theory, still necessitates a number of perturbative multiloop

“matching” computations.

The way our computation enters this setup has been described in [11]. Combining

our results with those of another paper [12] allows one to determine, as explained in [11],

all the logarithmic ultraviolet and infrared divergences entering the 4-loop free energy of

QCD. This not only fixes the last perturbatively computable contribution to the free energy

of hot QCD [11], of order O(g6 ln(1/g)T 4), but is also a step towards renormalising the

non-perturbative contributions, as determined with lattice methods [4, 13]. Some other

applications of our results are discussed in section 8.

2. Outline of the general procedure

The first step of the perturbative computation is the generation of the Feynman diagrams.

At 4-loop level, this is no longer a completely trivial task. In order to make the pro-

cedure tractable, we employ an algorithm whereby the graphs are generated in two sets:

two-particle-irreducible “skeleton” graphs, as well as various types of “ring” diagrams, con-

taining all possible self-energy insertions. The resulting sets, with the relevant symmetry

factors, were provided explicitly in [14].

It actually turns out that some of the generic graphs shown in [14] do not contribute

in the present computation. There are two reasons for this. First, once the Feynman

rules for the interactions of gauge bosons and adjoint scalars are taken into account, some

of the graphs vanish at the point of colour contractions. This concerns particularly the

“non-planar” topologies [15]. Second, all vacuum graphs which do not contain at least

one massive (adjoint scalar) line, vanish in strict dimensional regularisation. In some
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Figure 1: The skeleton diagrams contributing in eq. (1.3), after subtraction of those which obvi-

ously vanish because of colour contractions or specific properties of dimensional regularisation. Solid

lines represent the adjoint scalar A0, wavy lines the gauge boson Ai, and dotted lines the ghosts.

The complete sets of skeleton diagrams have been enumerated and written down in ref. [14], whose

overall sign conventions we also follow.

cases such a vanishing may be due to an unphysical cancellation between ultraviolet and

infrared divergences, as we will recall in section 7, but for the moment we accept the

vanishing literally. The remaining skeleton graphs are then as shown in figure 1. For the

ring diagrams, which by far outnumber the skeleton graphs, we find it simpler to treat

the full sets as shown in [14], letting the two types of cancellations mentioned above come

out automatically in the actual computation. For completeness, the ring diagrams are

reproduced in figure 2.

The Feynman rules for the vertices and propagators appearing are the standard ones.

We employ covariant gauge fixing, with a general gauge fixing parameter, denoted here by

ξ ≡ ξhere ≡ 1− ξstandard , (2.1)

where ξstandard is the gauge fixing parameter of the standard covariant gauges. Therefore,

Feynman gauge corresponds here to ξ = 0, Landau gauge to ξ = 1. We keep everywhere ξ

completely general, however, and verify explicitly that it cancels in all the results.

The graphs having been identified and the Feynman rules specified, we program

them [16] in the symbolic manipulation package FORM [17], for further treatment.

After the colour contractions, the next step is to “scalarise” the remaining integrals.

That is, we want to remove all scalar products from the numerators of the momentum in-

tegrations, such that only integrations of the type appearing in scalar field theories remain.

This problem can be solved by using general partial integration identities [18]. The full

power of the identities can be conveniently made use of through an algorithm developed by

Laporta [19]. We discuss some aspects of our implementation of this algorithm, together

with the results obtained, in section 3.
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,
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+1
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2
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Figure 2: The ring diagrams contributing in eq. (1.3) [14]. The notation is as in figure 1.

After the reduction to scalar integrals, we are faced with their evaluation. At this point

one has to specify the dimension d of the spacetime, in order to make further progress. We

write d = 3− 2ε, expand in ε¿ 1, and evaluate the various scalar integrals appearing to a

certain (integral-dependent) depth in this expansion, such that a specified order is achieved

for the overall result. For the new 4-loop contributions, the overall order for which we have

either analytic or numerical expressions is O(1). The scalar integrals needed for this are

discussed in section 4.

– 4 –



J
H
E
P
0
4
(
2
0
0
3
)
0
3
6

; ; ; ; ; ;

; ; ; × ; × ;

× ; × ;
( )2

× ;
( )4

Figure 3: The 15 general types of 4-loop integrations remaining, in terms of momentum flow

(momentum conservation is assumed at the vertices), after taking into account that colour con-

tractions remove the non-planar topologies. Any line could contain a propagator to some power

n ≥ 1, and there is also an unspecified collection of scalar products of the integration momenta in

the numerator.

There is one remaining step to be taken before we have the final result: the renormal-

isation of the parameters m2, g2, λ in eq. (1.2). In other words, the results presented up

to this point were in terms of the bare parameters, and we now want to re-expand them

in terms of the renormalised parameters. This step is also specific to the dimension, and

turns out to be particularly simple for d = 3 − 2ε, since only the mass parameter gets

renormalised. The conversion of the bare parameters to the renormalised ones is discussed

in section 5, and the final form of the results is then shown in section 6.

Having completed the straightforward computation, we discuss the conceptual issue

of infrared divergences in section 7. We mention in this context also some checks of our

results, based on largely independent computations. We end with a list of some applications

in section 8.

3. Scalarisation in d dimensions

After inserting the Feynman rules and carrying out the colour contractions, there remains,

at 4-loop level, a 4d-dimensional momentum integration to be carried out. The different

types of integrations emerging can be illustrated in graphical notation in the standard way.

Without specifying the fairly complicated numerators, involving all possible kinds of scalar

products of the integration momenta, the graphs are of the general types shown in figure 3.

There are a few simple tricks available in order to try and simplify the scalar products

appearing in the numerators [16]. For instance, one can find relabelings of the integration

variables such that the denominators appearing in the graph remain the same, while the

scalar products in the numerators may get simplified, after symmetrising between such

relabelings. Some scalar products in the numerators can also be completed into sums

of squares, such that they cancel against the denominators. Furthermore, we can make

use of various special properties of dimensional regularisation: any closed massless 1-loop

tadpole integral vanishes; and any 1-loop massive bubble diagram with at most one external

momentum is easily scalarised explicitly, in the sense of removing the loop momentum from

all the scalar products appearing in the numerators. However, while such simple tricks are

sufficient at, say, 2-loop level, this is no longer the case at 4-loop level.
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Figure 4: The 1-loop, 3-loop and 4-loop “master” topologies remaining after “scalarisation”. There

are no numerators left in these graphs. A solid line is a massive propagator, 1/(p2 + m2), and a

dotted line a massless one, 1/p2, where p is the euclidean momentum flowing through the line. Note

that no independent 2-loop representative appears.

To scalarise the 4-loop integrations, we have to make full use of the identities provided

by general partial integrations [18]. To systematically employ all such identities, we imple-

ment the algorithm presented by Laporta [19] using the “tables” routines of FORM [17].

This leads to a complete solution of our problem. The main technical details of our imple-

mentation were discussed in [16].

After the scalarisation, the master integrals remaining are those shown in figure 4.

This basis is, of course, not unique. As an example, one could have chosen a different basis

for the 3-loop master integrals, employing identities following from partial integrations [20],

=
1

m2

( )3
[

−
(d− 2)2

(d− 3)(3d − 8)

]

+m2

[

4(d− 3)

(3d− 8)

]

, (3.1)

=
1

m2

( )3
[

−
2(d− 2)2

(d− 3)(3d − 8)

]

+m2

[

−
4(d− 4)

(3d− 8)

]

, (3.2)

where

≡

∫

ddp

(2π)d
1

p2 +m2
, (3.3)

and correspondingly for the higher loop integrals. Therefore, the 3-loop master integrals

we are using, appearing on the right-hand-sides of eqs. (3.1), (3.2), could be exchanged in

favour of the 3-loop integrals on the left-hand-sides of eqs. (3.1), (3.2).

To display the full result after scalarisation, we introduce the shorthand notations

f(m2, g2, λ) ≡ −dA

∞
∑

`=1

(g2CA)
`−1p̂` , λ̄ ≡

λ(dA + 2)

g2CA
. (3.4)

We then obtain the following expressions:

p̂1 = m2

[

−
1

d

]

, (3.5)

p̂2 =
( )2

[

(d− 1)

4(d− 3)
−

1

4
λ̄

]

, (3.6)

p̂3 =
1

m2

( )3
×

×

{[

−
(d− 2)(608 − 1064d + 654d2 − 155d3 + 12d4)

8(d− 6)(d − 4)(2d − 7)(3d − 8)

]

+
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+ λ̄

[

(d− 2)(d − 1)

4(d− 3)

]

+

+ λ̄2

[

−
(d− 2)

8
−

(d− 2)2

2(dA + 2)(d − 3)(3d − 8)

]}

+

+m2

[

(d− 2)3(3d − 11)

(d− 4)(2d − 7)(3d − 8)

]

+

+m2

[

−
(16− 18d+ 3d2)

2(d− 6)(d− 4)(3d − 8)
− λ̄2 (d− 4)

(dA + 2)(3d − 8)

]

, (3.7)

p̂4 =
1

m4

( )4

×

×

{

(d− 2)α1

96(d − 9)(d − 7)(d− 6)(d − 5)(d− 4)2(d− 3)3
×

×
1

(d− 1)(2d − 9)(2d − 7)(3d − 13)(3d − 11)(3d − 10)(3d − 8)
+

+ λ̄

[

−
(d− 2)(2904 − 7150d + 7097d2 − 3581d3 + 964d4 − 131d5 + 7d6)

8(d− 6)(d − 4)(d− 3)2(2d − 7)
−

−
5(d − 5)(d− 2)3

4(dA + 2)(d − 4)2(d− 3)(3d − 11)

]

+

+ λ̄2

[

(d− 2)(d − 1)(2d − 5)

8(d − 3)
+

(d− 2)2(−32 + 56d− 25d2 + 3d3)

4(dA + 2)(d − 4)(d− 3)2(3d− 8)

]

+

+ λ̄3

[

−
(d− 2)(2d − 5)

24
−

(d− 2)2

4(dA + 2)(d − 3)

]}

+

+
( )

×
( )

×

×

{[

−
(d− 2)2α2

24(d − 5)(d− 4)2(d− 3)(d − 1)(2d − 9)(2d − 7)(3d − 11)(3d − 10)(3d − 8)

]

+

+ λ̄

[

(d− 2)3(3d − 11)

2(d− 4)(2d − 7)

]}

+

+
( )

×
( )

×

×

{

α3

24(d − 9)(d − 7)(d− 6)(d − 5)(d− 4)(d − 3)
×

×
1

(d− 1)(2d − 9)(3d − 13)(3d − 11)(3d − 8)
+

+ λ̄

[

−
16 − 18d + 3d2

4(d− 6)(d − 4)
−

5(d− 6)(d − 2)

(dA + 2)(d − 4)(3d − 11)

]

+

+ λ̄2

[

−32 + 56d− 25d2 + 3d3

2(dA + 2)(d − 3)(3d − 8)

]

+

+ λ̄3

[

−
(d− 4)

2(dA + 2)

]}

+

+ ×
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×

{

α4

144(d − 9)(d − 7)(d − 5)(d− 4)2(d− 1)(3d − 13)(3d − 11)
+

+ λ̄

[

−
5(96 − 64d+ 7d2 + d3)

12(dA + 2)(d− 4)2(3d − 11)

]

+

+ λ̄2

[

d

6(dA + 2)(d − 4)

]

+

+ λ̄3

[

−
(dA + 8)

6(dA + 2)2

]}

+

+ ×

×

{[

−
8136 − 18176d + 14438d2 − 5370d3 + 984d4 − 81d5 + 2d6

16(d − 5)(d − 4)2(d− 1)(2d − 9)

]

+

+ λ̄

[

−
5(20 − 10d+ d2)

4(dA + 2)(d − 4)

]}

+

+

[

−
(d− 2)(−2656 + 5672d − 4072d2 + 1302d3 − 186d4 + 9d5)

16(d− 4)(d − 1)(3d − 11)(3d − 10)

]

+

+

[

−
4(d− 2)(−9482 + 13225d − 7306d2 + 1992d3 − 267d4 + 14d5)

9(d− 4)2(2d− 7)(3d − 11)(3d − 10)

]

+

+
1

m2
×

×

{[

−
(d− 2)(2d − 5)α5

24(d − 4)2(d− 3)(d− 1)(2d − 9)(2d − 7)

]

+

+ λ̄2

[

−
(d− 2)(2d − 5)

2(dA + 2)(d− 4)(d − 3)

]}

+

+
1

m2

[

(d− 2)(2d − 5)α6

3(d − 4)3(d− 3)2(d− 1)(2d − 7)(3d − 11)(3d − 10)

]

+

+m2

{[

−
3(11− 7d+ d2)

(d− 4)(2d − 9)

]

+ λ̄

[

−
10(d − 3)

(dA + 2)(d− 4)

]}

+

+m2

[

2(d − 3)(d− 2)

(d− 4)(2d − 7)

]

, (3.8)

where

α1 = −121583669760 + 2691971008704d − 13463496742176d2 + 33122892972480d3 −

−50028680189824d4+ 51445267135192d5−38155599595406d6+ 21131958532365d7−

−8925676618775d8 + 2909006141441d9 − 734705333783d10 + 143430052519d11 −

−21428725861d12 + 2402935979d13 − 195570319d14 +

+10896768d15 − 371376d16 + 5832d17 , (3.9)

α2 = −14081760 + 11237380d + 64451424d2 − 140115669d3 + 129957772d4 −

−69456108d5 + 23323366d6 − 5020699d7 + 674926d8 − 51720d9 + 1728d10 , (3.10)

α3 = 508742208 − 1725645240d + 2236030380d2 − 1426818168d3 +

+436152106d4 − 14158652d5 − 36636937d6 + 13713052d7 −
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−2491870d8 + 254770d9 − 13967d10 + 318d11 , (3.11)

α4 = −1266048 − 122112d + 1785942d2 − 1171982d3 +

+307185d4 − 35512d5 + 1400d6 + 6d7 + d8 , (3.12)

α5 = 5112 − 11321d + 10618d2 − 5358d3 + 1489d4 − 212d5 + 12d6 , (3.13)

α6 = 171232 − 492404d + 584218d2 − 380046d3 +

+149811d4 − 36924d5 + 5595d6 − 480d7 + 18d8 . (3.14)

It is worth stressing that eqs. (3.5)–(3.14) were obtained with an arbitrary ξ, which

just exactly cancelled once all the graphs were summed together, for a general d, and before

inserting any properties of the master integrals. This is a consequence of the fact that the

master integrals constitute really a linearly independent basis for the present problem.

4. Integrals in d = 3− 2ε dimensions

A set of master scalar integrals having been identified, the next step is to compute them.

As already mentioned, we do this by writing d = 3−2ε, expanding in ε¿ 1, and evaluating

a number of coefficients in the series.

In order to display the results, we first choose a convenient integration measure. To

this end, we introduce an MS scale parameter µ̄, by writing each integration as

∫

ddp

(2π)d
≡ µ−2ε

[

µ̄2ε

(

eγ

4π

)ε ∫ ddp

(2π)d

]

, (4.1)

where µ = µ̄(eγ/4π)1/2, and the expression in square brackets has integer dimensionality.

This square bracket part of an `-loop integration is then written as

[

∏̀

i=1

{

µ̄2ε

(

eγ

4π

)ε ∫ ddpi
(2π)d

}

]

g(p1, . . . , p`,m) =

=
1

(4π)`
m3`−2k

(

µ̄

2m

)2ε`
{

∏̀

i=1

[

4π

(

eγ

π

)ε ∫ d3−2εpi
(2π)3−2ε

]

g(p1, . . . , p`, 1)

}

, (4.2)

where k counts the number of propagators, or lines, in the graphical representation of the

function g. From now on we assume that the loop integrations are computed with the

dimensionless measure in the curly brackets in eq. (4.2), while the constants in front of the

curly brackets, together with the explicit powers of m as they appear in eqs. (3.5)–(3.8),

are to be provided in trivial prefactors (cf. eq. (4.14) below).

With such conventions, the loop integrals remaining are functions of ε only, and read:

= −1− 2ε− ε2
(

4 +
1

4
π2
)

+ ε3 γ1 +O(ε
4) , (4.3)

=
π2

12
+ ε γ2 +O(ε

2) , (4.4)

= ln 2 + ε γ3 +O(ε
2) , (4.5)
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=
π2

32ε
+ γ4 +O(ε) , (4.6)

=
π2

32ε
+ γ5 +O(ε) , (4.7)

=
π2

32ε
+ γ6 +O(ε) , (4.8)

=
π2

32ε
+ γ7 +O(ε) , (4.9)

=
7

4ε
− 8 ln 2 + 21 + ε γ8 +O(ε

2) , (4.10)

=
3

8ε
+

9

2
+ ε
(75

2
+

11

8
π2
)

+ ε2 γ9 +O(ε
3) , (4.11)

= γ10 +O(ε) , (4.12)

= O(1) . (4.13)

As we will see, the terms shown explicitly are needed for determining the 1/ε-poles in

the 4-loop expression for f , the constants γn are needed for determining the finite 4-

loop contribution to f , and the higher order terms only contribute at the level O(ε).

Analytic results for γ1, . . . , γ9, as well as a numerical determination of γ10, are presented

in appendix A.

It is now convenient to combine the conventions in eqs. (3.4), (4.1), (4.2) and write

f(m2, g2, λ) = −dA
µ−2ε

4π

∞
∑

`=1

m4−`

(

µ̄

2m

)2ε`(µ−2εg2CA
4π

)`−1

p̃` . (4.14)

Substituting eqs. (4.3)–(4.13) into eqs. (3.5)–(3.8) and expanding in ε, the results then

read, up to O(ε) corrections:

p̃1 = +
1

3
, (4.15)

p̃2 = −
1

4

(

1

ε
+ 3 + λ̄

)

, (4.16)

p̃3 = −
89

24
+

11

6
ln 2−

1

6
π2 +

+
λ̄

4

(

1

ε
+ 3

)

+
λ̄2

4

[

1

2
−

1

dA + 2

(

1

ε
+ 8− 4 ln 2

)]

, (4.17)

p̃4 = +
1

ε

(

43

32
−

491

6144
π2

)

+
85291

768
−

1259

32
ln 2 +

5653

1536
π2 −

−
1

4
γ1 +

5

3
γ2 −

19

6
γ3 −

157

192
γ4 −

13

64
(γ5 + γ6)−

4

9
γ7 −

19

48
γ8 −

1

6
γ9 + γ10 +

+λ̄

[

−
1

16ε2
−

1

8ε

(

1 +
5

(dA + 2)

(π2

8
− 1

)

)

+

+
37

24
−

11

12
ln 2 +

π2

48
+

1

dA + 2

(

−
5

2
−

15

2
ln 2 +

115

192
π2 −

5

4
(γ4 + γ5)

)]

+

+λ̄2

[

1

16ε2
1

dA + 2
−

1

8ε

(

1 +
1

dA + 2

(π2

8
− 5

)

)

−
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−
1

8
+

1

dA + 2

(

46−
51

2
ln 2 +

13

24
π2 − 2γ3 −

1

2
γ4 −

1

4
γ8

)]

+

+λ̄3

[

1

ε

(

1

8

1

dA + 2
−

π2

192

(dA + 8)

(dA + 2)2

)

−

−
1

24
+

1

2(dA + 2)
(1− ln 2)−

1

6

(dA + 8)

(dA + 2)2
γ4

]

. (4.18)

It is interesting to note that while single diagrams contributing to p̃3 do have 1/ε-poles (cf.

appendix B), they sum to zero in the term without λ̄, but not in the terms proportional

to λ̄, λ̄2. This structure is related to counterterm contributions from lower orders, as

discussed in the next section. Similarly, single diagrams contributing to p̃4 have both 1/ε2

and 1/ε-poles, but the former ones sum to zero in the term without any λ̄’s.

Of course, single diagrams contain also ξ-dependence. In our computation ξ cancelled

at the stage of eqs. (3.5)–(3.14), but one could alternatively express single diagrams in

terms of the same basis of master integrals, this time with ξ-dependent coefficients, and

let the ξ’s sum to zero only in the end. For completeness, we again illustrate the general

structure of such expressions at the 3-loop level, in appendix B.

5. Counterterm contributions

The computation so far has been in terms of the bare parameters of the lagrangian in

eq. (1.2). As a final step the result is, however, to be converted into an expansion in terms

of the renormalised parameters.

The conversion is particularly simple in low dimensions such as close to d = 3, since

then the theory in eq. (1.2) is super-renormalisable. In fact, the only parameter requiring

renormalisation is the mass parameter m2. We write it as

m2 ≡ m2
bare = m2(µ̄) + δm2, (5.1)

δm2 = 2(dA + 2)
1

(4π)2
µ−4ε

4ε

(

−g2λCA + λ2
)

. (5.2)

This exact counterterm [21, 22] guarantees that all n-point Green’s functions computed

with the theory are ultraviolet finite. Note that as far as dimensional reasons and single

diagrams are concerned, there could also be divergences of the form g4/ε, but they sum to

zero in the counterterm appearing in eq. (5.2).

Inserting now eqs. (5.1), (5.2) into the 1-loop and 2-loop expressions for f(m2, g2, λ), we

get contributions of the same order as the 3-loop and 4-loop vacuum graphs, respectively,

from δm2 · ∂m2f(m2(µ̄), g2, λ). We need to use here eqs. (3.5), (3.6), since O(ε)-terms,

not shown in eqs. (4.15), (4.16), contribute as well, being multiplied by the 1/ε in δm2.

Explicitly, the terms to be added to eqs. (4.17), (4.18), once the prefactors in eq. (4.14) are

expressed in terms of the renormalised parameter m(µ̄) rather than m, are

δp̃3 =

(

µ̄

2m(µ̄)

)−4ε( 1

4ε
+

1

2

)(

−λ̄+
1

dA + 2
λ̄2

)

, (5.3)

δp̃4 =

(

µ̄

2m(µ̄)

)−4ε(

−
1

8

)(

1

ε2
+

1

ε
(1 + λ̄) +

1

2
(4 + π2) + 2λ̄

)(

−λ̄+
1

dA + 2
λ̄2

)

. (5.4)

– 11 –



J
H
E
P
0
4
(
2
0
0
3
)
0
3
6

The 3-loop 1/ε-contributions in eq. (5.3) cancel against the 1/ε-terms in eq. (4.17). Indeed,

genuine vacuum divergences can only appear in p̃2, p̃4, since such divergences must be

analytic in the parameters m2, g2, λ appearing in the lagrangian, while p̃3 comes with a

coefficient ∼ (m2(µ̄))1/2 (cf. eq. (4.14)). Another point to note is that 1/ε2-terms appear

in δp̃4 only with coefficients λ̄, λ̄2, just as in eq. (4.18), although there is no complete

cancellation.

6. The final result

We can now collect together the full result for f(m2, g2, λ), in terms of the renormalised

parameters of the theory. For dimensional reasons, its structure is,

f(m2, g2, λ) =
µ−2ε

4π

[

f̃1,0

]

m3(µ̄) +

+
µ−4ε

(4π)2

[

f̃2,0 g
2 + f̃2,1 λ

]

m2(µ̄) +

+
µ−6ε

(4π)3

[

f̃3,0 g
4 + f̃3,1 g

2λ+ f̃3,2 λ
2
]

m(µ̄) +

+
µ−8ε

(4π)4

[

f̃4,0 g
6 + f̃4,1 g

4λ+ f̃4,2 g
2λ2 + f̃4,3 λ

3
]

+ · · · , (6.1)

where f̃`,i = f̃`,i(ε, µ̄/m(µ̄)) are dimensionless numbers, with ` indicating the loop order,

and i the number of λ’s appearing:

f̃1,0 = dA

(

−
1

3
+O(ε)

)

, (6.2)

f̃2,0 = dACA

( 1

4ε
+ ln

µ̄

2m(µ̄)
+

3

4
+O(ε)

)

, (6.3)

f̃2,1 = dA(dA + 2)
(1

4
+O(ε)

)

, (6.4)

f̃3,0 = dAC
2
A

(89

24
−

11

6
ln 2 +

π2

6
+O(ε)

)

, (6.5)

f̃3,1 = dACA(dA + 2)
(

− ln
µ̄

2m(µ̄)
−

1

4
+O(ε)

)

, (6.6)

f̃3,2 = dA(dA + 2)
(

ln
µ̄

2m(µ̄)
+

3

2
− ln 2 +O(ε)

)

+ dA(dA + 2)2
(

−
1

8
+O(ε)

)

, (6.7)

f̃4,0 = dAC
3
A

[(

43

32
−

491

6144
π2

)(

−
1

ε
− 8 ln

µ̄

2m(µ̄)

)

−

−
85291

768
+

1259

32
ln 2−

5653

1536
π2 +

1

4
γ1 −

5

3
γ2 +

19

6
γ3 +

+
157

192
γ4 +

13

64
(γ5 + γ6) +

4

9
γ7 +

19

48
γ8 +

1

6
γ9 − γ10 +O(ε)

]

, (6.8)

f̃4,1 = dAC
2
A

[(

5

8
−

5

64
π2

)(

−
1

ε
− 8 ln

µ̄

2m(µ̄)

)

+

+
5

2
+

15

2
ln 2−

115

192
π2 +

5

4
(γ4 + γ5) +O(ε)

]

+
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+dAC
2
A(dA + 2)

(

−
1

16ε2
+ ln2 µ̄

2m(µ̄)
+

1

2
ln

µ̄

2m(µ̄)
−

−
43

24
+

11

12
ln 2−

1

12
π2 +O(ε)

)

, (6.9)

f̃4,2 = dACA(dA + 2)

[

1

16ε2
−

32 − π2

64ε
− ln2 µ̄

2m(µ̄)
−

(

36− π2

8

)

ln
µ̄

2m(µ̄)
−

−
183

4
+

51

2
ln 2−

23

48
π2 + 2γ3 +

1

2
γ4 +

1

4
γ8 +O(ε)

]

+

+dACA(dA + 2)2
(

1

2
ln

µ̄

2m(µ̄)
−

1

8
+O(ε)

)

, (6.10)

f̃4,3 = dA(dA + 2)(dA + 8)

[(

π2

192

)(

1

ε
+ 8 ln

µ̄

2m(µ̄)

)

+
1

6
γ4 +O(ε)

]

+

+dA(dA + 2)2
(

−
1

2
ln

µ̄

2m(µ̄)
−

1

4
+

1

2
ln 2 +O(ε)

)

+

+dA(dA + 2)3
(

1

24
+O(ε)

)

. (6.11)

In particular, following the notation of ref. [11] and writing

f̃4,0 ≡ −dAC
3
A

[

αM

(

1

ε
+ 8 ln

µ̄

2m(µ̄)

)

+ βM

]

, (6.12)

we read from eq. (6.8) that

αM =
43

32
−

491

6144
π2 ≈ 0.555017 , (6.13)

βM =
85291

768
−

1259

32
ln 2 +

5653

1536
π2 −

1

4
γ1 +

5

3
γ2 −

19

6
γ3 −

−
157

192
γ4 −

13

64
(γ5 + γ6)−

4

9
γ7 −

19

48
γ8 −

1

6
γ9 + γ10

= −
311

256
−

43

32
ln 2−

19

6
ln22 +

77

9216
π2 −

491

1536
π2 ln 2 +

1793

512
ζ(3) + γ10

≈ −1.391512 . (6.14)

In eq. (6.14) we used values for γ1, . . . , γ10 from appendix A.5 and appendix A.6. The coef-

ficient αM gives a contribution of order O(g6 ln(1/g)T 4) and βM a perturbative contribution

of order O(g6T 4) to the pressure of hot QCD [11].

The expression in eq. (6.1), with the coefficients in eqs. (6.2)–(6.11), contains a number

of 1/ε2 and 1/ε-poles. Once our computation is embedded into some physical setting, such

as in [11], a vacuum counterterm is automatically generated (denoted by pE(T ) in [11]),

which eventually cancels all the UV-poles, such that physical observables remain finite for

ε→ 0. The nature of the poles in eqs. (6.2)–(6.11) is analysed in detail in the next section.

7. Infrared insensitivity of the results

The result shown in the previous section contains a number of 1/ε2 and 1/ε-divergences.

Since dimensional regularisation regulates at the same time both ultraviolet (UV) and
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infrared (IR) divergences, we may ask of what type are those obtained? The purpose of

this section is to show that the divergences are of purely UV origin, and the result is thus IR

insensitive, if interpreted properly. There are two ways of showing this, firstly an effective

theory approach in which one understands that all the IR divergences are contained in

the SU(Nc) pure Yang-Mills theory obtained by integrating out the A0-field, secondly a

pragmatic one in which one shields away the IR divergences by giving the gluon and ghost

fields a mass.

Conceptually the best way to analyse the IR sensitivity is to dress the problem in an

effective theory language. In the present context, such an analysis was carried out in [10].

The idea is that since the field A0 has a mass scale, it can be integrated out. The integration

out is an ultraviolet procedure, thus by construction not sensitive to IR physics. The

effective low-energy theory that emerges is a 3d pure gauge theory. Its partition function,

on the other hand, does contain IR divergences, starting at 4-loop level [8, 9].

Therefore, we expect that all results up to 3-loop level should be IR insensitive. At

4-loop level there is a part of the result, that is the diagrams which can be constructed

fully inside the pure SU(Nc) theory, which can be both IR and UV divergent. Since in di-

mensional regularisation, however, these graphs are set to zero, the non-zero result we have

obtained should again be insensitive to any mass scales in the gluon and ghost propagators.

Apart from the issue mentioned, there is also another possible source of IR problems,

namely that of overlapping divergences. Indeed, while IR divergences appear for vacuum

graphs at 4-loop level only, they appear for self-energy graphs already at the 2-loop level

(see, e.g., [10]). However, 2-loop self-energy insertions do appear also as subgraphs in

the 4-loop “ring diagrams”, making the divergence structure of such 4-loop graphs “dou-

bly” problematic. We return to this issue presently, but first finish the discussion of IR

divergences at lower than 4-loop level.

To be very explicit, let us introduce a fictitious mass parametermG for all massless lines

(gluons and ghosts), hence giving the function f(m2, g2, λ) a further functional dependence

on the mass ratio x = mG/m. Let us denote by AH (“Adjoint Higgs”) graphs with at least

one A0-line, and by YM (“Yang-Mills”) graphs with none at all. The general structure of

the bare f(m2, g2, λ) can then be expressed as (cf. eq. (4.14))

f(m2, g2, λ) =

∞
∑

`=1

(µ−2ε

4π

)`( µ̄

2m

)2ε`
(g2)`−1m4−`

[

f̃AH
` (x, ε, ξ, λ̄) + x4−`−2ε`f̃ YM

` (ε, ξ)
]

,

(7.1)

where f̃AH
` , f̃ YM

` are dimensionless functions. While the treatment above corresponds to

setting x = 0 first and then computing the expansion in ε, we now keep a non-zero x

through the entire calculation, being interested in the limit of small x only in the end:

MS : lim
ε→0

lim
x→0

f̃AH
` (x, ε, ξ, λ̄) , (7.2)

IR-regulator : lim
x→0

lim
ε→0

f̃AH
` (x, ε, ξ, λ̄) . (7.3)

These two limits do not in general commute for single diagrams, but should commute for

the sum. Possible power IR divergences in single diagrams would show up as poles in x,

while logarithmic ones correspond to lnx.
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The main technical differences in the IR regularised procedure with respect to the

MS computation are a more complicated scalarisation, in the absence of low-level routines

specific to the presence of massless lines, such as the so-called “triangle rule”, and an

enlarged set of master integrals. Furthermore, some additional diagrams contribute, which

were set to zero from the outset in the MS calculation, due to the absence of any mass

scale (in some subdiagram).

As a roundup, it turns out that, starting at the 3-loop level, individual diagrams do

indeed contain logarithmic as well as powerlike IR divergences, which then cancel in the

sum, proving a posteriori the validity of the dimensionally regularised MS calculation. For

completeness, we illustrate this issue in appendix B.

We now return to the 4-loop level. According to the discussion above, the full set

of graphs can be divided into four sub-classes, having potentially different IR properties:

pure Yang–Mills graphs (YM) and those with at least one A0-line (AH), with both sets

further divided into skeletons (figure 1) and ring diagrams (figure 2). The properties of the

pure Yang–Mills diagrams are discussed in [12], and we only state here that they contain

both logarithmic UV as well as IR divergences, which however exactly cancel in strict

dimensional regularisation (but not in regularisations which only regulate the UV, such

as lattice regularisation). Here we then just discuss the skeletons and rings containing at

least one massive A0-line. For simplicity, we discuss explicitly only terms without a quartic

coupling λ.

We have computed the 1/ε-divergence in the sum of such AH-skeletons with in total

three different mass spectra:

1. As described above, whereby the A0-lines carry the mass parameter m2, while the

gluon and ghost lines are massless.

2. By giving an equal mass to all the fields: A0, gluons, and ghosts. The computation

proceeds in complete analogy with the one described in [12].

3. By setting all masses to zero, picking some line in the 4-loop vacuum graph, inte-

grating the massless 3-loop 2-point function connected to that line in d dimensions,1

and regulating the remaining single integral by shielding the IR with a mass and

regulating the UV via dimensional regularization.

All three methods give the same result for the 1/ε-pole in AH-skeletons, confirming its

expected IR finiteness. Expressed as a contribution to p̃4 in eq. (4.18), the divergence

appearing in the result reads

δ[p̃4] =
1

3072ε

[

3(696 − 56ξ − 6ξ2 − 5ξ3)−
π2

4
(832 − 144ξ + 81ξ2 − 15ξ3 + 3ξ4)

]

. (7.4)

For the AH-rings, on the other hand, the third method does not work. This is due

to the overlapping divergences mentioned above: a 2-loop 2-point function of gluons alone

1This problem has been solved a long time ago via integration by parts; for a discussion as well as an

algorithmic implementation, see [23].
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leads to logarithmic UV and IR divergences, and trying to carry out the final integration

by some recipe, gives generically an outcome ∼ 1/ε2, but with a coefficient dependent

on what the recipe precisely was. To cancel the 1/ε2-pole, not to mention to get the

correct coefficient for the remaining 1/ε-pole, is a very delicate problem, which can only

be guaranteed to have been solved by employing a fully systematic procedure. Our non-

abelian case is therefore qualitatively different from a pure scalar theory, where the problem

of overlapping divergences does not emerge [24]. For a discussion of the cancellation of the

analogue of the 1/ε2-pole in cutoff regularisation in the pure SU(Nc) theory, see [15].

On the contrary, the AH-rings can be systematically computed with the 1st and 2nd

types of mass spectra. Both procedures give the same result, confirming its IR insensitivity.

Summing together with eq. (7.4), we recover the ξ-independent 1/ε-pole on the first row

in eq. (4.18).

In summary, we have verified explicitly that the only possible IR divergence appearing

in our computation is that of the pure SU(Nc) gauge theory, contained in the YM-graphs.

It is addressed further in ref. [12].

8. Discussion and conclusions

The main point of this paper has been the discussion of formal analytic techniques for,

and actual results from, the evaluation of the 4-loop partition function of the 3d SU(Nc)

+ adjoint Higgs theory using dimensional regularisation. The final result is shown in

eqs. (6.1)–(6.11). We have also demonstrated that if interpreted as a matching coefficient

— that is, if the pure Yang-Mills graphs, without any adjoint scalar lines, are dropped, as

is automatically the case in strict dimensional regularisation — then the result is IR finite.

Therefore, all IR divergences are contained in the pure Yang-Mills theory. We would now

like to end by recalling that such techniques and results have also practical applications.

Perhaps the most important application is that our results provide two specific new

perturbative contributions to the free energy of hot QCD, of orders g6 ln(1/g)T 4, g6T 4 [11].

Similarly, they provide also new perturbative contributions to quark number susceptibili-

ties [25]. Once the parameters of the 3d theory are expressed in terms of the parameters of

the physical finite temperature QCD via dimensional reduction, and once other contribu-

tions of the same parametric magnitudes are added, this allows for instance to re-estimate

the convergence properties of QCD perturbation theory at high temperatures [11, 25, 26].

Our present computation also contributes to the MS scheme renormalisation of the sim-

plest 3d gauge-invariant local condensates, obtained by partial derivatives of the action

with respect to various parameters [21], and thus in principle helps in non-perturbative

studies of the pressure of high-temperature QCD [4, 13]. It may also allow for refined

analytic estimates such as Padé resummations [27] for the observable in eq. (1.3).

Let us mention that there has recently been significant interest in somewhat more phe-

nomenological approaches to QCD perturbation theory at high temperatures (for reviews

see, e.g., [28]). As far as we can tell our results are of no immediate use in such settings.

Another application is that our general procedure is relevant for studies of critical

phenomena in some statistical physics systems. In this context one may either study
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directly the three-dimensional physical system, or carry out computations first in d = 4− ε

dimensions, expand in ε, and then take the limit ε → 1. For instance, some properties of

the Ginzburg–Landau theory of superconductivity have been addressed in the former setup

up to 2-loop level (see, e.g., [29]–[32]), and in the latter setup, in the disordered phase, up

to 3-loop level [33]. The integrals arising in the disordered phase are “QED-like” just as in

our study, so that scalarisation and the sets of master integrals are essentially the same as

the present ones [16]. Moreover, in the case d = 4−ε, the master integrals can be evaluated

to a high accuracy utilising the techniques introduced in [34], while for d = 3 − 2ε most

master integrals have been evaluated in this paper. Our methods could therefore help in

reaching the 4-loop order.
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A. Master integrals

We discuss in this appendix the determination of the scalar master integrals of eqs. (4.3)–

(4.13). They depend on one mass-scale m only and are thus “QED-like” in the generalised

sense that the number of massive lines at each vertex is even. Since the dependence on

m is trivial and has been absorbed into the coefficients, see eq. (4.2), m = 1 in most of

what follows. One obtains particularly simple expansions in 3 − 2ε dimensions by using

the integration measure
∫

p =
(4πeγ )ε

2π2

∫

d3−2εp, in accordance with eq. (4.2).

We first discuss briefly the various general techniques we have employed for the evalua-

tion of these integrals. The list of techniques includes: partial integration relations between

various scalar integrals, in analogy with those derived at 3-loop level in [20] (appendix A.1);

graphs with only two massive lines, which can often be evaluated exactly (appendix A.2);

graphs with two or three vertices, which can be evaluated to a sufficient depth in ε us-

ing configuration space methods (appendix A.3); and some remaining graphs, which were

evaluated in momentum space (appendix A.4). We combine the results from the various

techniques in appendix A.5, showing the actual expansions for the master integrals to the

depths specified in eqs. (4.3)–(4.11). There is one finite integral remaining which we have

not been able to evaluate analytically, corresponding to eq. (4.12); its numerical value is

determined in appendix A.6.

A.1 Partial integration identities

Implementing systematically all identities following from partial integrations, as discussed

in section 3, allows not only to express all integrals in terms of a few scalar ones, which do

not contain any non-trivial numerators, but produces also a set of relations between the
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scalar integrals. As a simple example, we may recall that the identity

0 =
d
∑

k=1

∫

p,q

∂

∂pk

[

pk − qk
(p2 +m2)(q2 +m2)(p− q)2

]

, (A.1)

leads to the relation
∫

p,q

1

(p2 +m2)(q2 +m2)(p− q)2
=

1

d− 3

∫

p

1

(p2 +m2)2

∫

q

1

(q2 +m2)
. (A.2)

Taking furthermore into account that in dimensional regularisation the two integrals on

the right-hand-side of eq. (A.2) are related, we obtain

=
1

m2

( )2
[

−
(d− 2)

2(d− 3)

]

. (A.3)

Examples of similar relations at 3-loop level were shown in eqs. (3.1), (3.2), and a complete

3-loop analysis can be found in [20] (see also [6]).

At 4-loop level, there are obviously many more identities than at 3-loop level. Rather

than showing a complete list we give here, as an example, one of the relations:

=
1

m2
×

[

−
d− 2

2(d− 3)

]

+
1

m2

[

2d− 5

4(d− 3)

]

. (A.4)

It turns out that this relation is convenient for the determination of the 4-loop integral on

the right-hand-side.

A.2 Integrals known exactly

A few of the integrals appearing can be evaluated exactly in d dimensions. This holds

particularly for cases where only two massive propagators appear. As an example, we show

how this can be done in configuration space. The massive propagator can be written as

G(x;mi) ≡

∫

d3−2εp

(2π)3−2ε

eip·x

p2 +m2
i

=
1

(2π)
3
2
−ε

(mi

x

)
1
2
−ε
K 1

2
−ε(mix) , (A.5)

where K is a modified Bessel function, and x denotes, depending on the context, either a

d-dimensional vector or its modulus. On the other hand, the massless part of the graph

converts in configuration space to

∫

d3−2εp

(2π)3−2ε

eip·x

pν
=

Γ(3
2 −

ν
2 − ε)

Γ(ν2 )

1

2νπ
3
2
−εx3−ν−2ε

. (A.6)

We can then employ the identity

∫ ∞

0
dxxλK2

µ(x) =
2λ−2

Γ(1 + λ)
Γ
(1 + λ+ 2µ

2

)

Γ2
(1 + λ

2

)

Γ
(1 + λ− 2µ

2

)

. (A.7)
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With this result, the following expressions are easily derived (using the integration measure

inside the curly brackets in eq. (4.2)):

=

(

−
1

2ε

)

(4eγ)3ε Γ(1
2 + ε)Γ( 1

2 − ε)Γ(
1
2 + 3ε)Γ2 (1 + 2ε)

(1− 2ε)(1− 6ε)Γ3(1
2 )Γ (1 + 4ε)

(A.8)

= −
1

2ε
− 4−

(

26 +
25

24
π2

)

ε−

(

160 +
25

3
π2 −

47

2
ζ(3)

)

ε2 +O(ε3) , (A.9)

=
π2

32ε
(4eγ)4ε

Γ2(1
2 + ε)Γ3(1

2 − ε)Γ
2(1

2 + 3ε)Γ( 1
2 − 3ε)Γ (1 + 4ε)

(1− 2ε)Γ8(1
2)Γ

2(1− 2ε)Γ (1 + 6ε)
(A.10)

=
π2

32

[

1

ε
+ 2 + 4 ln 2 +

(

4 +
17

3
π2 + 8 ln 2 (1 + ln 2)

)

ε+O(ε2)

]

, (A.11)

=
3

8ε
(4eγ)4ε

Γ2(1
2 − ε)Γ

2(1
2 + 3ε)Γ (1 + 2ε) Γ (1 + 4ε)

(1− 2ε)(1 − 4ε)(1− 6ε)Γ4(1
2 )Γ (1 + 6ε)

(A.12)

=
3

8ε
+

9

2
+

(

75

2
+

11

8
π2

)

ε+

(

270 +
33

2
π2 −

55

2
ζ(3)

)

ε2 +O(ε3) . (A.13)

Obviously we also know (
∫

p is again according to the curly brackets in eq. (4.2)):

=

∫

p

1

p2 + 1
= −

(4eγ)ε

1− 2ε

Γ(1
2 + ε)

Γ(1
2)

(A.14)

= −1− 2ε−

(

4 +
π2

4

)

ε2 −

(

8 +
π2

2
−

7

3
ζ(3)

)

ε3 +O(ε4) . (A.15)

A.3 Configuration space evaluations

Even when configuration space does not allow for an exact evaluation of the integral, like

in appendix A.2, it may allow for the most straightforward way of obtaining a number of

coefficients in an expansion of the result in ε. This is the case particularly if there are only

two vertices in the graph.

At `-loop level, the graphs in this class are of the form

1 2 ... `+1 =
[

4π
(eγ

π

)ε]` 2π
3
2
−ε

Γ(3
2 − ε)

∫ ∞

0
dxx2−2ε

`+1
∏

i=1

G(x;mi) , (A.16)

where G(x;mi) is from eq. (A.5). The idea (see, e.g., [24]) is to split the integration into

two parts:
∫∞

0 dx(. . .) =
∫ r
0 dx(. . .) +

∫∞

r dx(. . .). The first part is performed in d = 3− 2ε

dimensions but by using the asymptotic small-x form of G(x;mi),

G(x;mi) =
Γ(1

2 − ε)

4π
3
2
−ε

1

x1−2ε

[

1−
(mix

2

)1−2εΓ(1
2 + ε)

Γ(3
2 − ε)

+
(mix

2

)2Γ(1
2 + ε)

Γ(3
2 + ε)

+ · · ·

]

, (A.17)

while the latter part, which is finite, is performed by expanding first in ε and then carrying

out the remaining integrals is d = 3 dimensions. For instance,

G(x;mi) =
e−mix

4πx

[

1− ε

(

ln
m2
i e
γ

4π
+mix

∫ ∞

1
dy ln(y2 − 1)e(1−y)mix

)

+O(ε2)

]

. (A.18)

When the two parts are summed together and the limit r → 0 is taken, the dependence on

r cancels, and we obtain the desired result.
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In the evaluation of such integrals, dilogarithms will in general appear. Their properties

have been summarised, e.g., in [35]. For completeness, let us recall here that one can shift

the argument of

Li2(x) = −

∫ x

0
dt

ln(1− t)

t
=
∑

n>0

xn

n2
(A.19)

from the intervals [−∞ . . . − 1], [−1 . . . 0], [1/2 . . . 1] to the interval [0 . . . 1/2] via

Li2(x) = Li2

(

1

1− x

)

− ln(1− x) ln(−x) +
1

2
ln2(1− x)−

π2

6
, (A.20)

Li2(x) = −Li2

(

−
x

1− x

)

−
1

2
ln2(1− x) , (A.21)

Li2(x) = −Li2(1− x)− ln(1− x) lnx+
π2

6
, (A.22)

respectively. As follows from here, the dilogarithms satisfy, for x > 0,

Li2(−x) + Li2

(

−
1

x

)

= −
1

2
ln2x−

π2

6
. (A.23)

Special values include

Li2(−1) = −
π2

12
, Li2(0) = 0 , Li2

(

1

2

)

=
π2

12
−

1

2
ln22 , Li2(1) =

π2

6
. (A.24)

Using these identities, and denoting M = m1 +m2 +m3, we obtain for the 2-loop case

1

2

3
=
( 2

M

)4ε
{

1

4ε
+

1

2
+ ε

[

1−
π2

24
+

3
∑

i=1

Li2

(

1−
2mi

M

)

]

+O(ε2)

}

. (A.25)

For the 3-loop case, now denoting M = m1 +m2 +m3 +m4, we obtain

1 2 3 4= −M
( 2

M

)6ε
{

1

4ε
+ 2 +

1

2

4
∑

i=1

mi

M
ln

M

2mi
+

+ ε

[

13 +
3

16
π2 +

4
∑

i=1

(

(

1−
2mi

M

)

Li2

(

1−
2mi

M

)

+ 4
mi

M
ln

M

2mi
+

+
1

2

mi

M
ln2 M

2mi

)]

+O(ε2)

}

. (A.26)

In particular, if all masses are equal,

= −
1

ε
− 8 + 4 ln 2− 4ε

(

13 +
17

48
π2 − 8 ln 2 + ln22

)

+O(ε2) . (A.27)

The case of two massless and two massive lines can be checked against eq. (A.9).

The 4-loop case has only been worked out to order O(1), rather than O(ε). Denoting

now M = m1 +m2 +m3 +m4 +m5,

1 2 3 4 5= M2
( 2

M

)8ε
[

1

16ε
+

3

4
+
∑

i6=j

mimj

2M2

( 1

8ε
+

3

2
+ ln

M

2mi

)

+O(ε)

]

. (A.28)
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The case of three massless and two massive lines can be checked against eq. (A.13). The

next order, O(ε), could also be worked out and is indeed needed for γ8 in eq. (4.10), but

we choose to use another way to determine it, based on eq. (A.4).

When there are more than two vertices in the graph, the configuration space technique

gets rapidly more complicated, due to the difficult structure of the angular integrals. There

is one graph we are interested in, however, whose divergent and, most incredibly, also the

constant part [36] can still be obtained analytically:

2 6

1

3 54 =
[

4π
(eγ

π

)ε]4
∫

d3−2εx

∫

d3−2εy G(x− y;m1)
3
∏

i=2

G(x;mi)
6
∏

j=4

G(y;mj) . (A.29)

Employing the angular integral [37]

∫

dΩy
Kλ(|x− y|)

|x− y|λ
=

(2π)λ+1

(xy)λ

[

θ(x− y)Kλ(x)Iλ(y) + θ(y − x)Kλ(y)Iλ(x)
]

, (A.30)

where λ = 1
2−ε and on the right-hand-side x ≡ |x|, y ≡ |y|, one is left with two independent

radial integrations which can be handled as above [36], by splitting the integrations as
∫∞

0 dx(. . .) =
∫ r
0 dx(. . .) +

∫∞

r dx(. . .). Denoting M123 = m1 +m2 +m3, M23456 = m2 +

m3 +m4 +m5 +m6, the outcome is

2 6

1

3 54 =

(

2

M123

)8ε 1

32

[

1

ε2
+

8

ε
+ 4φ

(

M123

M23456
,
2m2

M123
,
2m1

M123
− 1

)

+O(ε)

]

, (A.31)

where

φ(x, y, z) = 13 +
7

12
π2 − 4 ln2x+

+2Li2(1− y) + 2Li2(y + z) + 2Li2(−z) + 8
1− x

x(1 + z)
Li2(1− x) +

+8

(

1 +
1− x

x(1 + z)

)(

Li2(−xz) + lnx ln(1 + xz)−
π2

6

)

. (A.32)

In particular,

=
1

32

[

1

ε2
+

8

ε
+ 4

(

13− 8 ln22−
13

12
π2

)

+O(ε)

]

. (A.33)

A.4 Momentum space evaluations

When the graph has more than two vertices, the configuration space method is in general no

longer practical. Some of these graphs are, however, rather easily evaluated in momentum

space. This is the case particularly for the “triangle” topology, shown in eq. (A.38) below.

The triangle graph consists of three consecutive 1-loop self-energy insertions,

∫

d3−2εq

(2π)3−2ε

1

[q2 +m2
1][(q + p)2 +m2

2]
=

Γ(1
2 + ε)

(4π)
3
2
−εp1+2ε

B(p,m1,m2, ε) , (A.34)
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where B(p,m1,m2, ε) is a one-dimensional integral over a Feynman parameter. It has the

properties

B(0,m1,m2, ε) = 0 , (A.35)

B(p, 0, 0, ε) = lim
p→∞

B(p,m1,m2, ε) =
Γ2(1

2 − ε)

Γ(1− 2ε)
, (A.36)

B(p,m1,m2, 0) = 2 arctan
p

m1 +m2
. (A.37)

The triangle graph is then just a one-dimensional integration over the modulus of p. Car-

rying out one partial integration and expanding in ε, one obtains [36]

1 3

5

2 4
6 =

( 2

m1 +m2

)8επ2

32

[

1

ε
+ 2 + 4 ln 2− χ

(

m3 +m4

m1 +m2
,
m5 +m6

m1 +m2

)

+O(ε)

]

, (A.38)

where

χ(x, y) =
64

π3

∫ ∞

0
dp ln p

d

dp

[

arctan(p) arctan
(p

x

)

arctan

(

p

y

)]

, (A.39)

χ(1, 1) =
84

π2
ζ(3) , χ(1, 0) =

56

π2
ζ(3) , χ(0, 0) = 0 . (A.40)

A.5 Summary of expansions for master integrals

Given the results of the previous sections, we can collect together the expressions for the

constants γ1, . . . , γ9 defined in eqs. (4.3)–(4.11). From eq. (A.15),

γ1 = −8−
π2

2
+

7

3
ζ(3) . (A.41)

Combining eq. (3.1) with eq. (A.9),

γ2 =
1

6
π2 −

5

2
ζ(3) . (A.42)

Combining eq. (3.2) with eq. (A.27),

γ3 = −
1

6
π2 − ln22 . (A.43)

From eqs. (A.38), (A.40) (or, for γ6, from eq. (A.11)),

γ4 =
π2

32

(

2 + 4 ln 2−
84

π2
ζ(3)

)

, (A.44)

γ5 =
π2

32

(

2 + 4 ln 2−
56

π2
ζ(3)

)

, (A.45)

γ6 =
π2

32

(

2 + 4 ln 2
)

, (A.46)

γ7 =
π2

32

(

2 + 12 ln 2−
84

π2
ζ(3)

)

. (A.47)

Combining eqs. (A.33), (A.4),

γ8 = 175− 96 ln 2 + 16 ln22 +
53

12
π2 . (A.48)

Finally, from eq. (A.13),

γ9 = 270 +
33

2
π2 −

55

2
ζ(3) . (A.49)
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A.6 Numerical evaluation of γ10

It can easily be verified that the integrals in eqs. (4.12), (4.13) are both infrared and

ultraviolet finite. They can therefore be evaluated directly in d = 3 dimensions. For the

present application we only need γ10, defined by eq. (4.12).

There is no obvious partial integration relation whereby γ10 could be reduced to a

simpler integral. Due to the fact that there are four vertices, it is also not easily treated in

configuration space. The most straightforward approach seems then to be to combine the

self-energy of eqs. (A.34), (A.37) with the 2-loop self-energy

, (A.50)

for which a one-dimensional integral representation has been given in [38]. This leads to a

simple two-dimensional integral representation:

γ10 =
2

π

∫ ∞

0
dp p arctan

p

2
·Π2(p) , (A.51)

where [38]

Π2(p) =
1

p3

∫ 1

x−(p)

dx
√

p2x2 − (1− x2)2
×

×

{

p

1− x2

[

(1 + x2) arctan
p

2
− 2(1 − x+ x2) arctan

p

1 + x
+
π

2
(1− x)2

]

+

+ x ln
[

1 +
p2

(1 + x)2

]

}

, (A.52)

and x−(p) ≡ (1 + p2/4)
1
2 − p/2. We may note that in eq. (A.52) it is numerically advan-

tageous to change the integration variable from x to y ≡
√

x− x−(p). The final result

reads

γ10 ≈ 0.171007009753(1) , (A.53)

where the number in parentheses indicates the uncertainty in the last digit.

B. Three-loop results with and without an IR cutoff

As discussed in section 7, starting at the 3-loop level single graphs are considerably more

infrared sensitive than the total sum: the limits in eqs. (7.2), (7.3) commute only for the

latter. Let us recall that there x = mG/m, where mG is a fictitious mass given to the

gluons and ghosts:

〈Aa
k(p)A

b
l (−p)〉 ≡

δab

p2 +m2
G

(

δkl − pkpl
ξ

p2 +m2
G

)

, 〈ca(p)c̄ b(p)〉 ≡
δab

p2 +m2
G

, (B.1)

where Aa
k, c

a, c̄ b are the gluon, ghost, and anti-ghost fields, respectively. We illustrate the

general structures appearing here with a few specific examples.
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; ; ; ; ; ; ;

; ; ; ; ; ; ;

Figure 5: A possible choice for 1-loop, 2-loop and 3-loop “master” topologies, in the case that

gluons and ghosts are treated as particles with a mass mG. There are no numerators left in these

graphs. A solid line is a propagator of the form 1/(p2 + m2), and a dashed line of the form

1/(p2 +m2
G), where p is the euclidean momentum flowing through the line. A line with a blob on

it indicates a squared propagator, 1/(p2 +m2)2.

In the presence of the two mass scales m,mG, the set of master integrals is more

complicated than when gluons and ghosts are massless. The master integrals that can

appear in principle are shown in figure 5, up to 3-loop level.

It turns out that the skeleton diagrams are better behaved in the IR than the ring

diagrams: power and logarithmic IR divergences appear only in single rings, but they cancel

in their sum. A rather typical example, with both an UV pole 1/ε and an IR divergence

ln(mG/m), is given by the gluon ring with a scalar and ghost bubble attached to it.

Carrying out scalarisation to the master integrals shown in figure 5, denoting x = mG/m,

and normalising as in eq. (3.7), we obtain

−
1

4

∣

∣

∣

∣

x6=0

=
1

m2

( )2

×
( )

[

−
(d− 2)

8 (d− 1) x2

]

+

+
1

m2

( )

×
( )2

[

(d− 2)

432 (d− 1) x2

]

×

×
(

54 + 54d + 18ξ − 18d2ξ − 14ξ2 + 14dξ2 − d2ξ2 + d3ξ2
)

+

+
( )

×
( )

[

(

20 − 8d− 6x2 + 3dx2
)

16 (d− 1) x2

]

+

+
( )

×
( )

[

1

1296 (d− 1)

]

×

×
(

1134 − 459d + 54d2 + 108ξ − 90dξ − 18d3ξ − 84ξ2 +

+ 76dξ2 + 5d2ξ2 + 2d3ξ2 + d4ξ2
)

+

+

[

−

(

32− 12d − 6x2 + 3dx2
)

32 (d− 1) x2

]

+

+m2

[

−

(

−1 + x2
)

2 (d− 1) x2

]

+

+m2

[

−

(

44− 8d− 14x2 + 5dx2
)

32 (d− 1)

]

. (B.2)

According to eq. (7.3), the first step is now to expand in ε ¿ 1. The integrals emerging
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are all known [6, 38]. Changing the normalisation to be according to eq. (4.17), we obtain

δp̃3|x6=0 = −
1

32ε
(ξ − 1)2 +

20 + x2

128x

[

−Li2

(

3x

2(1 + x)

)

− Li2

(

−
x

2 + x

)

−

− ln
(

1−
x

2

)

ln
3x

2(1 + x)
−

1

2
ln2(1 + x) +

1

2
ln
(

1 +
x

2

)

ln
9x2

2(2 + x)

]

−

−
4− 3x2

32x
ln
(

1 +
x

2

)

−
(1 + x)(3x− 4)

32x
ln(1 + x) +

3x

32
+

+
1

32
(2ξ − 3)(2ξ − 1) ln

3x

2
−

837 − 954ξ + 409ξ2

2592
+O(ε) . (B.3)

The second step is then to expand in x¿ 1:

δp̃3|eq. (7.3) = −
1

32ε
(ξ − 1)2 +

2− 2ξ + ξ2

8
ln

3x

2
−

1080 − 954ξ + 409ξ2

2592
+O(x, ε) . (B.4)

We observe that there is a gauge-parameter dependent UV-divergence in the form of 1/ε,

and a gauge-parameter dependent logarithmic IR divergence in the form of lnx.

Proceeding according to eq. (7.2), on the other hand, leads to

−
1

4

∣

∣

∣

∣

x=0

=
1

m2

( )3
[

−
(d− 2)2

16(d − 3)(2d − 7)(3d − 8)

]

+

+m2

[

(d− 3)

4(2d − 7)(3d − 8)

]

, (B.5)

in terms of the master integrals in figure 4. Expanding in ε¿ 1,

δp̃3|eq. (7.2) =
1

32ε
+

1

8
+O(ε) . (B.6)

Clearly eqs. (B.4), (B.6) do not agree.2 Summing all the graphs together, however, both

procedures lead to the gauge-parameter independent and UV and IR finite p̃3 on the first

row in eq. (4.17): in other words, ξ, 1/ε and lnx all cancel.

Some other rings lead also to 1/x-divergences. Let us show, as an example,

1

16

∣

∣

∣

∣

x6=0

⇒ δp̃3|eq. (7.3) =
1

x

24− 12ξ + 5ξ2

64
−

5

24
+

1

3
ln 2 +O(x, ε) , (B.7)

while

1

16

∣

∣

∣

∣

x=0

⇒ δp̃3|eq. (7.2) = −
5

24
+

1

3
ln 2 +O(ε) . (B.8)

Again, the 1/x-divergences of the type in eq. (B.7) cancel when gluon rings with all possible

1-loop scalar insertions are summed together.

As a comparison of eqs. (B.4) and (B.6), or eqs. (B.7) and (B.8) shows, the computation

carried out with an IR cutoff leads in general to a more pronounced gauge-parameter

2The first two terms in eq. (B.4) can be written as (2− 2ξ+ ξ2)[ln(3x/2)− 1/(4ε)]/8 +1/(32ε), showing

that the result of eq. (B.6) arises after a cancellation of IR and UV divergences in dimensional regularisation.
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dependence for single graphs than the computation carried out according to eq. (7.2), just

because the introduction of a mass according to eq. (B.1) breaks gauge invariance. The

results of eqs. (B.6), (B.8) are anomalously simple, however: in general there is certainly

gauge-parameter dependence left over in single graphs also with the procedure of eq. (7.2).

For example,

1

8

∣

∣

∣

∣

x=0

⇒ δp̃3|eq. (7.2) =
1

32ε
(13− 4ξ + ξ2) +

40− 28ξ + 5ξ2

32
+O(ε) , (B.9)

and ξ cancels only in the sum.
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[14] K. Kajantie, M. Laine and Y. Schröder, A simple way to generate high order vacuum graphs,

Phys. Rev. D 65 (2002) 045008 [hep-ph/0109100].

[15] M. Achhammer, The QCD partition function at high temperatures, Ph.D. thesis, University

of Regensburg, July 2000, Logos-Verlag, Berlin 2001.
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Perturbative calculations of corrections to the behavior of an ideal gas of quarks and gluons, the limit that 
is formally realized at infinite temperature, are obstructed by severe infrared divergences. The limits to com- 
putability that the infrared problem poses can be overcome in the framework of dimensionally reduced effective 
theories. Here, we give details on the evaluation of the highest perturbative coefficient needed for this setup, in 
the continuum. 

1. INTRODUCTION 2. SETUP 

The theory of strong interactions, Quantum 
Chromodynamics (QCD), is guaranteed to be ac- 
cessible to perturbative methods once one of its 
parameters, the temperature T, is increased to- 
wards asymptotically high values. This general 
statement relies solely on the well-known prop- 
erty of asymptotic freedom. 

Let us now switch gears and focus on one of 
the main building blocks of the procedure, while 
for a detailed description of the setup as well as 
notation and further references, we refer to [4]. 
In particular, we want to compute the (negative) 
3d vacuum energy density of a pure SU(N) gauge 
theory, 

In practice, however, calculations of corrections 
to the behavior of an ideal gas of quarks and glu- 
ons, the limit that is formally realized at infinite 
T, are obstructed by severe infrared (IR) diver- 
gences [I]: for every observable, there exists an 
order of the perturbative expansion to which an 
infinite number of Feynman diagrams contribute. 
No method is known how to re-sum these infinite 
classes of diagrams, a fact that seriously obstructs 
progress in the field of thermal &CD. 

It is known how to evade this obstruction us- 
ing dimensionally reduced effective theories. The 
key idea is to map the infrared sector of thermal 
QCD onto a three-dimensional pure gauge theory 
[l-4], whose contribution, being a pure number, 
could be extracted numerically by Monte-Carlo 
simulations. While the expansion of the QCD 
pressure in the effective theory framework, up to 
the order where IR contributions are relevant, is 
now known analytically [4], realizing the numeri- 
cal extraction of the yet-unknown number emerg- 
ing from the IR sector is a challenging open prob- 
lem, with the main complication that high-order 
matching between lattice and continuum regular- 
ization schemes is necessary [5]. 

which in a weak-coupling expansion can be writ- 
ten as the sum of all connected vacuum graphs 
containing gluons and ghosts. Since the theory 
is confining, the computation involves IR diver- 
gent integrals (starting at the 4-100~ level here), 
forbidding a perturbative evaluation of the full 
vacuum energy. One can however obtain its log- 
arithmic ultraviolet divergence. 

Note that in 3d the coupling constant g is di- 
mensionful, hence the full answer must be of the 
form 

where mM - cAg2 is a dynamically generated in- 
frared scale in the confining theory, and CA = N 
and dA = N2 - 1 are the Casimir and the dimen- 
sion of the adjoint representation, respectively. 
Because of super-renormalizability, the coefficient 
CUG can then be computed in 4-100~ perturbation 
theory, even if the constant part ,& cannot. 

If we just carry out the 4-100~ computation in 
strict dimensional regularisation, the result van- 

+pG +0(e) , 1 
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ishes, because there are no perturbative mass 
scales in the problem. This means that UV and 
IR divergences (erroneously) cancel against each 
other. Therefore, we have to be more careful in 
order to determine c\IG. To regulate the IR diver- 
gences, we introduce by hand a mass scale, m2, 
into the gauge field (and ghost) propagators. One 
has to keep in mind, however, that now only the 
coefficient QG multiplying l/e is physically mean- 
ingful, as it contains the desired gauge indepen- 
dent ultraviolet divergence. On the contrary, the 
constant part depends on the gauge parameter 
E, because the introduction of m2 breaks gauge 
invariance, and has nothing to do with ,&. 

Note that e.g. diagrams with self-energy inser- 
tions can have IR sub-divergences, since IR diver- 
gences are known to be present in the 3d 2-100~ 
gluon propagator. To avoid the problem of over- 
lapping IR divergences from the outset, we have 
hence chosen to employ the mass parameter rigor- 
ously, i.e. by rewriting every l/p2 as 1/(p2 +m2). 

This leaves us within the class of fully mas- 
sive integrals. The computation can be divided 
in three parts. Roughly, those are (1) diagram 
generation [6], specification of Feynman rules and 
color algebra, (2) reduction to master integrals 
[7,8], (3) expansion in d = 3 - 2~ dimensions. 

We will refrain from commenting on the first 
two parts of the computation here, since they are 
well documented in the references given above. 
Due to the complexity of the computation, both 
steps are automatized, allowing for the handling 
of a large set of diagrams. 

3. MASTER INTEGRAL REPRESEN- 
TATION 

Let us now give a little more detail on part (3) 
of the computation. At this point, all diagrams 
are expressed in terms of 19 scalar master inte- 
grals, which are enumerated in [8]. The general 
structure is 

(2) 

where d is still an arbitrary (space-time) dimen- 
sion. Only now do we need to specify d = 3 - 2.~. 

While it is trivial to expand the polynomial 

prefactor in E, considerable effort has to be put 
into obtaining the expansion for the master inte- 
grals to the depth required. Since we need the 
e-poles only, it would seem sufficient to compute 
the divergent parts of all master integrals. It 
turns out, however, that the prefactor develops 
poles as well around 3 dimensions, having terms 
proportional to l/(d - 3) multiplying 10 of the 
master integrals, and even double poles in 4 of 
those cases. 

A crucial simplification can be made by exploit- 
ing the freedom of choosing the basis of master in- 
tegrals to represent the sum of diagrams Eq. (2). 
Going back to the tabulated relations between in- 
tegrals that were derived by partial integration 
and used in part (2)) we found two most useful 
relations: 

Notation: each line represents a massive scalar 
propagator, a dot on a line means an extra power, 
vertices have no structure. Trading the two mas- 
ter integrals on the lhs of the above equations 
for the first ones on the rhs respectively (all oth- 
ers are already included in the basis), the d- 
dimensional representation Eq. (2) of course still 
holds, albeit with a ‘primed’ version of the basis, 

6 
dAc’(&4 i=l poly;(d) -c 

lg pold(4 t) Master!(d) _ 
’ (5) 

In this new basis, none of the prefactors has a 
double pole in 3d, while only 7 members of the 
new ‘primed’ basis are multiplied by a single pole. 
It is not excluded that there exists a choice of 
basis for which the prefactors never get singular, 
but this choice is currently not known to us. 
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4. EXPANSION 

It turns out that (almost) all integrals are 
known analytically to the order needed for obtain- 
ing the poles in the sum of all diagrams. Lower 
loop cases have been treated in [lo], while ana- 
lytic results for the divergences of all 3d 4-100~ 
master integrals as well as numerical and some 
analytic results for their constant parts as well as 
the O(e) term of the 2-100~ sunset integral can 
be found in [ll]. By an amusing relation specific 
to 3d, namely the fact that the leading term of 
the 3d l-loop scalar 2-point integral is an arctan, 
whose derivative with respect to a mass looks like 
a propagator with double mass, it is furthermore 
possible to relate the leading term of one of the 
4-loop master integrals to a S-loop case [12]: 

1 2m 
= - 

2 @I 
(‘3) 

const const 

There are however 2 master integrals (out of 
the 7 which get multiplied by a l/e from the pref- 
actor) whose constant term we do not yet know 
analytically. Let us denote their leading parts by 
22 and $3 (by naive power-counting, it is easy to 
see that both are UV finite), 

63 
= sz-tO(4 ) 

cl3 
= z3 + O(E) (7) 

Filling in the known expansions for the mas- 
ter integrals as well as expanding the prefactors, 
higher poles cancel in the sum of diagrams, and 
we are left with a single pole only: 

(8) 

The polynomial p is of order 6 in the gauge pa- 
rameter [ and contains, besides a collection of 
numbers like x2, In2 and dilogarithms, the two 
unknowns x2 and 2s. Clearly, in order for the 
result to be gauge independent, all &dependence 
has to vanish once 22 and x3 are known. We can 
now reverse the argument and try to fix these 
constants by requiring gauge independence. In- 
specting the polynomial, it turns out to have a 
very simple structure: 

p(E) = a~+(x2-653-t&4 (9) 
i=o 

43 157 
OG zzz ----r 

2 M 
96 6144 

0.195715... ) (10) 

where the ci are pure numbers and b = Lis$ + 
Liz; - 3Lis$ + 2(ln2)2 - $ (ln3)2 - (ln5)2 - 
2ln21n5 + 31n31n5 + $. We have checked by 
numerical integration that 

x2 - 6x3 = b M -0.00200966335.. . (11) 

to nine significant digits, hence establishing 
Eq. (10) as our main result for the logarithmic 
divergence of 3d pure gauge theory. 
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Abstract

In this letter we present a high-precision evaluation of the expansions in ǫ = (3−d)/2 of (up to) four-
loop scalar vacuum master integrals, using the method of difference equations developed by Laporta.
We cover the complete set of fully massive master integrals.

PACS numbers: 11.10.Kk, 12.20.Ds, 12.38.Bx

1 Introduction

Higher-order perturbative computations have become a necessity in many areas of theoretical physics, be
it for high-precision tests of QED, QCD and the standard model, or for studying critical phenomena in
condensed matter systems.

Most recent investigations employ a highly automated approach, utilizing algorithms that can be im-
plemented on computer algebra systems, in order to handle the growing numbers of diagrams as well as
integrals which occur at higher loop orders.

Computations can be divided into four key steps. First, the complete set of diagrams including symmetry
factors has to be generated. For a detailed description of an algorithm for this step for the case of vacuum
topologies, see [1]. Second, after specifying the Feynman rules, the color- and Lorentz-algebra has to
be worked out. Third, within dimensional regularization, massive use of the integration-by-parts (IBP)
technique [2] to derive linear relations between different Feynman integrals in conjunction with an ordering
prescription can be used to reduce the (typically large number of) integrals to a basis of (typically a few)
master integrals [3]. Practical notes as well as a classification of vacuum master integrals is given in [4].
Fourth, the master integrals have to be solved, either fully analytically, or in an expansion around the
space-time dimension d of interest.

It is the fourth step that we wish to address here. While most work has been and is being devoted to
d = 4, perturbative results in lower dimensions are needed for applications in condensed matter systems,
as well as in the framework of dimensionally reduced effective field theories for thermal QCD, where recent
efforts have made four-loop contributions an issue [5].

A very important subset of master integrals are fully massive vacuum (bubble) integrals, since they
constitute a main building block in asymptotic expansions (see e.g. [6]). They are also useful for massless
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theories, when a propagator mass is introduced as an intermediate infrared regulator [7].
The main purpose of this note is to numerically compute the complete set of fully massive vacuum master

integrals in terms of a high-precision ǫ-expansion in d = 3 − 2ǫ dimensions, in complete analogy with the
four-dimensional work of S. Laporta [8].

The plan of the paper is as follows. In Section 2, we give a brief review of the method of difference
equations applied to vacuum integrals. In Section 3, we discuss the actual implementation of the algorithm.
In Section 4, we display our numerical results for the truncated power series expansions in ǫ of all fully
massive master integrals, up to four-loop level, in d = 3 − 2ǫ.

2 The evaluation of master integrals through difference equations

The method we have chosen to compute the coefficients of the truncated power series expansions of the mas-
ter integrals is based on constructing difference equations for the integrals and then solving them numerically
using factorial series. This approach was recently developed in Ref. [3], and below we briefly summarize its
basic concepts following the notation of the original paper, which contains a much more detailed presenta-
tion on the subject. While the method is completely general as it applies to arbitrary kinematics, masses
and topologies [9], our brief summary is somewhat adapted to the specific case of massive vacuum integrals.

The main idea is to attach an arbitrary power x to one of the lines of a master integral U ,

U(x) ≡

∫

1

Dx
1
D2...DN

, (1)

where the Di = (p2

i + 1) denote inverse scalar propagators. In our case all of these share the same mass m,
which we have therefore set to 1, noting that it can be restored in the end as a trivial dimensional prefactor
of each integral. The original integral is then just U = U(1). Depending on the symmetry properties of
the integral, there can be different choices for the ‘special’ line with the arbitrary power x, but in the limit
x = 1 they all reduce to the original integral U . This degeneracy can (and will later) be used for non-trivial
checks of the method.

Employing IBP identities in a systematic way, it is possible to derive a linear difference equation obeyed
by the generalized master integral U(x),

R
∑

j=0

pj(x)U(x + j) = F (x), (2)

where R is a finite positive integer and the coefficients pj are polynomials in x (and the space-time dimension
d). The function F on the r.h.s. is a linear combination of functions analogous to U(x) but derived from
simpler master integrals, i.e. integrals containing a smaller number of loops and/or propagators.

The general solution of this kind of an equation is the sum of a special solution of the full equation, U0(x),
and all solutions of the homogeneous equation (F = 0),

U(x) = U0(x) +

R
∑

j=1

Uj(x), (3)

where each (j = 0, ..., R)

Uj(x) = µx
j

∞
∑

s=0

aj(s)
Γ(x + 1)

Γ(x + 1 + s − Kj)
(4)

is a factorial series1. Substituting into Eq. (2), one obtains the coefficients µ and K (the latter being a
function of d), as well as recursion relations for the x-independent coefficients a(s) (being functions of d as

1For a rigorous definition of the concept as well as a motivation for this kind of an ansatz, we refer the reader to Ref. [3].
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well) for each solution. For the homogeneous solutions, these recursion relations relate all coefficients to
their value at s = 0, aj(s) = cj(s) aj(0), where the cj(s) are rational functions (of d as well). For the special
solution, the a0(s) are completely fixed in terms of the inhomogeneous part F (x), consisting of ‘simpler’
integrals which are assumed to already be known in terms of their factorial series expansions.

What remains to be done is to fix the x- and s-independent constants aj(0), j 6= 0, in order to determine
the weights of the different homogeneous solutions. To this end, it is most useful to study the behavior of
U(x) at large x, where the first factor in

U(x) =

∫

1

(p2
1

+ 1)x
g(p1) (5)

peaks strongly around p2

1
= 0. Hence, the large-x behavior of the modified master integral is determined by

the small-momentum expansion of the two-point function g(p1), which has one loop less than the original
vacuum integral. In fact, for all cases we cover here, the first coefficient in the asymptotic expansion suffices.
This is furthermore particularly simple, since it factorizes into a one-loop bubble carrying the large power
x and a lower-loop vacuum bubble g(0), which corresponds to U(x) with its ‘special’ line cut away,

lim
x→∞

U(x) =

[
∫

1

(p2

1
+ 1)x

]

×

[

g(0)

]

∼ (1)xx−d/2g(0) . (6)

A comparison with the large-x behavior of Eqs. (3), (4), proportional to
∑

j µx
j aj(0)xKj , can now be used

to fix the aj(0), of which maximally one will turn out to be non-zero for our set of integrals.
Having the full solution at hand, we have in principle completed our entire task, as in the limit x = 1

we recover from U(x) the value of the initial integral. Let us, however, add a couple of practical remarks
here. What is still to be done is to perform the summation of the factorial series of Eq. (4), which means
truncating the infinite sum at some smax. Studying the convergence behavior of these sums, one notices
that even in the cases where they do converge down to x ∼ 1, their convergence properties usually strongly
decline with decreasing x. This means that in practical computations, where one aims at obtaining a
maximal number of correct digits for U(1) with as little CPU time as possible, the optimal strategy is to
evaluate the integral U(x) with the factorial series approach at some xmax ≫ 1 and then use the recurrence
relation of Eq. (2) to obtain the desired result at x = 1. The price to pay is, however, a loss of numerical
accuracy at each ‘pushdown’ (x → x − 1) step due to possible cancellations, which makes the use of a very
high xmax impossible. In practice the strategy is to determine an optimal value for the ratio smax/xmax.
To give an example, for the four-loop integrals of Section 4 we have found that smax/xmax ∼ 50 is a good
value, while we used a range of smax ∼ 1350 . . .2000.

3 Implementation of the algorithm

As is apparent from the preceding section, there are three main steps involved in obtaining the desired
numerical coefficients in the ǫ-expansion of each master integral: deriving the difference equations obeyed
by each integral, solving them in terms of factorial series, and finally performing the ǫ-expansion and
numerically evaluating the sum of Eq. (4) (truncated at smax) to the precision needed. We will briefly
address each of them in the following.

For the first step, we slightly generalized the IBP algorithm we had used for reducing generic 4-loop bubble
integrals to master integrals, which follows the setup given in [3], and whose implementation in FORM [10]
is documented in [4]. The main difference is an enlarged representation for the integrals, keeping track of
the line which carries the extra powers x, as well as the fact that there are now two independent variables
(d, x), requiring factorization (and inversion) of bivariate polynomials, as opposed to univariate polynomials
in the original version.

Second, staying within FORM for convenience, we implemented routines that straightforwardly solve
the difference equations in terms of factorial series, along the lines of [3]. This is done starting with the
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simplest one-loop master integral, and working the way up to the most complicated (most lines) four-
loop integral, ensuring that at each step, the ‘simpler’ terms constituting the inhomogeneous parts of the
difference equation are already known. The output are then plain ascii files specifying each solution in the
form of Eq. (4) as well as containing recursion relations for the coefficients a(s). Note that these first two
steps are performed exactly, in d dimensions.

Third, once the recursion relations for the coefficients a(s) were known, we used a Mathematica program
to obtain their numerical values at each s to a predefined precision, and to perform the summation of the
factorial series. While this procedure is in principle very straightforward, there are some twists that we
employed to help reduce the running times significantly, most of which are probably quite specific to our
use of Mathematica. To avoid a rapid loss of significant digits in solving the recursion steps that relate each
a(s) to a(0), especially those for the homogeneous coefficients, we first solved the relations analytically and
only in the end substituted the numerical value (actually the truncated ǫ-expansion) of the first non-zero
coefficient. In fact, we found Mathematica to operate quite efficiently with operations like multiplication of
two truncated power series, so that we relied heavily on it. Furthermore, since — not surprisingly — the
most time-consuming part in the summation of the series turned out to be the ǫ-expansion of Γ-functions,
we achieved a notable speed-up by substituting the Γ-functions with large arguments by suitable products
of linear factors times Γ-functions of smaller arguments. Finally, a vital step in avoiding an excessive loss in
the depth of the ǫ-expansions when going from one integral to the next, was to apply the ‘Chop’ command
to remove from the results and coefficients excess unphysical poles, whose coefficients were of the order of,
say, 10−50 or less.

4 Numerical results

Below we list the Laurent expansions in ǫ = (3 − d)/2 of the 1+1+3+13 fully massive vacuum master
integrals up to four loops. We use an intuitive graphical notation, in which each line represents a massive
scalar propagator, while dot on a line means it carries an extra power. The integral measure we have chosen
here is

∫

p

≡
1

Γ(3/2 + ǫ)

∫

d3−2ǫp

π3/2−ǫ
. (7)

In each case2 we provide the first 8 ǫ-orders keeping the accuracy at 50 significant digits for the 1-, 2-, and
3-loop master integrals and at 22-25 for the 4-loop ones. To obtain more ǫ-orders and significant digits is
merely a matter of additional CPU time.

= − 4.0000000000000000000000000000000000000000000000000

− 16.000000000000000000000000000000000000000000000000 ǫ2

− 64.000000000000000000000000000000000000000000000000 ǫ4

− 256.00000000000000000000000000000000000000000000000 ǫ6 + O
(

ǫ8
)

(8)

= + 4.0000000000000000000000000000000000000000000000000 ǫ−1

− 14.487441729730630111648209847429586185151846775400

+ 41.495035953369978394225958244504121655360756728405 ǫ

− 107.49752321579967383991953818365893067117808339742 ǫ2

2With the exception of the last two integrals, for which we were at this time able to produce only the first 6 and 5 ǫ-orders,
respectively.
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+ 263.49878761720606330238135348797499506915058750280 ǫ3

− 623.49940078392000186832902635721463645559035022216 ǫ4

+ 1439.4997026869879573968449524699557874962297882621 ǫ5

− 3263.4998520860644726225542919399943895943491031166 ǫ6 + O
(

ǫ7
)

(9)

= − 64.00000000000000000000000000000000000000000000000 ǫ−1

+ 49.44567822334599921081142309329320142732803439623

− 1981.207736229513534030093683214422278348416661525 ǫ

− 235.7077170926718752095474374908098006136204356228 ǫ2

− 63521.71508871044639640714223746384514019533126715 ǫ3

− 33675.11111780076696716334804652776927940758434016 ǫ4

− 2213147.071275511251113640247844877948334091419700 ǫ5

− 1414250.728717593474053272387541196652013773984236 ǫ6 + O
(

ǫ7
)

(10)

= + 32.859770043923503738827172731532536947448547448996

− 365.41238154175547388711920818936800707879030719734 ǫ

+ 2803.7940402523167047150293858439985472095966118207 ǫ2

− 18727.187392108144301607279844058527418378836943988 ǫ3

+ 117794.35873133306139734878960626307962150043480498 ǫ4

− 721386.63300305569920915438185951112611780543107044 ǫ5

+ 4366100.1639736899128559563097848872427318803864139 ǫ6

+ 26291285.708454833832306242766439811661977583440814 ǫ7 + O
(

ǫ8
)

(11)

= + 1.391204885296021941812048136925327740910466706390

− 4.898152455251800666032641168608190942446944333758 ǫ

+ 12.98842503803858164353982398007130232261458098462 ǫ2

− 30.39637625288207454078370310227949470365033235457 ǫ3

+ 66.67957617359017942652215661267829752624475575093 ǫ4

− 140.9974945708845413812214824315460314748605690042 ǫ5

+ 291.7287632268179138442199742398614147733926624689 ǫ6

− 595.7006275449402266695675282375932229509102799733 ǫ7 + O
(

ǫ8
)

(12)

= + 720.0000000000000000000000 ǫ−1 − 52.13034199729620858728708

+ 33748.69042965137616701638 ǫ + 10819.60558535024688749473 ǫ2

+ 1311729.690542895866693548 ǫ3 + 615270.7589383441011319577 ǫ4

+ 48899219.67276170476701364 ǫ5 + 24885879.11003549349511900 ǫ6 + O
(

ǫ7
)

(13)

= − 32.00000000000000000000000 ǫ−1 + 21.28521367989184834349148

− 945.4764617862257950102533 ǫ − 500.9879407913869195081538 ǫ2

− 29027.99548541518650323471 ǫ3 − 34796.65982174097113175672 ǫ4
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− 993306.5068744076465770453 ǫ5 − 1406349.173668893367086333 ǫ6 + O
(

ǫ7
)

(14)

= + 8.000000000000000000000000 ǫ−2 − 25.94976691892252044659284 ǫ−1

− 152.5193565764658289654545+ 2653.873458838396323815566 ǫ

− 23471.05910309626447406639 ǫ2 + 169839.2007120049515774452 ǫ3

− 1124117.877397355450165203 ǫ4 + 7116455.837989754857686241 ǫ5 + O
(

ǫ6
)

(15)

= + 78.95683520871486895067593 ǫ−1 − 1062.608419332108844057560

+ 9340.076804859596283223881 ǫ − 68699.47293187699594375521 ǫ2

+ 462145.6926820632806821051 ǫ3 − 2963063.672524354359852913 ǫ4

+ 18494675.22629230338091457 ǫ5 − 113673206.9834859509114931 ǫ6 + O
(

ǫ7
)

(16)

= + 33.05150971425671642138224− 358.4595946559340238066389 ǫ

+ 2451.469078369636793421997 ǫ2 − 13564.14170819716549262162 ǫ3

+ 66602.55178881628657891800 ǫ4 − 303915.1384697444382333780 ǫ5

+ 1323370.670112542076081095 ǫ6 − 5589978.086026239748023404 ǫ7 + O
(

ǫ8
)

(17)

= + 27.57584879577521927818358− 291.4075344540614879796315 ǫ

+ 1956.162997112043390446958 ǫ2 − 10678.5639091187201818981 ǫ3

+ 51925.3888799007705970928 ǫ4 − 235296.36309585614167636 ǫ5

+ 1019555.9650538012793966 ǫ6 − 4292011.3101269758990557 ǫ7 + O
(

ǫ8
)

(18)

= + 19.84953756526739935782082− 200.9768306606422068619864 ǫ

+ 1308.883448000100198800887 ǫ2 − 6990.22562100063537185149 ǫ3

+ 33456.8326902483214417013 ǫ4 − 149903.697032731221510018 ǫ5

+ 644404.61801211590204150 ǫ6 − 2697912.0878890801856234 ǫ7 + O
(

ǫ8
)

(19)

= + 3.141336279450209755917806− 19.78740273338730374386071 ǫ

+ 83.81604328128850410126511 ǫ2 − 295.3496021971085625102731 ǫ3

+ 934.2247995435558122394582 ǫ4 − 2751.31852347627462886909 ǫ5

+ 7700.18972963585089750348 ǫ6 − 20740.9769474365145116212 ǫ7 + O
(

ǫ8
)

(20)

= + 2.012584635078182771827701− 10.76814227797251921324485 ǫ

+ 39.40636857271936487899035 ǫ2 − 121.0015646826735646109733 ǫ3

+ 335.6942965583773421544251 ǫ4 − 872.009773755552224781319 ǫ5

+ 2163.88707221986880315576 ǫ6 − 5193.51249188593850483093 ǫ7 + O
(

ǫ8
)

(21)

= + 1.27227054184989419939788− 5.67991293994853579036683 ǫ

+ 17.6797238948173732343788 ǫ2 − 46.5721846649543261864019 ǫ3

+ 111.658522176214385363568 ǫ4 − 252.46396390100217743236 ǫ5

6



+ 549.30166596161426941705 ǫ6 − 1164.5120588971521623546 ǫ7 + O
(

ǫ8
)

(22)

= + 0.297790726683752651865168− 0.709896385699143430126726 ǫ

+ 1.40535549472683132370135 ǫ2 − 2.45721908509256673440117 ǫ3

+ 4.00998036005764459707090 ǫ4 − 6.2518071963546459390185 ǫ5

+ 9.4402506572040685160665 ǫ6 − 13.924465979877416801887 ǫ7 + O
(

ǫ8
)

(23)

= + 0.233923932580303206470057− 0.48523164074102176840584 ǫ

+ 0.88555744401503729577888 ǫ2 − 1.438019871368410241810 ǫ3

+ 2.198725350440790755608 ǫ4 − 3.231974794381719679729 ǫ5 + O
(

ǫ6
)

(24)

= + 0.195906401341238799905792− 0.37006152907989745845214 ǫ

+ 0.65228273818146302130509 ǫ2 − 1.029288152514143871118 ǫ3

+ 1.542484509438506710808 ǫ4 + O
(

ǫ5
)

(25)

We have performed various checks in order to test the correctness of our recursion relations as well as to
verify the number of exact digits contained in our results Eqs. (8)-(25). The first task we have completed
by exploiting the fact that the recursion relations are not specific to d = 3− 2ǫ, but can easily be applied to
any dimension, such as d = 4 − 2ǫ. We have successfully verified the results of Ref. [8] to somewhat lower
accuracy and depth in ǫ. Note that our choice of a basis for 4-loop master integrals differs slightly from the
one made in [8]. The relations needed for a basis transformation are listed in [4]. An immediate advantage
in the light of difference equations is that with our choice, the above results Eqs. (14),(20) and (23) follow
‘for free’ from their counterparts without dots.

The accuracy of our three-dimensional results we have on the other hand examined in three independent
ways:

• by comparing the numerical results to existing analytic calculations; they can be found in [11] (diver-
gent and constant parts of Eqs. (9)-(11)), [12] (leading term of Eq. (12)), [13] (divergence of Eq. (16))
and [14,15] (all divergences and some constant parts of 4-loop integrals, as well as some O(ǫ) terms of
lower-loop cases).

• by comparing the results obtained by raising topologically inequivalent lines to the power x,

• by analyzing the convergence properties of the factorial series, i.e. by checking the stability of our
results with respect to varying smax.

The first method is of course exact, but is only available for a few low (in ǫ) orders for approximately
half of the integrals considered. The second one, on the other hand, has the advantage of covering all the
different powers of ǫ, but is inapplicable for those integrals, in which all propagators are equivalent (e.g. the
basketball-topology). The third method is then the most widely applicable one, but has the downside of
providing no evidence for the correctness of our results, rather giving only the number of digits stable in the
variation of the cut-off of the factorial series. For the integral of Eq. (25) only the last method is available,
but in addition we have verified the leading term in the result to 3 digits using a Monte Carlo integration
of an 8-dimensional integral representation derived for this integral in Ref. [14].

One might be concerned about the rapid growth with increasing ǫ-orders of most of the coefficients. This
is, as was pointed out in [8], caused by poles that the integrals (seen as functions of d) develop near d = 3,
e.g. at d = 7/2, 4, etc. It is to be expected that factoring out the first few of these nearby poles in each case
will improve the apparent convergence in ǫ considerably.
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In principle, having a method at hand that is capable of generating coefficients to very high accuracy,
even to a couple of hundred digits, one could now use the algorithm PSLQ [16] combined with an educated
guess of the number content of some of the yet-unknown constant terms, in order to search for analytic
representations of the numerical results. These could then in turn be used as an inspiration to find useful
transformations of the integral representation of the original integral, which might allow for a fully analytic
solution in those cases where it could not yet be achieved. We have not made any attempts in that direction,
since the numerical accuracy of the results Eqs. (8)-(25) should be sufficient for all practical purposes.
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[hep-ph/0211321].

[6] M. Misiak and M. Münz, Phys. Lett. B 344 (1995) 308 [hep-ph/9409454].
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1. Introduction

The QCD free energy density (or the pressure of the quark-gluon plasma) is a good observ-

able to study the deconfinement phase transition [1]. The goal is to study the transition

between the realm of low-temperature hadronic matter, where confinement is the main

physical phenomenon, and the quark-gluon plasma phase that is realized at high temper-

atures, which in turn is governed by asymptotic freedom. In the latter phase the pressure

is given by the Stefan-Boltzmann limit of an ideal gas of non-interacting particles, p ∝ T 4.

Ideally, one would like to undertake lattice simulations across the phase transition up to

temperatures at which the pressure exhibits a purely perturbative behavior. In practice,

however, the convergence properties of the perturbative expansion are poor at temperatures

which are not asymptotically large [2], while on the other hand computational resources

limit the highest temperatures at which lattice simulations can be performed (a fair limit

is some 4÷ 5 times the transition temperature Tc ∼ 200MeV).

Dimensional reduction [3] is a strategy to fill the gap one is facing, and in fact has

been applied to the problem in question [4]. The setup is as follows. One starts with the

full theory (4d QCD) and as a first step matches this to a 3dSU(3) gauge theory coupled

to a Higgs field in the adjoint representation. This theory can then be matched to 3d pure

gauge SU(3), which captures the ultrasoft degrees of freedom. Both these reductions have

been successfully performed in a continuum (perturbative) scheme, i.e. MS. 3d pure gauge

SU(3) then has to be treated non-perturbatively, the only practical method being lattice

measurements.

In order to incorporate these lattice measurements into the reduction setup, it is essen-

tial to know the relation between the two regularization schemes. This is the point where

Lattice Perturbation Theory (LPT) comes into play. Due to the superrenormalizable na-

ture of the 3d theory, all divergences can be computed perturbatively. This allows a clean

matching of the schemes in the continuum. Computing at high orders in LPT is not a

simple task (in the present case we need g8 order — note that this means four loops for the

free energy, but three loops for the plaquette), and that is why we make use of Numerical

Stochastic Perturbation Theory (NSPT) [5].

– 1 –
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We recall the definition of the free energy density f

Z =

∫

DU e−SW [U ] = e−
V
T
f , (1.1)

where the (Wilson) pure gauge action reads

SW = β0

∑

P

(1−ΠP ) , (1.2)

with β0 = 2Nc/(a
4−dg2

0) denoting the standard dimensionless (bare) lattice inverse coupling

in d dimensions, while ΠP is the basic plaquette

ΠP =
1

Nc
Re(TrUP ) , (1.3)

which is to be computed at any point on any independent plane according to

UP = Uµν(n) = Uµ(n)Uν(n+ µ)U †µ(n+ ν)U †ν(n) . (1.4)

To compute the free energy one can now revert to the computation of the plaquette

〈1−ΠP 〉 = Z−1

∫

DU e−SW [U ] (1−ΠP ) = −
2 ad

d(d− 1)V

∂

∂β0
lnZ =

2 ad

d(d − 1)

∂

∂β0

(

1

T
f

)

.

(1.5)

Hence, given a weak-coupling expansion of the plaquette

〈1−ΠP 〉 =
c1(Nc, d)

β0
+
c2(Nc, d)

β2
0

+
c3(Nc, d)

β3
0

+
c4(Nc, d)

β4
0

+ · · · (1.6)

it follows that

2 ad

d(d− 1)

(

1

T
f

)

= c0(Nc, d)+c1(Nc, d) ln β0−
c2(Nc, d)

β0
−
c3(Nc, d)

2β2
0

−
c4(Nc, d)

3β3
0

−· · · . (1.7)

We now specialize to Nc = 3 and d = 3 dimensions, where g2
0 ∼ a−1 and hence β0 = 6/(ag2

0).

The previous formula reads (from here on, ci ≡ ci(Nc = 3, d = 3))

2

6

1

T
f = a−3 (c0 + c1 lnβ0)− a

−2 c2
6
g2
0 − a

−1 c3
72
g4
0 −

c̃4
648

g6
0 + O(a) . (1.8)

In order to control the matching to continuum one then needs the first four coefficients in the

expansion of the basic plaquette. Note however that it is already known from a computation

in the continuum that at four loop level there is a logarithmic infrared (IR) divergence [6].

One of the aims of our computation is to recover the scheme-independent coefficient of this

logarithm, while fixing the lattice constant which is left over once an IR regulator has been

chosen. In eq. (1.8) we have put a tilde on c4 to denote that the IR divergence has to be

isolated and subtracted in a convenient scheme. Later on, the lattice size L will act as the

IR regulator. Going back to the lattice coefficients themselves, the first and the second ones

are already known [7]. We will give them in section 3. The third and the fourth ones are the

goal of the present work, a task which one can manage within our computational scheme.1

1In 4d the expansion of the plaquette is known via NSPT up to a much higher order. It is interesting

to compare the two different situations. In 3d there is the additional subtlety of the IR divergence. On

the other hand, the dimensionful nature of the coupling in 3d makes it possible to single out the different

divergent contributions in Perturbation Theory. The situation is much more involved in 4d (see [8]).

– 2 –
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2. Computational setup

Our computational tool is NSPT. Computing to β−4
0 order requires to expand the field up

to β−4 order [5], that is

Uµ(n) = 1 +
8
∑

i=1

β
− i

2
0 U (i)

µ (n) . (2.1)

We write the expansion in terms of the Uµ field. One could also express everything in terms

of the Lie algebra field Aµ(n) =
∑8

i=1 β
− i

2
0 A

(i)
µ (n), the relation being Uµ(n) = exp(Aµ(n)).

Whichever one uses, one should keep in mind that perturbation theory amounts in any

case to decompactifying the formulation of lattice gauge theory. The expansion in terms

of the U
(i)
µ (n) is easier to manage from the point of view of computer data organization.

Eq. (2.1) is the expansion to be inserted in the Langevin equation

∂tUη = [−i∇S[Uη ]− iη]Uη , (2.2)

η being a gaussian noise. The equation has to be integrated in a convenient (time) dis-

cretization scheme. Our choice is the Euler scheme as it was proposed in [9]. This amounts

to introducing a time step ε. As usual, the solution is recovered by working in a region

where the time step corrections are linear (Euler scheme is a first order scheme) and extra-

polating to ε→ 0. We computed the expansion in eq. (1.6) for 〈1−ΠP 〉 on different lattice

sizes ranging from L = 5 to L = 16 (up to three loops we also performed the computations

on a L = 18 lattice)

〈1−ΠP 〉
(L) =

c
(L)
1

β0
+
c
(L)
2

β2
0

+
c
(L)
3

β3
0

+
c
(L)
4

β4
0

+ · · · . (2.3)

We then extrapolated the infinite lattice size results according to

c
(L)
1 = c1 +

d1

L3

c
(L)
i = ci +

Ji
∑

j=ji

i−1
∑

k=0

d
(j,k)
i

lnk L

Lj
(i = 2, 3)

c
(L)
4 = c

(ln)
4 lnL3 + c4 +

J4
∑

j=j4

3
∑

k=0

d
(j,k)
4

lnk L

Lj
. (2.4)

These asymptotic forms are basically dictated by Symanzik’s analysis [10]. In particular

they include the contribution from subleading logarithms (they are suppressed by inverse

powers of L). For each i the index k runs up to i − 1, which equals the number of loops

(remember that in terms of the plaquette we are computing up to three loops, i.e. i = 1

is the tree level). The index j counts the subleading contributions coming from inverse

powers of L. As it appears from the last line of the previous formula, the finite volume

also acts as the IR regulator needed at order β−4
0 (this is instead a leading logarithm).

Some comments are in order at this point. The final errors on infinite volume results are

dominated by this extrapolation process.

– 3 –
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Trying to assess the effect of the subleading logarithms, it turns out that both the

range of our data and our statistical errors do not allow to distinguish between a logarithm

and a constant. Hence we will only give (effective) extrapolations based on pure power-like

fits. The spread of the results comes from the indetermination on the (inverse) powers to be

included in the fit. This is not surprising, since in NSPT there is no control on what in the

language of Feynman diagrams would be contributions coming from different diagrams (i.e.

sums). We then try different choices of the powers and then compare the corresponding

χ2’s. This process does not select a definite set of powers: the better choices (see figure 2)

turn out to be comparable with respect to the resulting χ2. The quoted values for the ci
(i > 1) together with the associated errors embrace the range of the outcomes.

Most of the computer simulations have been performed on a PC cluster the Parma

group installed one year ago. This is made of ten bi-processor Athlon MP2200. A pro-

gramming environment for NSPT for Lattice Gauge Theory was set up in C++. This was

in part inspired by the TAO codes we use on the APE machines and for a large fraction

based on the use of (C++ specific) classes and methods to handle lattice and algebraic

structures. Needless to say, this part of the work will be useful in other applications of

NSPT. The results we report come out of 6 months of runs on the above mentioned cluster.

Some more statistics came from another PC cluster more recently installed in Parma. The

latter is a blade system based on 14 Intel Xeon 2.0 GHz.

3. Results

In table 1 we present the results we obtained for the coefficients c
(L)
i at various values of

L. As in eq. (1.6) and eq. (2.3), we only give the coefficients of order β−n0 : the coefficients

odd in g0 (i.e. of order β
−(2n+1)/2
0 ) were verified to be zero within errors. In the last line

one can read the values extrapolated to infinite volume. For the fourth order we present

both the bare coefficients c
(L)
4 and the subtracted ones c

(L)
4 − c

(ln)
4 lnL3; the latter is the

finite quantity one is interested in at L =∞.

In figure 1 we plot the values of the coefficients at the various lattice sizes together

with the interpolating finite size corrections. Again, for the fourth order we plot both the

bare coefficients c
(L)
4 and the subtracted ones c

(L)
4 − c

(ln)
4 lnL3. An obvious benchmark for

our computations is the first order, whose value is c
(L)
1 = 8/3 ∗ (1− 1/L3). In this (trivial)

case one knows the result both at finite and at infinite volume. That is why in figure 1 we

also plot the known finite size corrections for c1.

Another benchmark is the second coefficient, which is also found in agreement with

the diagrammatic studies in [7]. From ref. [11] one reads c2 = 1.9486, however without an

error estimate.

As it was already pointed out, for orders higher than the trivial one, the quoted

errors of the infinite volume-extrapolated values are dominated by the form of the fitting

polynomials in eq. (2.4). Still, the final errors are acceptable. Note the asymmetric error

for c3. The more conservative lower bound takes into account a choice for the subleading

powers of L which results in a worse χ2, see figure 2. It is interesting to compare the result

– 4 –
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L c
(L)
1 c

(L)
2 c

(L)
3 c

(L)
4 c

(L)
4 − c

(ln)
4 lnL3

5 2.6455(13) 1.8682(45) 5.990(26) 25.99(18) 21.28(18)

6 2.6536(8) 1.8968(31) 6.200(19) 27.66(14) 22.41(14)

7 2.6580(8) 1.9095(30) 6.307(21) 28.68(15) 22.98(15)

8 2.6615(6) 1.9226(23) 6.408(16) 29.66(14) 23.57(14)

9 2.6630(6) 1.9288(22) 6.484(18) 30.44(16) 24.00(16)

10 2.6638(4) 1.9340(15) 6.519(13) 30.91(13) 24.16(13)

11 2.6645(4) 1.9381(14) 6.574(11) 31.53(14) 24.51(14)

12 2.6650(3) 1.9413(12) 6.591(11) 31.67(15) 24.39(15)

13 2.6653(3) 1.9423(12) 6.621(11) 32.27(18) 24.76(18)

14 2.6656(3) 1.9436(12) 6.288(11) 32.37(16) 24.64(16)

15 2.6662(2) 1.9455(10) 6.652(10) 32.84(19) 24.91(19)

16 2.6657(2) 1.9442(8) 6.658(9) 33.28(19) 25.16(19)

18 2.6663(2) 1.9489(7) 6.715(8) − −
...

∞ 2.6666(1) 1.955(2) 6.90
(2)
(12) 25.8(4)

Table 1: The coefficients c
(L)
i at the various lattice sizes and their infinite volume extrapolations

ci. For the last order we report both c
(L)
4 and c

(L)
4 − c

(ln)
4 lnL3; the latter is the quantity to be

extrapolated. For the error on c3 see text and figure 2.

c3 (our first original result) with the one conjectured in [11] from the hypothesis of the

dominance of a given contribution: c3 ≈ 7.02. This conjecture turned out to be not too

far from the result.

Let us now discuss the IR divergence at order β−4
0 . As is well known, it is difficult to

recognize the presence of a logarithm. Still, we obtain some evidence for it. By this we

mean the following. One can take different approaches to the fit of the last line of eq. (2.4).

One possibility is to include no logarithmic correction at all. A second one is to include a

logarithmic correction whose prefactor c
(ln)
4 is a fitting parameter. A third possibility is to

include a logarithmic correction whose prefactor c
(ln)
4 equals the result which has already

been obtained in the continuum computation of [6]: c
(ln)
4 = 81 (688 − 157π2/4)/(4π)4 =

0.9765. By varying the choice of the inverse powers included in the fit, the first case (no log)

yields values of χ2 which are only slightly, but systematically worse than in the other two

cases (of the order of 0.5 vs 0.4). By fitting both c4 and c
(ln)
4 we obtained c4 = 24.5(2.0) and

c
(ln)
4 = 1.1(2), a result fully consistent with [6], which gives us some more confidence in the

presence of the log. In the third case (see figure 3) we obtain c4 = 25.8(4), getting a smaller

error like expected. For the meaning of the quoted errors, see the discussion in section 2.

4. Conclusions and perspectives

We computed the first four coefficients in the expansion eq. (1.8) of the plaquette in 3d pure

gauge SU(3) theory, from which one can trivially obtain the expansion of the free energy

at four loops. For the first two coefficients the already known results have been correctly

– 5 –
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Figure 1: The coefficients c
(L)
i together with the interpolating finite size corrections (solid lines).

For the first order we also plot the (known) analytic finite volume corrections (dashed line). For

the last order we plot both c
(L)
4 and c

(L)
4 − c

(ln)
4 lnL3.

reproduced. The third coefficient (the first original result of this paper) is connected

with the mildest power divergence to be subtracted from simulations data for a lattice

determination of the free energy.

The fourth coefficient was known to be logarithmically divergent, a result that was

reproduced. Let us further comment on this point. A priori one can use any IR regulator

in order to extract a finite part for the four loop contribution: the finite volume (the

one we used in the present work), a mass (a very popular IR cutoff in the continuum)

or the coupling itself (since it is dimensionful in 3d). Notice that the latter is in a sense

the natural choice for computer simulations. Obviously each choice defines a scheme of

its own. While the coefficient of the logarithm is universal, there are of course specific

constants relating the different schemes. As already pointed out, the coupling itself is

the most natural regulator for computer simulations, even if there is no simple way to

take it as the cutoff in perturbation theory. Ultimately, we are interested in the matching

between the lattice and a continuum perturbative scheme (to be definite, MS). The idea

is to take the same IR regulator both in continuum and in lattice perturbation theory,

which most naturally would be a common mass for all tree-level propagators. Since the

same mismatch will be present in both computations with respect to the data coming from

– 6 –
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Figure 2: Different fits for c
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3 , showing

the infinite-volume result (open square). The

upper curves take 1/L as the leading power,

while the lower (dashed) one takes 1/L2. The

latter results in a higher χ2 (0.7 vs 0.55).

Figure 3: Different fits for c
(L)
4 −c

(ln)
4 lnL3,

showing the infinite-volume result. In these

fits the value for c
(ln)
4 is fixed to be the ana-

lytically known one. Within the range of the

data the fits almost coincide.

computer simulations, that mismatch will cancel in the matching. Employing massive

propagators in NSPT will therefore be the natural extension of the approach presented

here.
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[10] M. Lüscher and P. Weisz, Efficient numerical techniques for perturbative lattice gauge theory

computations, Nucl. Phys. B 266 (1986) 309.

[11] F. Karsch, M. Lutgemeier, A. Patkos and J. Rank, The O(g6) coefficient in the

thermodynamic potential of hot SU(N) gauge theories and mqcd, Phys. Lett. B 390 (1997)

275 [hep-lat/9605031].

– 8 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C86%2C10
http://xxx.lanl.gov/abs/hep-ph/0007109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB426%2C675
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB426%2C675
http://xxx.lanl.gov/abs/hep-lat/9405019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C105008
http://xxx.lanl.gov/abs/hep-ph/0211321
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB251%2C254
http://jhep.sissa.it/stdsearch?paper=10%282001%29038
http://xxx.lanl.gov/abs/hep-lat/0011067
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C106%2C870
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C106%2C870
http://xxx.lanl.gov/abs/hep-lat/0110210
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD32%2C2736
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD32%2C2736
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB266%2C309
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB390%2C275
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB390%2C275
http://xxx.lanl.gov/abs/hep-lat/9605031


[YS9]

Plaquette expectation value and gluon condensate in three dimensions



J
H
E
P
0
1
(
2
0
0
5
)
0
1
3

Published by Institute of Physics Publishing for SISSA/ISAS

Received: December 8, 2004

Accepted: January 6, 2005

Plaquette expectation value and gluon condensate in

three dimensions

Ari Hietanen,a Keijo Kajantie,a Mikko Laine,b Kari Rummukainencde and

York Schröderb
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1. Introduction

As non-abelian gauge theories in three and four dimensions are confining, their properties

need, in general, to be studied non-perturbatively. If the observables considered involve

momenta or masses (M) large compared with the confinement scale, however, then the

conceptual framework of the operator product expansion [1] may allow to isolate the non-

perturbative dynamics into only a few (gluon) condensates, while the rest of the answer

can be computed by perturbative means. A classic example is the mass of a heavy quark–

anti-quark bound state [2]. The task faced by numerical lattice simulations might then

get significantly simplified, as local condensates are simpler to measure with controlled

systematic errors than correlation functions of heavy states.

On the other hand, the physical interpretation of a “bare” lattice measurement of a

gluon condensate is non-trivial. The reason is that the condensate is represented by the

expectation value of a dimensionful singlet operator and, in general, contains ultraviolet

divergences of the same degree as its dimension. Operator product expansion type relations

are often derived employing dimensional regularization, since the system then only contains

one large parameter (M) rather than two (M and the momentum cutoff), which simplifies

the derivation considerably. Making use of lattice results in such a context requires then a

transformation from lattice to continuum regularization. While in principle a well-defined

perturbative problem (see, e.g., refs. [3]), this is in practice somewhat problematic in four

dimensions, given that there are contributions from all orders in the loop expansion.

The observable we consider in this paper is the (lowest-dimensional) singlet gluon

condensate in three dimensions (3d), measured with pure SU(3) gauge theory. As 3d

pure Yang-Mills theory is super-renormalisable, the problem of changing the regularization

scheme becomes solvable: there are ultraviolet divergences up to 4-loop level only [4].

Furthermore, as we will elaborate in the following, all the divergences have been determined

recently. These advances allow us to obtain a finite “subtracted” continuum value for the

gluon condensate in lattice regularization. A conversion to the MS scheme, amounting to

the (perturbative) computation of the constant c′4 in eq. (2.12) below, remains however a

future challenge.
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There might be various physics settings where the 3d gluon condensate finds prac-

tical applications. The one that motivated us, is that this condensate appears in high-

temperature physics, where the temperature T plays the role of the mass scale M men-

tioned above. Indeed 3d pure Yang-Mills theory determines the leading non-perturbative

contribution to the weak-coupling expansion of the pressure (and a number of other quan-

tities) of physical QCD [5, 6], through a conceptual counterpart of the operator product

expansion, called finite-temperature dimensional reduction [7, 8, 9]. Other applications

might exist as well.

The plan of this paper is the following. In section 2, we specify the observables consid-

ered and discuss the theoretical setting of our study. Numerical results from lattice Monte

Carlo simulations are reported in section 3, and we conclude in section 4.

2. Theoretical setting

We start this section by formulating the observables that we are interested in, in the

formal continuum limit of the theory. The ultraviolet (UV) divergences appearing in loop

contributions are at this stage regulated through the use of dimensional regularization.

Later on we go over to lattice regularization, in order to give a precise non-perturbative

meaning to the observables introduced, allowing for their numerical determination.

The euclidean continuum action of pure SU(Nc) Yang-Mills theory can be written as

SE =

∫

ddxLE , LE =
1

2g2
3

Tr[F 2
kl] . (2.1)

Here d = 3 − 2ε, g2
3 is the gauge coupling, k, l = 1, . . . , d, Fkl = i[Dk, Dl], Dk = ∂k − iAk,

Ak = Aa
kT

a, T a are the hermitean generators of SU(Nc), normalised as Tr[T aT b] = δab/2,

and repeated indices are assumed to be summed over. Leaving out for brevity gauge fixing

and Faddeev-Popov terms, the “vacuum energy density” reads

fMS ≡ − lim
V→∞

1

V
ln

[
∫

DAk exp
(

−SE

)

]

MS

, (2.2)

where V is the d-dimensional volume, DAk a suitable (gauge-invariant) functional integra-

tion measure, and we have assumed the use of the MS dimensional regularization scheme

to remove any 1/ε poles from the expression. We note that fMS has the dimensionality

[GeV]d.

In strict dimensional regularization, fMS of course vanishes order by order in the loop

expansion, due to the absence of any mass scales in the propagators. This behaviour

is unphysical, however, and due to an exact cancellation between UV and infrared (IR)

divergences; for an explicit discussion at 3-loop level in a related case, see appendix B of

ref. [10]. In fact non-perturbatively the structure of fMS is rather

fMS = −g6
3

dAN
3
c

(4π)4

[(

43

12
−

157

768
π2

)

ln
µ̄

2Ncg2
3

+BG +O(ε)

]

, (2.3)

where dA ≡ N2
c − 1, and we have introduced an MS scheme scale parameter µ̄. The

coefficient of the logarithm in eq. (2.3) has been determined in ref. [11] with a perturbative
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4-loop computation, by regulating all the propagators by a small mass scale mG, and

sending mG → 0 only after the computation (see also ref. [12]). The non-perturbative

constant part BG,
1 which actually is a function of Nc, is what we would ultimately like to

determine.

One direct physical application of BG is that it determines the first non-perturbative

contribution to the weak-coupling expansion of the pressure p of QCD at high temper-

atures [5, 6]. To be precise, this contribution is of the form δp = dAN
3
c g

6T 4BG/(4π)
4,

where g2 is the renormalised QCD gauge coupling. Terms up to order O(g6 ln(1/g)) are,

in contrast, perturbative, and all known by now [12].

For future reference, we note that given fMS, we immediately obtain the gluon conden-

sate:

1

2g2
3

〈

Tr[F 2
kl]
〉

MS

≡ −g2
3

∂

∂g2
3

fMS (2.4)

= 3g6
3

dAN
3
c

(4π)4

[(

43

12
−

157

768
π2

)(

ln
µ̄

2Ncg2
3

−
1

3

)

+BG +O(ε)

]

. (2.5)

We now go to the lattice. In the standard Wilson discretization, the lattice action, Sa,

corresponding to eq. (2.1), reads

Sa = β
∑

x

∑

k<l

(

1−
1

Nc
ReTr[Pkl(x)]

)

, (2.6)

where Pkl(x) = Uk(x)Ul(x+ k)U−1
k (x+ l)U−1

l (x) is the plaquette, Uk(x) is a link matrix,

x+ k ≡ x+ aε̂k, where a is the lattice spacing and ε̂k is a unit vector, and

β ≡
2Nc

g2
3a

. (2.7)

Note that the gauge coupling does not get renormalised in 3d, and the parameters g2
3

appearing in eqs. (2.1), (2.7) can hence be assumed finite and equivalent. The observable

we consider is still the vacuum energy density, eq. (2.2), which in lattice regularization

reads

fa ≡ − lim
V→∞

1

V
ln

[
∫

DUk exp
(

−Sa

)

]

, (2.8)

where DUk denotes integration over link matrices with the gauge-invariant Haar measure.

Now, being in principle physical quantities, the values of fMS and fa must agree,

provided that suitable vacuum counterterms are added to the theory. Due to super-

renormalizability, there can be such counterterms up to 4-loop level only [4], and cor-

respondingly

∆f ≡ fa − fMS (2.9)

= C1
1

a3

(

ln
1

ag2
3

+ C ′1

)

+ C2
g2
3

a2
+ C3

g4
3

a
+ C4 g

6
3

(

ln
1

aµ̄
+ C ′4

)

+O(g8
3a) , (2.10)

1In ref. [12], BG was denoted by βG, but we prefer to introduce a new notation here, in order to avoid

confusion with the coupling constant β appearing in eq. (2.6). The subscript G might refer to gluons.
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where the Ci are dimensionless functions of Nc. The values of C1, C2, C3, C4 are known, as

we will recall presently; C ′1 is related to the precise normalisation of the Haar integration

measure and void of physical significance; and C ′4 is unknown as of today.

Correspondingly, the gluon condensates, i.e. the logarithmic derivatives of fMS , fa with

respect to g2
3 , can also be related by a perturbative 4-loop computation. Noting that three-

dimensional rotational and translational symmetries and the reality of Sa allow us to write

−g2
3

∂

∂g2
3

fa =
3β

a3

〈

1−
1

Nc
Tr[P12]

〉

a

, (2.11)

and employing eqs. (2.5), (2.10), we obtain finally the master relation

8
dAN

6
c

(4π)4
BG = lim

β→∞
β4

{〈

1−
1

Nc
Tr[P12]

〉

a

−

[

c1
β

+
c2
β2

+
c3
β3

+
c4
β4

(

lnβ + c′4
)

]}

. (2.12)

The values of the constants c1, . . . , c
′
4 are trivially related to those of C1, . . . , C

′
4 in eq. (2.10).

Now, a straightforward 1-loop computation yields

c1 =
dA
3
≈ 2.66666667 , (2.13)

where the numerical value applies for Nc = 3.

The 2-loop term is already non-trivial: it was first computed in four dimensions in

ref. [13], and in three dimensions in ref. [14]. The 3d result can be written in the form

c2 = −
2

3

dAN
2
c

(4π)2

(

4π2

3N2
c

+
Σ2

4
− πΣ−

π2

2
+ 4κ1 +

2

3
κ5

)

= 1.951315(2) , (2.14)

where the coefficients Σ, κ1 can be found in refs. [4, 15], and we have defined

κ5 =
1

π4

∫ π/2

−π/2
d3xd3y

∑

i sin
2xisin

2(xi + yi)sin
2yi

∑

i sin
2xi
∑

i sin
2(xi + yi)

∑

i sin
2yi

= 1.013041(1) . (2.15)

The numbers in parentheses in eqs. (2.14), (2.15) indicate the uncertainties of the last

digits.

The 3-loop term is well known in four dimensions since a long time ago [16], but the

same computation has been carried out in three dimensions only very recently [17]:

c3 = 6.8612(2) . (2.16)

This value improves on a previous estimate c3 = 6.90+0.02
−0.12 [18], obtained through the eval-

uation of the 3-loop graphs with the method of stochastic perturbation theory [19].

The value of c4 follows by a comparison of eqs. (2.3) and (2.10): there is no µ̄-

dependence in fa, so that the one in fMS determines the coefficient of the logarithm in

∆f . Consequently,

c4 = 8
dAN

6
c

(4π)4

(

43

12
−

157

768
π2

)

≈ 2.92942132 . (2.17)
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β volumes

12 243, 323, 483

16 243, 323, 483, 643

20 243, 323, 483

24 {123, 143, 163, 203, 243}, 323, 483, 643

32 {143, 163, 203, 243, 323}, 483, 643, 963

40 {323}, 483, 643, 963

50 {203, 243, 263, 283, 323, 483}, 643, 963, 1283, 3203

64 {483, 643}, 963, 1283, 3203

80 {643}, 1283, 3203

[100 1283, 1923, 3203]

[140 {1283}, 1923, 3203]

[180 {1923}, 3203]

Table 1: The lattice spacings (parametrised by β, cf. eq. (2.7)) and the volumes (in lattice units,

N3, so that V = N3a3) studied. On each lattice we have collected ∼ 104 . . . 106 independent mea-

surements. The lattices in curly brackets have been left out from the infinite-volume extrapolations,

while for the lattices in square brackets the significance loss due to the ultraviolet subtractions in

eq. (2.12) is so large (six orders of magnitude or more) that the subtracted values have little effect

on our final fit (see below).

The knowledge of c1, c2, c3, c4 allows us to subtract all the divergent contributions from

the gluon condensate. A finite 4-loop term, parametrised by c′4 in eq. (2.12), however still

remains. It could in principle be determined by extending either the method of ref. [17]

or of ref. [18] to 4-loop level. There is the additional complication, though, that interme-

diate steps of the computation require the use of an IR cutoff, which then cancels once

the lattice and MS results are subtracted, in eq. (2.10). This computation has not been

carried out yet, and therefore we will not be able to determine BG in this paper. We

can determine, however, the non-perturbative input needed for it (cf. eq. (3.1) below), the

purely perturbative determination of c′4 then remaining a future challenge.

3. Lattice measurements

The goal of the numerical study is to measure the plaquette expectation value, 〈1 −
1
3 Tr[P12]〉a, as a function of β, such that the extrapolation in eq. (2.12) can be carried

out. For each β, the infinite-volume limit needs to be taken. Given that the theory has a

mass gap, we expect that finite-volume effects are exponentially small, if the length of the

box L is large compared with the confinement scale, ∼ 1/g2
3 . Writing L = Na, where N is

the number of lattice sites, the requirement LÀ 1/g2
3 converts to β/N ¿ 6 (cf. eq. (2.17)).

Detailed studies with other observables show that in practice the finite-volume effects are

invisible as soon as β/N < 1 [20]. The values of β and N that we have employed are shown

in table 1. Earlier lattice measurements of the same observable were carried out with a

volume N 3 = 323, with values of β up to β = 30 [21].

– 5 –
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Figure 1: The plaquette expectation value, “plaq” ≡ 〈1 − 1
3
Tr[P12]〉a, as a function of 1/β.

Statistical errors are (much) smaller than the symbol sizes. The dotted curve contains the four

known terms c1/β + c2/β
2 + c3/β

3 + c4 ln β/β
4 from eq. (2.12), together with terms of the type

1/β4, 1/β5 and 1/β6 with fitted coefficients.

It is important to stress that the subtractions in eq. (2.12) lead to a major significance

loss. Essentially, we need to evaluate numerically the fourth derivative with respect to β−1

of the function 〈1− 1
3 Tr[P12]〉a, at the point β

−1 = 0. Another way to express the problem

is that as the numbers c1, . . . , c4 are of order unity (cf. eqs. (2.13)–(2.17)), the dominant

term, c1/β, is about six orders of magnitude larger than the effect we are interested in,

∼ 1/β4, if β ∼ 100. Therefore the relative error of our lattice measurements should be

smaller than one part in a million. We also need to know the coefficients ci with good

precision.

Lattice-measured values of 〈1 − 1
3 Tr[P12]〉a are shown in figure 1, as a function of

1/β. In order to demonstrate the accuracy requirements we are faced with, figure 2 shows

β4〈1 − 1
3 Tr[P12]〉a, before and after the various subtractions. It is observed from figure 2

that after all the subtractions, this function indeed appears to have a finite limit for β →∞,

or 1/β → 0.

For each β, we have carried out simulations at a number of different lattice extents N ;

examples are shown in figure 3. No significant volume dependence is observed for β/N < 1,

and we thus estimate the infinite-volume limit by fitting a constant to data in this range.

Given the infinite-volume estimates, we extrapolate the data to the continuum limit,

β → ∞. In figure 4 we show the functions β4{〈1 − 1
3 Tr[P12]〉a − [c1/β + c2/β

2 + c3/β
3]}

and β4{〈1 − 1
3 Tr[P12]〉a − [c1/β + c2/β

2 + c3/β
3 + c4 lnβ/β

4]}. It is observed how even

the 4-loop logarithmic divergence is visible in the data, as some upwards curvature for

1/β . 0.06. On the other hand, for 1/β ≤ 0.01 the significance loss due to the subtractions

grows rapidly and the error bars become quite large, so that these data points have little

effect on the fit.

The continuum extrapolation is carried out by fitting a function d1 + d2/β + d3/β
2

to the infinite-volume extrapolated data for β4{〈1− 1
3 Tr[P12]〉a − [c1/β + c2/β

2 + c3/β
3 +

– 6 –
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Figure 2: The significance loss due to the subtractions of the various ultraviolet divergent contri-

butions in the gluon condensate. Here again “plaq” ≡ 〈1 − 1
3
Tr[P12]〉a, and the symbols ci in the

curly brackets indicate which subtractions of eq. (2.12) have been taken into account.
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β / N

0.0

5.0
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30.0
β = 24

0.0 0.5 1.0 1.5 2.0 2.5
β / N

0.0
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10.0

15.0

20.0

25.0
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β = 32

0.0 0.5 1.0 1.5 2.0 2.5
β / N

0.0

5.0

10.0

15.0

20.0

25.0

30.0
β = 50

Figure 3: Finite-volume values for β4{〈1 − 1
3
Tr[P12]〉a − [c1/β + c2/β

2 + c3/β
3 + c4 lnβ/β

4]},

as a function of the physical extent β/N = 6/g2
3L of the box. The solid symbols indicate the

infinite-volume estimates, obtained by fitting a constant to data in the range β/N < 1.

c4 lnβ/β
4]}, in the range 0.01 < 1/β < 0.10. We find that this functional form describes the

data very well. The fitted values are d1 = 19.4 . . . 20.7, d2 = 110 . . . 63, d3 = 717 . . . 1101,

with χ2/dof = 5.8/6, where the intervals indicate the projections of the 68% confidence

level contour (i.e. the surface where χ2 = χ2
min +3.53) onto the various axes, from one end

of the elongated ellipse to the other.2 We have also estimated the systematic errors from

the effect of higher order terms in the fit ansatz, and found that they are of the same order

as these intervals, which we thus consider as our combined error estimates. Returning back

2If the three largest β’s are included in the fit, the parameters remain essentially the same, d1 =

19.4 . . . 20.8, d2 = 107 . . . 62, d3 = 733 . . . 1117, while χ2/dof = 7.0/9 has decreased due to the large error

bars at these β’s.
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Figure 4: The infinite-volume extrapolated data, plotted as in figure 2. The effect of the 4-loop

logarithmic divergence is to cause additional upwards “curvature” in the upper data set. The lower

set includes all the subtractions, and should thus have a finite continuum limit. The continuum

extrapolation (as described in the text) is indicated with the dashed line. The gray points have

error bars so large that they are insignificant as far as the fit is concerned.

to eq. (2.12), we then obtain our final result,

BG +

(

43

12
−

157

768
π2

)

c′4 =

(

2π2

27

)2

× (20.0 ± 0.7) = 10.7± 0.4 , (3.1)

where we have inserted Nc = 3.

4. Conclusions

The purpose of this paper has been to study the expectation value of the elementary

plaquette in pure SU(3) lattice gauge theory in three dimensions, as well as to outline how

the MS scheme gluon condensate of the continuum theory can be extracted from it. To

achieve this goal, we have carried out high precision numerical Monte Carlo simulations

close to the continuum limit, corresponding to lattice spacings 0.05 . ag2
3 . 0.5, where g2

3

is the gauge coupling.

When the leading perturbative terms, up to 4-loop level, are subtracted from the

plaquette expectation value, and the result is divided by (ag2
3)

4, a finite quantity remains

(the right-hand side of eq. (2.12), without c′4) which can be taken as the definition of a

renormalised gluon condensate in lattice regularization (in certain units). We have carried

out the subtractions and the extrapolation ag2
3 → 0, and shown that our data appear to

be precise enough to determine the remainder with less than 5% errors, cf. figure 4 and

eq. (3.1).

To relate this number to the gluon condensate in some continuum scheme, say MS,

a further perturbative 4-loop matching computation remains to be completed, fixing the
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constant c′4 in eqs. (2.12), (3.1). Our study should provide a strong incentive for finalising

this challenging but feasible task, and there indeed is work in progress with this goal. The

MS scheme conversion is also needed in order to apply our result in the context of finite

temperature physics, particularly for determining the O(g6T 4) contribution to the pressure

of hot QCD, since the other parts of that computation have been formulated in the MS

scheme [12].
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Abstract

In this Letter, we extend the known results for the QCD potential between a static quark and its antiquark by compu
two-loop corrections to the colour-octet state.
 2004 Elsevier B.V. All rights reserved.
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The QCD potential between a static quark and
antiquark has for a long time been used as a prob
the fundamental properties of the strong interacti
such as asymptotic freedom and confinement[1]. His-
torically, the potential for a quark–antiquark pair
the colour-singlet state attracted the most attention
cause it is a basic ingredient in the theory of hea
quarkonium and, therefore, of primary phenome
logical interest. Nowadays, however, there is gro
ing interest in its colour-octet counterpart. The lat
naturally appears in effective-theory calculations

E-mail address: matthias.steinhauser@desy.de
(M. Steinhauser).
0370-2693/$ – see front matter 2004 Elsevier B.V. All rights reserved
doi:10.1016/j.physletb.2004.12.024
high-order corrections to the heavy-quarkonium sp
trum and decay rates through the so-called ultra
contribution[2]. Moreover, it determines the prope
ties of glueballinos and is necessary for the ana
sis of gluino–antigluino threshold production[3,4]. It
is also used in lattice QCD for studying the beh
ior of strong interactions at long distances and
interplay between perturbative and non-perturba
physics [3]. This requires knowledge of the corr
sponding perturbative corrections which, in contr
to the colour-singlet case, are not available beyond
loop. In the present Letter, we fill this gap and comp
theO(α2

s ) correction to the colour-octet static pote
tial.
.
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The perturbative expansion of the colour-sing
potential reads

V
(|q|) = −4πCFαs(|q|)

q2

×
[
1+ αs(|q|)

4π
a1 +

(
αs(|q|)

4π

)2

a2

(1)

+
(

αs(|q|)
4π

)3(
a3 + 8π2C3

A ln
µ2

q2

)
+ · · ·

]

where the first term corresponds to the Coulomb
tential. The one-loop coefficient,

(2)a1 = 31

9
CA − 20

9
TF nl,

has been known for a long time[5,6], while the two-
loop coefficient,a2, has only recently been found[7–
9]. In Ref.[9], the result of Ref.[8] was confirmed,

a2 =
[

4343

162
+ 4π2 − π4

4
+ 22

3
ζ(3)

]
C2

A

−
[

1798

81
+ 56

3
ζ(3)

]
CATFnl

(3)−
[

55

3
− 16ζ(3)

]
CF TF nl +

(
20

9
TF nl

)2

,

whereζ is Riemann’s zeta function, with valueζ(3) =
1.202057. . . . Here,CA = N andCF = (N2−1)/(2N)

are the eigenvalues of the quadratic Casimir opera
of the adjoint and fundamental representations of
SU(N) colour gauge group, respectively,TF = 1/2
is the index of the fundamental representation,
nl is the number of light-quark flavours. The mod
fied minimal-subtraction (MS) scheme for the renor
malization ofαs is implied. The logarithmic term o
O(α3

s ) in Eq. (1) reflects the infrared divergence
the static potential[10]. The particular form of the
logarithmic term corresponds to dimensional re
larization [11]. The corresponding infrared-diverge
term is cancelled against the ultraviolet-divergent o
of the ultra-soft contribution[2] in the calculation of
the physical heavy-quarkonium spectrum[11,12]. The
non-logarithmic third-order term,a3, is still unknown.

The perturbative expansion of the potential for
colour-octet state can be cast in the form
V o
(|q|) = 4παs(|q|)

q2

(
CA

2
− CF

)

×
[
1+ αs(|q|)

4π
ao

1 +
(

αs(|q|)
4π

)2

ao
2

+
(

αs(|q|)
4π

)3

(4)×
(

ao
3 + 8π2C3

A ln
µ2

q2

)
+ · · ·

]
,

where the one-loop coefficient is the same as in
colour-singlet case,ao

1 = a1. The two-loop coeffi-
cient, however, differs by a finite renormalizatio
independent term,

(5)ao
2 = a2 + δa2.

Our result is

δa2 = C2
A

3d − 11

d − 5

×
[

− 3(d − 4)(d − 1)

d − 5

]

(6)= (
π4 − 12π2)C2

A +O(d − 4),

whered is the space–time dimension, and we ha
introduced a graphical notation for the two mas
two-point integrals, where single and double lines r
resent the propagators 1/(k2 + iε) and 1/(k0 + iε), re-
spectively. The non-logarithmic part of the three-lo
coefficient,ao

3, is still unknown. It is instructive to look
at the numerical size of the corrections. ForN = 3 one
obtainsδa2 = −189.2. At the same time, we havea2 =
155.8(211.1,268.8) anda1 = 4.778(5.889,7.000) for
nl = 5(4,3). Thus, in the colour-octet case, the tw
loop correction is significantly smaller than for th
colour-singlet configuration. Depending onnl , it even
changes sign.

In the remaining part of this Letter, we wish
describe two independent ways that have been u
to evaluateδa2. The first method proceeds along t
lines of the analysis[9,11] based on the threshold e
pansion[13]. In general, the threshold expansion
the proper framework for performing calculations
volving a heavy quark–antiquark system. It provid
rigorous power-counting rules and natural definitio
of the formal expressions obtained in the perturba
analysis of the non-relativistic effective theory. T
corrections to the static potential only arise from
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soft regions of the loop integrals, which are char
terized by the following scaling of the loop momen
l0 ∼ |l| ∼ |q|. Thus, the calculation of the coefficien
ai and ao

i can be performed in the static limit o
NRQCD,mq → ∞.

Due to the exponentiation of the static potential[5],
the coefficientsai of the colour-singlet state only re
ceive contributions from the maximally non-Abelia
parts, leaving aside the terms involvingnl . The se-
lection of these parts effectively retains the contri-
butions of the soft region, as the appearance of
Abelian colour factorCF indicates the presence
a Coulomb pinch and thus implies that at least o
loop momentum is potential. The latter contributio
just represent iterations of the lower-order poten
and, therefore, should be excluded from the pot
tial itself. In the non-relativistic effective theory, the
iterations are taken into account in the perturbative
lution of the Schrödinger equation about the Coulo
approximation. These contributions refer to dynam
rather than static heavy-quark and -antiquark fie
and the Coulomb pinch singularities we encounte
the static-limit calculations are resolved by keepin
finite mass in the non-relativistic heavy-quark prop
gator.

The analysis of the colour-octet state is more
volved, since, in this case,the Coulomb pinches com
with all possible colour factors and cannot be remo
by selecting the maximum non-Abelian ones. Th
the separation of the Coulomb pinches should be
formed explicitly. They appear in the Feynman
agrams involving the product of the non-relativis
quark and antiquark propagators,

(7)
1

k0 − k2/(2mq) + iε

1

k0 + k2/(2mq) − iε
.

In this case, after expanding the quark propagato
1/mq , one obtains ill-defined products like

(8)
1

(k0 + iε)m

1

(k0 − iε)n
.

Thus, separating the soft and potential regions is
avoidable.1 In the soft region, the pole contribution

1 Note that, for the diagrams without Coulomb pinches, the se
ration of the soft and potential regions is ambiguous and even g
dependent. In such diagrams, thenon-relativistic quark and anti
quark propagators can be safely expanded in 1/mq .
of the quark and antiquark propagators have to be
cluded, and the product in Eq.(8) should actually be
defined to be its principal value,

(9)
1

2

[
1

(k0 + iε)m+n
+ 1

(k0 − iε)m+n

]
.

In the potential region, the quark and antiquark pro
gator poles produce contributions of the form

(10)

−iπ
mq

k2 − iε

[
δ

(
k0 − k2

2mq

)
+ δ

(
k0 + k2

2mq

)]
,

where the 1/v Coulomb singularity shows up explic
itly. After integration overk0, Eq. (10) yields the
non-relativistic Green function of the free Schröding
equation. Only Eq.(9) should be taken into account
the calculation of the static potential.

At one loop, there is only one diagram involving
Coulomb pinch, namely, the planar box, which has
colour factorC2

F for the colour-singlet state. Pickin
up the soft contribution, i.e., using the principal-va
prescription of Eq.(9) to define Eq.(8), we find the
planar box to cancel theC2

F part of the non-plana
box, which in total is proportional toC2

F − CF CA/2.
This explicitly demonstrates the exponentiation of th
one-loop colour-singlet static potential in momentu
space. However, we can also turn things around
express the planar box with Coulomb pinches thro
the well-defined non-planar box by actually requiri
the cancellation of theC2

F terms in the sum of al
one-loop diagrams, as is dictated by the exponen
tion. The result forao

1 as given above is then obtaine
by simply replacing the colour-singlet colour factor
the colour-octet one.

This strategy carries over to two loops. He
we have diagrams with zero, one, or two Coulo
pinches. For the diagrams without Coulomb pinch,
contribution toao

2 is obtained by adopting the corre
colour factor. We divide the Feynman diagrams w
Coulomb pinches into those that have two quark
two antiquark propagators (cf.Fig. 1) and the rest
The latter ones are treated directly using the princip
value prescription of Eq.(9). For the former, however
it is simpler to use the exponentiation, which requi
that the diagrams contributing to the colour fact
CAC2

F and C3
F sum up to zero in the colour-singl

case. This leads to two equations for the diagrams
fering from Coulomb pinches, namely, those shown
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(a) (b) (c)

(d) (e)

Fig. 1. Two-loop Feynman diagrams with ((a) and (b)) and without ((c)–(e)) Coulomb pinches that contribute toδa2.
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Fig. 1(a) and (b), which can be solved. This provid
a result in terms of the diagrams inFig. 1(c) and (d),
which are free of pinches. After adopting the colo
factors corresponding to the colour-octet configu
tion, one obtains the contributions to the results gi
in Eqs.(5) and (6). We wish to mention that the ca
culation was performed in the general covariant gaug
and that the dependence on the gauge parameter w
found to cancel out in the final result.

The second method to computeV o proceeds along
the lines of Ref.[8]. While in the above, we had t
assume exponentiation of the colour-singlet poten
we will now relax that assumption. The reason is th
although exponentiation is plausible to all orders
perturbation theory, the proof given in Ref.[5] holds
for the singlet potential inAbelian theories only.

As a starting point, we now expand the logarithm
the(T × R) Wilson loop spanned by the static quar
antiquark pair at distanceR throughO(α3

s ). Taking
the limit T → ∞ (which, in a diagrammatic sens
‘cuts’ the Wilson loop twice and restores translatio
invariance in the temporal direction, hence guaran
ing energy conservation at the vertices and lead
to simple momentum-space Feynman rules) and
sertingSU(N) generatorsT a into the purely spatia
Wilson lines to obtain the colour-octet potential to th
order (for a manifestly gauge-invariant definition, s
Ref. [14]), we now explicitly keep disconnected
well as one-particle-reducible diagrams in our exp
sion.

At this point, the general structure of the expans
involves (products of) up to two-loop four-point fun
tions of static quarks (cf.Fig. 1). After Fourier trans-
forming to momentum-space, we can choose a spe
point to evaluate these four-point functions, since
potential, of course, only knows about the distan
R of the qq̄ pair, which in a momentum-space re
resentation translates into the momentum transfe|q|
between the upper and lower lines inFig. 1. Hence,
effectively, we have to compute two-point functio
with external static quarks, external momentumq =
(0,q), and internal static quarks, gluons, ghosts a
light quarks, with the additional occurrence of a s
tic (anti-)quark–gluon two-point vertex, resulting fro
the special kinematics.

After performing the colour algebra and exploitin
symmetries of the integrals occurring in the expans
all integrals which might give rise to pinch singula
ities, and had to be treated with caution in our fi
approach, cancel exactly. Thus, we are left with
task of computing a class of two-loop two-point int
grals for which there exists a generic algorithm[8,15],
based on integration by parts (IBP)[16]. The imple-
mentation in Ref.[15] (see also Chapter 6 of Ref.[17])
is based on Ref.[18].

Having generated the relevant set of diagrams
reduced the occurring Feynman integrals to the se
two-point functions described above, we now emp
the reduction algorithm, which maps them to a (sm
set of so-called master integrals, multiplied by ratio
functions in the dimensiond . At this stage, we observ
cancellation of the gauge-parameter dependence,
ing as a check for the reduction. As an additio
strong check, we use our implementation[19] of the
strategy to solve a truncated set of IBP relations, ba
on lexicographic ordering of integrals[20].

The set of (massless, two-point) master integra
known analytically in terms of gamma functions, f
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generic dimensiond , as given, e.g., in Ref.[8]. Ex-
panding prefactors as well as master integrals ab
d = 4 − 2ε and renormalizing the gauge coupling, w
again arrive at Eq.(6).

To conclude, we have evaluated theO(α2
s ) cor-

rection to the colour-octet static potential using t
independent techniques. Both evaluations are in ag
ment, giving us confidence in our main result, Eq.(6).
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1. Introduction

Indirect signs for rapid thermalisation after heavy ion collisions at RHIC energies, derived

for instance from the fact that hydrodynamic models assuming local thermodynamic equi-

librium appear to work very well [1], have underlined the need to understand the physics

of thermal QCD at temperatures above a few hundred MeV.

Given asymptotic freedom, a natural tool for these studies is the weak-coupling ex-

pansion [2]. Alas, it has been known since a long time that the weak-coupling expansion

converges very slowly at all realistic temperatures [3, 4]. It also has theoretically a non-

trivial structure, with odd powers of the gauge coupling [5] and even coefficients that can

only be determined non-perturbatively [6, 7].

On the other hand, the degrees of freedom responsible for the slow convergence can be

identified [8 – 10]: they are the “soft” static colour-electric modes, parametrically p ∼ gT

(leading to the odd powers in the gauge coupling), as well as the “ultrasoft” static colour-

magnetic modes, parametrically p ∼ g2T (leading to the non-perturbative coefficients in

the weak-coupling expansion). Here p denotes the characteristic momentum scale, g the

gauge coupling and T the temperature. The belief has been that perturbation theory

restricted to parametrically hard scales p ∼ 2πT alone should converge well, while the

soft and the ultrasoft scales need to be treated either with “improved” analytic schemes,

or then non-perturbatively. As a starting point for these demanding tasks one may take,

however, either the dimensionally reduced effective field theory [11, 12] or the hard thermal

loop effective theory [13], which have been obtained by integrating out the parametrically

hard scales.

– 1 –



J
H
E
P
0
3
(
2
0
0
5
)
0
6
7

Quantitative evidence for this picture can be obtained by choosing simple observables

which can be determined reliably both with four-dimensional (4d) lattice simulations and

with the soft/ultrasoft effective theory. This forces us to restrict to static observables

and, for the moment, mostly pure gauge theory. Various comparisons of this kind are

summarised in references [14 – 16]. The most precise results are related to static correlation

lengths in various quantum number channels [17], where good agreement has generally been

found down to T ∼ 2Tc, where Tc is the critical temperature of the deconfinement phase

transition. The thermodynamic pressure of QCD is also consistent with this picture [10],

even though that comparison is not unambiguous yet, due to the fact that the effective

theory approach does not directly produce the physical number, but requires not-yet-

determined ultraviolet matching coefficients for its interpretation [18].1

The purpose of this paper is to study another observable for which an unambiguous

comparison is possible. The observable is the “spatial string tension”, σs. 4d lattice

determinations of σs in pure SU(3) gauge theory exist since a while already [22] but, as has

most recently been stressed in reference [23], the comparison with effective theory results

shows a clear discrepancy. In order to improve on the resolution on the effective theory

side, we compute here the gauge coupling of the dimensionally reduced theory up to 2-loop

order. Combining with other ingredients [24, 25], to be specified below, allows then for a

precise comparison. We find that once the 2-loop corrections are included, the match to

4d lattice data improves quite significantly and supports the picture outlined above.

The plan of this paper is the following. In section 2 we present the 2-loop computation

of the effective gauge coupling of the dimensionally reduced theory. In section 3 we discuss

the numerical evaluation of this result. In section 4 we use the outcome for estimating the

spatial string tension, and compare with 4d lattice data. We conclude in section 5.

2. Effective gauge coupling

We consider finite temperature QCD with the gauge group SU(Nc), and Nf flavours of

massless quarks. In dimensional regularisation the bare euclidean lagrangian reads, before

gauge fixing,

SQCD =

∫ β

0
dτ

∫

ddxLQCD , (2.1)

LQCD =
1

4
F a

µνF
a
µν + ψ̄γµDµψ , (2.2)

where β = T−1, d = 3 − 2ε, µ, ν = 0, . . . , d, F a
µν = ∂µA

a
ν − ∂νA

a
µ + gBf

abcAb
µA

c
ν , Dµ =

∂µ − igBAµ, Aµ = Aa
µT

a, T a are hermitean generators of SU(Nc) normalised such that

Tr [T aT b] = δab/2, γ†µ = γµ, {γµ, γν} = 2δµν , gB is the bare gauge coupling, and ψ carries

Dirac, colour, and flavour indices. We use the standard symbols CA = Nc, CF = (N2
c −

1)/(2Nc), TF = Nf/2 for the various group theory factors emerging.

1For the status regarding a few other observables, see references [19 – 21].
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At high enough temperatures, the dynamics of eq. (2.2) is contained in a simpler,

dimensionally reduced effective field theory [11, 12, 8]:

SEQCD =

∫

ddxLEQCD , (2.3)

LEQCD =
1

4
F a

ijF
a
ij + Tr [Di, B0]

2 +m2
ETr [B2

0 ] + λ
(1)
E (Tr [B2

0 ])2 + λ
(2)
E Tr [B4

0 ] + · · · . (2.4)

Here i = 1, . . . , d, Fij = ∂iB
a
j −∂jB

a
i +gEf

abcBb
iB

c
j , and Di = ∂i−igEBi. The fields Ba

µ have

the dimension [GeV]1/2−ε, due to a trivial rescaling with T 1/2. Note also that the quartic

couplings λ
(1)
E , λ

(2)
E are linearly dependent for Nc ≤ 3, since then Tr [B4

0 ] = 1
2 (Tr [B2

0 ])2.

The theory in eq. (2.4) has been truncated to be super-renormalisable; that is, higher

order operators [27] (see also references [28, 29] and references therein) have been dropped.

The relative error thus induced has been discussed for generic Green’s functions in refer-

ence [30], and for the particular case of the pressure of hot QCD in reference [10]. In the

following we concentrate on an observable dynamically determined by the colour-magnetic

scale p ∼ g2T , and it is easy to see that in this case the higher order operators do not play

any role at the order we are working.

The effective parameters in eq. (2.4) can be determined by matching, that is, by

requiring that QCD and EQCD produce the same results, within the domain of validity

of the latter theory. It is essential that infrared (IR) physics be treated in the same

way in both theories at the matching stage and, as outlined in reference [8], the most

convenient implementation of this requirement is to perform computations on both sides

using “unresummed” propagators. We follow this procedure here.

The matching simplifies further by using the background field gauge (reference [31]

and references therein). As this is essential for what follows, we start by briefly recalling

the basic advantage of this approach. For a concise yet rigorous overview of the technique,

see reference [32].

We denote the background gauge potential with Ba
µ, and the gauge-invariant combina-

tion following from F a
µν(B)F a

µν(B) symbolically as B2+gB3+g2B4. Now, the computation

of the effective Lagrangian by integrating out the hard scales p ∼ 2πT produces, in general,

an expression of the type

Leff ∼ c2B
2 + c3 gB

3 + c4g
2B4 + · · · , (2.5)

where ci are coefficients of the form ci = 1 + O(g2). As the next step we are free to define

a canonically normalised effective field Beff as B2
eff ≡ c2B

2. Then the effective Lagrangian

obtains the form

Leff ∼ B2
eff + c3c

−3/2
2 gB3

eff + c4c
−2
2 g2B4

eff + · · · . (2.6)

We can now read off the effective gauge coupling from the gauge-invariant structure:

geff = c3c
−3/2
2 g = c

1/2
4 c−1

2 g . (2.7)

We observe that two independent computations are needed for the determination of geff,

but we can choose whether to go through the 3-point or the 4-point function, in addition

to the 2-point function (that is, using c3 or c4, in addition to c2).

– 3 –
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Figure 1: The 1-loop and 2-loop self-energy diagrams in the background field gauge. Wavy lines

represent gauge fields, dotted lines ghosts, and solid lines fermions. The 2-loop graphs have been

divided into two-particle-irreducible and two-particle-reducible contributions.

The background field gauge economises this setup. Indeed, the effective action is then

gauge-invariant not only in terms of Beff, but also in terms of the original field B [31].

Writing equation (2.5) as

Leff ∼ c2
[

B2 + c3c
−1
2 gB3 + c4c

−1
2 g2B4

]

+ · · · , (2.8)

gauge invariance in terms of B now tells us that c3 = c2 and c4 = c2. Combining with

equation (2.7), we obtain

geff = c
−1/2
2 g , (2.9)

so that it is enough to carry out one single 2-point computation, in order to obtain geff. In

our case, the role of geff is played by gE (cf. equation (2.4)).

The class of background field gauges still allows for a general (bare) gauge parameter,

ξ. As a cross-check we have carried out all computations with a general ξ, and verified

that it cancels at the end. To be definite, we denote (ξ)here = 1 − (ξ)standard, so that the

gauge field propagator reads
〈

Aa
µ(q)Ab

ν(−q)
〉

= δab

[

δµν

q2
− ξ

qµqν
(q2)2

]

. (2.10)

In order to match the effective gauge coupling, we need to compute the 2-loop gluon

self-energy, Πµν(p), for the background gauge potential Ba
µ. The graphs entering are shown

in fig. 1. The external momentum p is taken purely spatial, p = (0,p), while the heat bath

is timelike, with euclidean four-velocity u = (1, 0), so that u · u = 1, u · p = 0. In this case

Πµν has three independent components (Π0i, Πi0 vanish identically),

Π00(p) ≡ ΠE(p2) , Πij(p) ≡

(

δij −
pipj

p2

)

ΠT(p2) +
pipj

p2
ΠL(p2) , (2.11)

where i, j = 1, . . . , d. In fact loop corrections to the spatially longitudinal part ΠL also

vanish, so that only two non-trivial functions, ΠE,ΠT, remain.

– 4 –
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Since we are carrying out a matching computation, any possible IR divergences cancel

as we subtract the contribution of EQCD. Therefore we may Taylor-expand Πµν(p) to

second order in p2. This leads to the nice simplification that the results on the EQCD side

vanish identically in dimensional regularization, due to the absence of any mass scales in

the propagators. Thus we only need to compute unresummed integrals on the QCD side.

After the Taylor-expansion, the 2-loop QCD integrals can all be cast in the form

I(i1, i2; j1, j2, j3; k1, k2, k3) ≡
∑

∫

q,r

qi1
0 r

i2
0 (q · p)j1(r · p)j2(q · r)j3

[q20 + q2]k1 [r20 + r2]k2 [(q0 + r0)2 + (q + r)2]k3
. (2.12)

The indices here are non-negative integers, and the measure is the standard Matsubara

sum-integral (bosonic or fermionic), with the spatial part
∫

ddq/(2π)d
∫

ddr/(2π)d.

To reduce integrals of the type in eq. (2.12) to a small set of “master integrals”, we

employ symmetries following from exchanges of integration variables, as well as general

partial integration identities for the spatial parts of the momentum integrations. The

implementation of these identities follows the procedure outlined by Laporta [33], in analogy

with reference [34]. We are lead both to very simple 1-loop recursion relations, such as

I(2i1, 0; 0, 0, 0; k1, 1, 0) =
2k1 − 2 − d

2k1 − 2
I(2i1 − 2, 0; 0, 0, 0; k1 − 1, 1, 0) , (2.13)

as well as well-known but less obvious 2-loop ones [35], like

I(0, 0; 0, 0, 0; 1b, 1b, 1b) = 0 , (2.14)

where the subscripts refer to bosonic four-momenta.

After this reduction, only six master integrals remain:

Ib(n) =
∑

∫

qb

1

(q2)n
, If(n) =

∑

∫

qf

1

(q2)n
, (2.15)

where qb, qf refer to bosonic and fermionic Matsubara momenta, respectively, and n =

1, 2, 3. For a vanishing quark chemical potential, as we assume to be the case here, the

fermionic integrals reduce further to the bosonic ones,

If(n) =
(

22n−d − 1
)

Ib(n) , (2.16)

leaving only three master integrals. They are known explicitly,

Ib(n) =
2πd/2T 1+d

(2πT )2n

Γ(n− d/2)

Γ(n)
ζ(2n− d) . (2.17)

This expression is easily expanded in ε and, in the following, we need terms up to O(ε).

For completeness, the relevant expansions are shown in appendix A.

Writing now the Taylor-expanded bare 2-point function ΠT of equation (2.11) as

ΠT(p2) ≡ ΠT(0) + p2Π′
T(0) + · · ·

≡

∞
∑

n=1

ΠTn(0)(g
2
B)n + p2

∞
∑

n=1

Π′
Tn(0)(g

2
B)n + · · · , (2.18)

– 5 –
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where gB is the bare gauge coupling, and correspondingly for ΠE, our results read

ΠT1(0) = 0 , (2.19)

Π′
T1(0) =

d− 25

6
CAIb(2) +

4

3
TF If(2) , (2.20)

ΠT2(0) = 0 , (2.21)

Π′
T2(0) =

(d− 3)(d− 4)

d(d− 2)(d− 5)(d− 7)

{

2(4d2 − 21d− 7)C2
AI

2
b(2) −

− 8
[

4CF + (d2 − 6d+ 1)CA

]

TF Ib(2)If(2) −

−
[

(d3 − 12d2 + 39d− 12)CA −

− 2(d3 − 12d2 + 41d− 14)CF

]

TF I
2
f (2)

}

+

+
(d− 1)

3d(d− 7)

{

(d2 − 31d+ 144)
[

4TF If(1) − (d− 1)CAIb(1)
]

CAIb(3) −

− 8(d− 1)(d− 6)CFTF

[

Ib(1) − If(1)
]

If(3)

}

, (2.22)

ΠE1(0) = −(d− 1)
[

4TF If(1) − (d− 1)CAIb(1)
]

, (2.23)

Π′
E1(0) = −

[

d2 − 5d+ 28

6
+ (d− 3)ξ

]

CAIb(2) +
2(d− 1)

3
TF If(2) , (2.24)

ΠE2(0) = (d− 1)(d− 3)

{

(1 + ξ)
[

4TF If(1) − (d− 1)CAIb(1)
]

CAIb(2) +

+ 4CFTF

[

Ib(1) − If(1)
]

If(2)

}

. (2.25)

We leave out the lengthy expression for Π′
E2(0), as it is not needed in the following.

The bare results need still to be renormalised. The bare gauge coupling is written

as g2
B = g2(µ̄)Zg, where g2(µ̄) is the renormalised gauge coupling, µ̄ is an MS scheme

scale parameter introduced through µ2 ≡ µ̄2eγE/4π, and the combination µ−2εg2(µ̄) is

dimensionless. Denoting

β0 ≡
−22CA + 8TF

3
, (2.26)

β1 ≡
−68C2

A + 40CATF + 24CFTF

3
, (2.27)

the factor Zg reads

Zg = 1 +
1

(4π)2
β0

2ε
µ−2εg2(µ̄) +

1

(4π)4

[

β1

4ε
+
β2

0

4ε2

]

µ−4εg4(µ̄) + O(g6) , (2.28)

and the renormalised gauge coupling satisfies, in the limit ε→ 0,

µ̄
d

dµ̄
g2(µ̄) =

β0

(4π)2
g4(µ̄) +

β1

(4π)4
g6(µ̄) + O(g8) . (2.29)

– 6 –
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To proceed, we first cross-check our results for ΠE against known expressions. After

the fields Ba
0 of EQCD are normalised to their canonical form (cf. eq. (2.6)), (Ba

0B
a
0 )E p2 ≡

(Ba
0B

a
0 )4d p2[1 + Π′

E1(0)]/T , we obtain for the matching coefficient m2
E,

m2
E = g2

B ΠE1(0) + g4
B

[

ΠE2(0) − Π′
E1(0)ΠE1(0)

]

+ O(g6
B) . (2.30)

Inserting eqs. (2.23)–(2.25), the ξ-dependence duly cancels. Re-expanding also g2
B in terms

of the renormalised gauge coupling, and writing then [10]

m2
E ≡ T 2

{

g2(µ̄)
[

αE4 + αE5ε
]

+
g4(µ̄)

(4π)2

[

αE6 + βE2ε
]

+ O(g6, ε2)

}

, (2.31)

we recover the known values of αE4, αE5 and αE6 [10] (for original derivations, see refer-

ence [8] and references therein). We also obtain

βE2 =
1

36
C2

A

{

264 ln2

(

µ̄eγE

4πT

)

+

[

80 − 176γE + 176
ζ ′(−1)

ζ(−1)

]

ln

(

µ̄eγE

4πT

)

+

+ 8 + 11π2 − 88γ2
E − 40γE − 176γ1 + 40

ζ ′(−1)

ζ(−1)

}

+

+CFTF

{

−8 ln

(

µ̄eγE

4πT

)

− 2 −
20

3
ln 2 + 4γE − 4

ζ ′(−1)

ζ(−1)

}

+

+
1

36
CATF

{

168 ln2

(

µ̄eγE

4πT

)

+

[

232 − 432 ln 2 − 112γE + 112
ζ ′(−1)

ζ(−1)

]

ln

(

µ̄eγE

4πT

)

+

+ 28 + 7π2 + 24 ln 2 − 64 ln2 2 − 56γ2
E − 72γE + 128γE ln 2 − 112γ1 +

+ 72
ζ ′(−1)

ζ(−1)
− 128 ln 2

ζ ′(−1)

ζ(−1)

}

+

+
1

9
T 2

F

{

−24 ln2

(

µ̄eγE

4πT

)

+

[

8 − 48 ln 2 + 16γE − 16
ζ ′(−1)

ζ(−1)

]

ln

(

µ̄eγE

4πT

)

+

+ 4 − π2 − 8 ln 2 + 16 ln2 2 + 8γ2
E − 8γE + 32γE ln 2 + 16γ1 +

+ 8
ζ ′(−1)

ζ(−1)
− 32 ln 2

ζ ′(−1)

ζ(−1)

}

. (2.32)

Here γ1 is a Stieltjes constant, defined through the series ζ(s)=1/(s−1)+
∑∞

n=0 γn(−1)n(s−

1)n/n!. (Note that the Euler gamma-constant is γE ≡ γ0.) The result in eq. (2.32), first

obtained in reference [37] by employing the results of reference [8], contributes to the

pressure of hot QCD at O(g6T 4) [10]. We rewrite the expression here, since reference [37]

employed an extremely compactified notation.

We then move to consider the transverse spatial part, ΠT(p2). According to eq. (2.9),

this directly determines the effective gauge coupling:

g2
E = T

{

g2
B − g4

BΠ′
T1(0) + g6

B

[(

Π′
T1(0)

)2
− Π′

T2(0)
]

+ O(g8
B)
}

. (2.33)

Re-expanding again in terms of g2(µ̄), we parameterise the result (following ref. [10]) as

g2
E ≡ T

{

g2(µ̄) +
g4(µ̄)

(4π)2
[

αE7 + βE3ε+ O(ε2)
]

+
g6(µ̄)

(4π)4
[γE1 + O(ε)] + O(g8)

}

. (2.34)
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We recover the known expression [36, 12] for αE7,

αE7 = −β0 ln

(

µ̄eγE

4πT

)

+
1

3
CA −

16

3
TF ln 2 , (2.35)

and obtain the new contributions

βE3 =
1

12
CA

[

88 ln2

(

µ̄eγE

4πT

)

+ 8 ln

(

µ̄eγE

4πT

)

+ 11π2 − 88γ2
E − 176γ1

]

−

−
1

3
TF

[

8 ln2

(

µ̄eγE

4πT

)

+ 32 ln 2 ln

(

µ̄eγE

4πT

)

+ π2 + 16 ln2 2 − 8γ2
E − 16γ1

]

, (2.36)

γE1 = −β1 ln

(

µ̄eγE

4πT

)

+

[

β0 ln

(

µ̄eγE

4πT

)

−
1

3
CA +

16

3
TF ln 2

]2

−

−
1

18

{

C2
A

[

−341 + 20ζ(3)
]

+ 4CATF

[

43 + 24 ln 2 + 5ζ(3)
]

+

+ 6CFTF

[

23 + 80 ln 2 − 14ζ(3)
]

}

. (2.37)

The first one, βE3, constitutes again an O(g6T 4) contribution to the pressure of hot

QCD [10], while the latter one is the desired finite 2-loop correction to the effective gauge

coupling.

3. Numerical evaluation

We wish to compare numerically the 1-loop and 2-loop expressions for g2
E, in the limit

ε → 0. When carrying out such a comparison, it is important to specify the definitions of

the ΛMS-parameters. Following standard procedures, we solve eq. (2.29) exactly at 2-loop

level, and define

ΛMS ≡ lim
µ̄→∞

µ̄
[

b0g
2(µ̄)

]−b1/2b20 exp

[

−
1

2b0g2(µ̄)

]

, (3.1)

where b0 ≡ −β0/2(4π)2, b1 ≡ −β1/2(4π)4. For large µ̄ this leads to the usual behaviour

1

g2(µ̄)
≈ 2b0 ln

µ̄

ΛMS

+
b1
b0

ln

(

2 ln
µ̄

ΛMS

)

. (3.2)

In the 1-loop case, we set b1 ≡ 0 in eqs. (3.1), (3.2).

Through eqs. (2.34), (2.35), (2.37) and (3.2), g2
E is a function µ̄/T and µ̄/ΛMS. The

dependence on µ̄ is formally of higher order than the computation. Numerically, of course,

there is non-vanishing dependence, as illustrated in figure 2.

As usual, one may choose some “optimisation” criterion which should lead to a reduced

µ̄-dependence and thus reasonable convergence. We fix µ̄opt to be the point where the 1-

loop coupling g2
E has vanishing slope (“principal of minimal sensitivity”), cf. figure 2, and

vary then the scale in the range µ̄ = (0.5 . . . 2.0)×µ̄opt around this point. Results are shown

in fig. 3. The µ̄-dependence indeed decreases significantly as we go to the 2-loop level. The

numerical 2-loop value is some 20% smaller than the 1-loop value. It is comforting that

the 2-loop value is on the side to which the “error band” of the 1-loop result points, even

though it does not in general lie within that band.
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Figure 2: A comparison of 1-loop and 2-loop values for g2
E/T , as a function of µ̄/T , for a fixed

T/ΛMS = 2.0 and Nf = 0, 2, 3.
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Figure 3: The 1-loop and 2-loop values for g2
E/T , as a function of T/ΛMS (solid lines). For each

T the scale µ̄ has been fixed to the “principal of minimal sensitivity” point µ̄opt following from the

1-loop expression, and varied then in the range µ̄ = (0.5 . . . 2.0) × µ̄opt (the grey bands).

4. Spatial string tension

The computations in the previous sections can be given a “phenomenological” application,

by considering lattice measurements of the so-called spatial string tension. The spatial

string tension is obtained from a rectangular Wilson loop Ws(R1, R2) in the (x1, x2)-plane,

of size R1 ×R2. The potential Vs(R1) is defined through

Vs(R1) = − lim
R2→∞

1

R2
lnWs(R1, R2) , (4.1)

and the spatial string tension σs from the asymptotic behaviour of the potential,

σs ≡ lim
R1→∞

Vs(R1)

R1
. (4.2)

Since σs has the dimensionality GeV2, it is often expressed [22] as the combination

√
σs

T
= φ

( T

Tc

)

, (4.3)

where φ is a (decreasing) dimensionless function, and Tc is the critical temperature of the

deconfinement phase transition.
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We now turn to how the result for g2
E that we have obtained in this paper, combined

with other ingredients, allow us to obtain an independent prediction for the spatial string

tension.

4.1 Three-dimensional prediction

The very same observable as in eq. (4.1), exists also in 3d SU(3) gauge theory, or “Magne-

tostatic QCD” (MQCD). Since the gauge coupling g2
M of MQCD is dimensionful, σs must

have the form σs = c × g4
M, where c is a numerical proportionality constant. It has been

determined with lattice Monte Carlo methods most recently in reference [24] where, after

the continuum extrapolation, it was expressed as

√
σs

g2
M

= 0.553(1) . (4.4)

In order to compare eqs. (4.3), (4.4), we need a relation between T and g2
M. In the

previous section, we obtained a relation between T and g2
E. The relation between g2

E and

g2
M is also known, up to 2-loop order [25]:2

g2
M = g2

E

[

1 −
1

48

g2
ECA

πmE
−

17

4608

(

g2
ECA

πmE

)2]

, (4.5)

where the 1-loop part was determined already in reference [26].

It is worth stressing that the corrections in eq. (4.5) are in practice extremely small,

even for values of mE/g
2
E corresponding to temperatures very close to the critical one. (For

Nc = 3 and Nf = 0, (mE/g
2
E)2 ≈ 0.32 log10(T/ΛMS) + 0.29.) This seems by no means

obvious a priori, given the observed slow convergence in the case of the vacuum energy

density of EQCD [10]. In view of this fact, however, we can safely ignore all higher loop

corrections in eq. (4.5).

Another source of errors in going from EQCD to MQCD are the higher order operators

that have been truncated from the action of MQCD. As discussed in reference [10], they

are expected to contribute at the relative order O(g6
E/m

3
E), i.e. at the same order that

3-loop corrections enter eq. (4.5). From this consideration, one might expect them to

again be numerically negligible. In principle one could avoid this assumption, however:

the ratio
√
σs/g

2
E has been estimated in reference [17] through direct numerical simulations

in EQCD. Unfortunately the statistical and particularly the systematic errors appear to

be non-vanishing (no continuum extrapolation was carried out for this quantity), so that

we prefer to follow the line starting from eq. (4.4) in the following. Nevertheless it would

be interesting to learn more about the importance of the higher order operators.

Now, as we know g2
E/T as a function of T/ΛMS from fig. 3, eqs. (4.4) and (4.5) allow

us to obtain
√
σs/T as a function of the same variable. In order to compare with eq. (4.3),

however, we still need to relate ΛMS to Tc. This problem has also been addressed with 4d

lattice simulations, as we review in section 4.2.

2The 2-loop correction δg2
M/g2

E = −g2
ECA[2(CACF + 1)λ

(1)

E + (6CF − CA)λ
(2)

E ]/384(πmE)2 was ignored

in reference [25], as it is of higher order according to 4d power counting and numerically insignificant.
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4.2 Critical temperature in “perturbative units”

The determination of Tc/ΛMS is a classic problem in lattice QCD. Two main lines have

been followed, one going via the zero temperature string tension
√
σ, the other via the

Sommer scale r0 [38].

Values obtained for Tc/
√
σ by various lattice collaborations are summarised in ref-

erence [39], Table 7. Traditionally the values were around Tc/
√
σ = 0.630(5) [40], but

reference [39] argues in favour of a slightly larger number in the continuum limit. Indeed

the most precise estimate appears to come from reference [41], where Tc/
√
σ = 0.646(3) is

cited. Combining with ΛMS/
√
σ = 0.555(19) from reference [42], we are lead to

Tc

ΛMS

= 1.16(4) . (4.6)

The error is dominated by the one in ΛMS/
√
σ.

A value for r0Tc, on the other hand, has been obtained in reference [43]: r0Tc =

0.7498(50). Combining with r0ΛMS = 0.602(48) from reference [44] (the value r0ΛMS =

0.586(48) from a few lines below eq. (4.11) in reference [45] is well within error bars), one

obtains
Tc

ΛMS

= 1.25(10) . (4.7)

This is consistent, within statistical errors, with eq. (4.6), if favouring a slightly larger

central value. Again the error is dominated by the zero-temperature part, r0ΛMS in this

case. In general it might be expected, though, that systematic uncertainties are better

under control in the extraction of r0 than of
√
σ, since the static potential needs to be

computed only up to intermediate distances.

Apart from going through
√
σ and r0, there is also a third possibility [46]. It is based

on directly determining a (lattice) Λ-parameter from the scaling of a suitably defined

renormalised gauge coupling at the critical point, and converting at the end to the MS

scheme. The value obtained is
Tc

ΛMS

= 1.15(5) , (4.8)

consistent with eqs. (4.6) and (4.7).

To be conservative, we will consider the interval Tc/ΛMS = 1.10 . . . 1.35 in the following,

encompassing the central values as well as the error bars of eqs. (4.6)–(4.8).

4.3 Four-dimensional measurement

The spatial string tension of 4d pure SU(3) gauge theory at temperatures above the critical

one, as a function of T/Tc, has been measured at Nτ = 8 in reference [22] (cf. figure 11).

There are, of course, systematic uncertainties, both from the lack of a continuum extrap-

olation as well as from how the string tension is extracted by fitting to the large-distance

behaviour of the static potential. Nevertheless, we expect that the results are in the right

ballpark.

Given the considerations in sections 4.1, 4.2, we can thus compare the 3d and the 4d

determinations of
√
σs/T . The result is shown in fig. 4, where T/

√
σs is plotted. We observe

– 11 –
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Figure 4: We compare 4d lattice data for the spatial string tension, taken from reference [22], with

expressions obtained by combining 1-loop and 2-loop results for g2
E together with eq. (4.5) and the

non-perturbative value of the string tension of 3d SU(3) gauge theory, eq. (4.4). The upper edges

of the bands correspond to Tc/ΛMS = 1.35, the lower edges to Tc/ΛMS = 1.10.

a significant discrepancy at 1-loop level (as most recently pointed out in reference [23]),

but a remarkable agreement once we go to 2-loop level. It is also noteworthy that the

functional form of the 2-loop curve appears to match the behaviour of the lattice data

down to low temperatures.

5. Conclusions

The main purpose of this paper has been the analytic computation of the 2-loop effective

gauge coupling of QCD at finite temperatures, defined as a matching coefficient appearing

in the dimensionally reduced effective theory, EQCD.3 The result is given in eqs. (2.34)–

(2.37). We have also determined a new contribution of order O(g6T 4) to the pressure of

hot QCD; the information is contained in eq. (2.36), and how it enters the pressure is

explained in reference [10].

The 2-loop correction we find is numerically substantial, some 20% of the 1-loop ex-

pression. This indicates that while perturbation theory is in principle still under control,

if restricted to the parametrically hard modes p ∼ 2πT only, it is important to push it to

a sufficiently high order, in order to obtain precise results.

Our expression for the effective gauge coupling has a direct “phenomenological” appli-

cation, in that it allows for a parameter-free comparison of 3d MQCD and 4d full theory

results for an observable called the spatial string tension. We find that the 2-loop correc-

tion computed here improves the match between the two results quite significantly, down

3Other “effective gauge couplings” can of course also be defined; for a recent review, see reference [47].

The difference is that in these cases all momentum scales influence the effective gauge coupling, so that

perturbation theory cannot be reliably applied for its computation.
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to temperatures very close to the critical one. A small discrepancy still remains but, given

that no continuum extrapolation was taken in 4d lattice simulations, that the extraction

of the spatial string tension may involve systematic uncertainties due to large subleading

terms in the r-dependence of the spatial static potential Vs(r) [48], and that there also has

to be some room for residual 3-loop corrections, as well as improvements in the matching

between EQCD and MQCD, we do not consider this discrepancy to be worrying. We do

believe that the discrepancy can be decreased by improving systematically on the various

ingredients that enter the comparison.

These conclusions support a picture of thermal QCD according to which the paramet-

rically “hard” scales, p ∼ 2πT , can be treated perturbatively, almost as soon as we are in

the deconfined phase, will the parametrically “soft” scales, p ∼ gT, g2T , require in general

a non-perturbative analysis within one of the effective theories describing their dynamics.

For the observable we considered here, in fact, even the colour-electric scale p ∼ gT could

be integrated out perturbatively, but it is known that this is in general not the case. We

should like to stress that this conclusion is rather non-trivial, as there numerically is little

hierarchy between the scales 2πT, gT, g2T at the realistic temperatures that we have been

considering.
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A. Expansions for master integrals

Using the notation introduced in the text, the master integrals of eq. (2.17) read, up to

O(ε):

Ib(1)=µ
−2εT

2

12

{

1 + ε

[

2 ln

(

µ̄eγE

4πT

)

+ 2 − 2γE + 2
ζ ′(−1)

ζ(−1)

]}

, (A.1)

Ib(2)=µ
−2ε 1

(4π)2

{

1

ε
+ 2 ln

(

µ̄eγE

4πT

)

+ ε

[

2 ln2

(

µ̄eγE

4πT

)

+
π2

4
− 2γ2

E − 4γ1

]}

, (A.2)

Ib(3)=µ
−2ε ζ(3)

128π4T 2

{

1 + ε

[

2 ln

(

µ̄eγE

4πT

)

+ 2 − 2γE + 2
ζ ′(3)

ζ(3)

]}

, (A.3)

If(1)=µ
−2ε

(

−
T 2

24

){

1 + ε

[

2 ln

(

µ̄eγE

πT

)

+ 2 − 6 ln 2 − 2γE + 2
ζ ′(−1)

ζ(−1)

]}

, (A.4)

If(2)=µ
−2ε 1

(4π)2

{

1

ε
+ 2 ln

(

µ̄eγE

πT

)

+ε

[

2 ln2

(

µ̄eγE

πT

)

+
π2

4
− 4 ln2 2 − 2γ2

E−4γ1

]}

, (A.5)

If(3)=µ
−2ε 7ζ(3)

128π4T 2

{

1 + ε

[

2 ln

(

µ̄eγE

πT

)

+ 2 −
12

7
ln 2 − 2γE + 2

ζ ′(3)

ζ(3)

]}

. (A.6)
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1. Introduction

Higher-order perturbative computations have become a necessity in many areas of theo-

retical physics, be it for high-precision tests of QED, QCD and the standard model, or for

studying critical phenomena in condensed matter systems.

Most recent investigations employ a highly automated approach, utilizing algorithms

that can be implemented on computer algebra systems, in order to handle the growing

numbers of diagrams as well as integrals which occur at higher loop orders.

Computations can be divided into four key steps. First, the complete set of diagrams

including symmetry factors has to be generated. For a detailed description of an algo-

rithm for this step for the case of vacuum topologies, see ref. [1]. Second, after specifying

the Feynman rules, the color- and Lorentz-algebra has to be worked out. Third, within

dimensional regularization, massive use of the integration-by-parts (IBP) technique [2] to

derive linear relations between different Feynman integrals in conjunction with an ordering

prescription [3] can be used to reduce the (typically large number of) integrals to a basis

of (typically a few) master integrals. Practical notes as well as a classification of vacuum

master integrals are given in ref. [4]. Fourth, the master integrals have to be solved, either

fully analytically, or in an expansion around the space-time dimension d of interest. It is

the fourth step that we wish to address here.

– 1 –
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A very important subset of master integrals are fully massive vacuum (bubble) inte-

grals, since they constitute a main building block in asymptotic expansions (see e.g. ref. [5]).

They are also useful for massless theories, when a propagator mass is introduced as an in-

termediate infrared regulator [6]. In four dimensions, this class of master integrals has been

given up to the 4-loop level in ref. [7]. As an application, these integrals are vital for com-

puting the 4-loop QCD beta-function and anomalous dimensions [8]. In lower dimensions,

perturbative results are needed for applications in condensed matter systems, as well as

in the framework of dimensionally reduced effective field theories for thermal QCD, where

recent efforts have made four-loop contributions an issue [9]. We have recently extended

the work of ref. [7], to give the complete set of fully massive vacuum master integrals in

three dimensions, again up to the 4-loop level [10].

The next larger set of scalar vacuum master integrals are those in which there is only

one mass-scale m, i.e. the propagators 1/(p2
i + m2

i ) have masses mi ∈ {0,m}. These

integrals are needed for problems with widely separated mass scales, in which one then

sets the masses of all heavy particles to m and those of all light particles to zero. As a

well-defined subset of these single-mass-scale integrals, we here treat ‘QED-type’ vacuum

integrals, i.e. those with an even number of massive lines at each vertex, at the 4-loop level.

A recent application is in the computation of heavy-quark vacuum polarization [11].

The complete set of ‘QED-type’ vacuum master integrals up to the 4-loop level has

already been identified in ref. [4]. The main purpose of this work is to numerically compute

this set in terms of a high-precision ε-expansion in d = 4 − 2ε dimensions, and to present

new analytic results for some low-order (in ε) coefficients. Furthermore, we have made

an attempt to collect all presently known analytic results on 4d single-mass-scale vacuum

integrals, up to four loops, in a coherent notation.

The plan of the paper is as follows. In section 2, we give a brief review of the method

of difference equations applied to vacuum integrals. In section 3, we discuss the actual

implementation of the algorithm. In section 4, we display our numerical results for the

truncated power series expansions in ε of our master integrals, up to the four-loop level,

in d = 4 − 2ε. In section 5, we discuss one case of a master integral which we needed

to solve via a Laplace transform of its difference equation. In section 6, we list analytic

results [12].

2. The evaluation of master integrals through difference equations

The method we have chosen to compute the coefficients of the truncated power series

expansions of the master integrals is based on constructing difference equations for the in-

tegrals and then solving them numerically using factorial series. This approach has recently

been developed in ref. [3], and below we briefly summarize its basic concepts following the

notation of the original paper, which contains a much more detailed presentation of the

subject. While the method is completely general as it applies to arbitrary kinematics,

masses and topologies [13], our brief summary is somewhat adapted to the specific case of

vacuum integrals.
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The main idea is to attach an arbitrary power x to one of the massive1 lines of a master

integral U ,

U(x) ≡

∫

1

Dx
1D2 · · ·DN

, (2.1)

where the Di = (p2
i +m

2
i ) denote inverse scalar propagators. In our case the mass parameter

mi has only two values, 0 and m, the latter of which we set to 1, noting that it can be

restored in the end as a trivial dimensional pre-factor of each integral. The original master

integral is then just U = U(1). Depending on the symmetry properties of the integral,

there can be different choices for the ‘special’ line with the arbitrary power x, but in the

limit x = 1 they all reduce to the original master integral U . This degeneracy can (and

will later) be used for non-trivial checks of the method.

Employing IBP identities in a systematic way, it is possible to derive a linear difference

equation obeyed by the generalized master integral U(x),

R
∑

j=0

pj(x)U(x+ j) = F (x) , (2.2)

where R is a finite positive integer and the coefficients pj are polynomials in x (and the

space-time dimension d). The function F on the r.h.s. is a linear combination of functions

analogous to U(x) but derived from ‘simpler’ master integrals, i.e. integrals containing a

smaller number of loops and/or propagators.

The general solution of this kind of an equation is the sum of a special solution to the

full equation, U0(x), and the solutions to the homogeneous equation (F = 0),

U(x) = U0(x) +

R
∑

j=1

Uj(x) , (2.3)

where each (j = 0, . . . , R)

Uj(x) = µxj

∞
∑

s=0

aj(s)
Γ(x+ 1)

Γ(x+ 1 + s−Kj)
(2.4)

is a factorial series.2 Substituting this form into eq. (2.2), one obtains the coefficients µj and

Kj (the latter being a function of d), as well as recursion relations for the x-independent

coefficients aj(s) (being functions of d as well) for each solution. For the homogeneous

solutions, these recursion relations relate all coefficients with s > 0 to their (in principle

arbitrary) value at s = 0, aj(s) = cj(s) aj(0), where the cj(s) are rational functions of d.

For the special solution, all a0(s) are on the other hand completely fixed in terms of the

inhomogeneous part F (x), consisting of ‘simpler’ integrals which are assumed to be already

known in terms of their factorial series expansions.

1The massiveness is crucial in order to avoid problems with the infrared behavior of the integral.
2For a rigorous definition of the concept as well as a motivation for this kind of an Ansatz, we refer the

reader to ref. [3].
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What clearly remains to be done is to fix the x- and s-independent constants aj(0),

j 6= 0, in order to determine the weights of the different homogeneous solutions. To this

end, it is most useful to study the behavior of U(x) at large x. Writing the integral in the

form

U(x) =

∫

1

(p2
1 + 1)x

g(p1) , (2.5)

it is easy to see that its large-x behavior is determined by the small-momentum expansion

of the two-point function g(p1), which has one loop less than the original vacuum integral.

In the case of integrals for which the limit g(0) is well-defined and non-zero, the cal-

culation becomes particularly simple. Then the large-x limit of U(x) factorizes into a

one-loop bubble carrying the large power x and a lower-loop vacuum bubble g(0), which

corresponds to U(x) with its ‘special’ line cut away,

lim
x→∞

U(x) =

[
∫

1

(p2
1 + 1)x

]

×

[

g(0)

]

∼ (1)xx−d/2g(0) . (2.6)

A comparison with the large-x behavior of eqs. (2.3), (2.4), proportional to
∑

j µ
x
j aj(0)xKj ,

can now be used to fix the aj(0), of which maximally one will turn out to be non-zero for

our set of integrals.

If on the other hand g(0) = 0, the treatment of the small-p1 limit of this function

becomes more involved. Fortunately, the massless lines of the sub-diagram — which were

responsible for the vanishing of its value at zero external momentum in the first place —

also make its analytic evaluation more straightforward. Performing a careful analysis of

the subgraph, one always ends up with an integral of the type

lim
x→∞

U(x) ∼

∫

(p2
1)α

(p2
1 + 1)x

, (2.7)

from which the calculation proceeds just as above providing us with the values of the aj(0).

Having the full solution at hand, we have in principle completed our task, as in the limit

x = 1 we recover from U(x) the value of the initial integral. Let us, however, add a couple

of practical remarks here. What is still to be done is to perform the summation of the

factorial series of eq. (2.4), which in practice means truncating the infinite sum at some large

but finite smax. Studying the convergence behavior of these sums, one notices that even

in the cases where they do converge down to x ∼ 1, their convergence properties usually

strongly decline with decreasing x. This means that in practical computations, where one

aims at obtaining a maximal number of correct digits for U(1) with as little CPU time as

possible, the optimal strategy is to evaluate the integrals U(xmax + 1), . . . , U(xmax + R)

with the factorial series approach at some xmax À 1 and then use the recurrence relation

of eq. (2.2) to obtain the desired result at x = 1. The price to pay is, however, a loss

of numerical accuracy at each ‘pushdown’ (x → x− 1) step due to possible cancellations,

which makes the use of a very high xmax impossible. In practice the strategy is to determine

an optimal value for the ratio smax/xmax. To give an example, for the four-loop integrals of

section 4 we have found that smax/xmax ∼ 20 . . . 40 is a good value, while we used a range

– 4 –
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of smax ∼ 2000 . . . 2500. For a few special cases, for which additional numerical problems

emerged, we were forced to limit the value of the parameters to roughly smax ∼ 200 and

xmax ∼ 30, which decreased the accuracy of the results significantly.

3. Implementation of the algorithm

As is apparent from the preceding section, there are three main steps involved in obtaining

the desired numerical coefficients in the ε-expansion of each master integral: deriving the

difference equations obeyed by each integral, solving them in terms of factorial series,

and finally performing the ε-expansion and numerically evaluating the sum of eq. (2.4)

(truncated at smax) to the precision needed. We will briefly address each of them in the

following.

For the first step, we slightly generalized the IBP algorithm we had used for reducing

generic 4-loop bubble integrals to master integrals, which follows the setup given in ref. [3],

and whose implementation in FORM [14] is documented in ref. [4]. The main difference

is an enlarged representation for the integrals, keeping track of the line which carries the

extra powers x, as well as the fact that there are now two independent variables (d, x),

requiring factorization (and inversion) of bivariate polynomials, as opposed to univariate

polynomials in the original version.

Second, staying within FORM for convenience, we implemented routines that straight-

forwardly solve the difference equations in terms of factorial series, along the lines of ref. [3].

This is done starting with the simplest one-loop master integral, and working the way up

to the most complicated (most lines) four-loop integral, ensuring that at each step, the

‘simpler’ terms constituting the inhomogeneous parts of the difference equation are al-

ready known. The output are then plain ascii files specifying each solution in the form of

eq. (2.4) as well as containing recursion relations for the coefficients a(s). Note that these

first two steps are performed exactly, in d dimensions.

Third, once the recursion relations for the coefficients a(s) were known, we used a

Mathematica program to obtain their numerical values at each s to a predefined precision,

and to perform the summation of the factorial series. While this procedure is in principle

straightforward, there are some twists that we employed to help reduce the running times

significantly, most of which are probably quite specific to our use of Mathematica. To avoid

a rapid loss of significant digits in solving the recursion steps that relate each a(s) to a(0),

especially those for the homogeneous coefficients, we first solved the relations analytically

and only in the end substituted the numerical value (actually the truncated ε-expansion) of

the first non-zero coefficient. In fact, we found Mathematica to operate quite efficiently with

operations like multiplication of two truncated power series, so that we relied heavily on it.

Furthermore, since — not surprisingly — the most time-consuming part in the summation

of the series turned out to be the ε-expansion of Γ-functions, we achieved a notable speed-up

by substituting the Γ-functions with large arguments by suitable products of linear factors

times Γ-functions of smaller arguments. Finally, a vital step in avoiding an excessive loss

in the depth of the ε-expansions when going from one integral to the next, was to apply

the ‘Chop’ command to remove from the results and coefficients excess unphysical poles,
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whose coefficients were of the order of, say, 10−50 or less. In some cases we were in addition

able to reduce the loss of precision in the pushdown steps by first analytically solving U(1)

as a function of U(xmax), and only in the very end substituting the numerical value of the

latter.

4. Numerical results

Below we list the Laurent expansions in ε = (4 − d)/2 of vacuum master integrals up to

four loops. We use an intuitive graphical notation, in which each solid line represents a

massive scalar propagator 1/(p2 + 1) and a dashed line a massless one 1/p2. The integral

measure we have chosen here is
∫

p
≡

1

Γ(2 + ε)

∫

d4−2εp

π2−ε
, (4.1)

which implies that the 1-loop tadpole is J =
∫

p
1

p2+1
= −1

ε(1−ε2)
= −

∑∞
n=0 ε

2n−1. In each

case we provide the results to order ε10 keeping the accuracy at 50 significant digits for the

2- and 3-loop master integrals and at 40 for the 4-loop ones. There are two exceptions. For

one of the 3-loop integrals (see eq. (4.6) below) the factorial series does not converge and

hence the integral has to be treated by Laplace transform, see section 5. For one of the

4-loop integrals (see eq. (4.14) below) we only give the first seven ε-orders to 17 significant

digits. To obtain more ε-orders and significant digits for all integrals listed here is merely

a matter of additional CPU time.

We have produced numerical results for all single-mass-scale vacuum master integrals

up to three loops (these are the master integrals entering the package of Avdeev [15]

and MATAD [16]), and for all ‘QED-type’ vacuum master integrals at four loops. Here,

we display only those numerical results which correspond neither to analytically solvable

integrals (1 of 1 1-loop master, 1 of 2 2-loop masters, 3 of 12 3-loop masters, 2 of 10 4-loop

masters, all of which are given analytically in section 6 below, and are listed in numerical

form in the appendix), nor to fully massive cases (1 of 2 2-loop masters, 3 of 12 3-loop

masters, which are given in section 9.3.1 of ref. [3]; 1 of 10 4-loop masters, which is given

in eq. (4) of ref. [7]).

= + 1.0000000000000000000000000000000000000000000000000 ε−3 +

+ 0.75000000000000000000000000000000000000000000000000 ε−2 +

+ 2.8750000000000000000000000000000000000000000000000 ε−1 +

+ 1.8362912870512825038535151499626234054646567716807 −

− 26.427828097688527267319254765120590367456377175480 ε−

− 35.088051385481306364065961402117419432373775682177 ε2 −

− 512.75537623727044689027104289971864365971796649684 ε3 −

− 607.61494953927726782115473332930225595551912885034 ε4 −

− 5868.5987295458313170081280447224279031237930577453 ε5 −
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− 6835.6108788455114123641492279253803965001408075543 ε6 −

− 58194.090725773231428299235587057139067942816045554 ε7 −

− 67435.335245041201792055506063164867635607825896649 ε8 −

− 546094.78026628005592146280450252032502449454982782 ε9 −

− 631563.41278231233491152773645513360004834876043263 ε10 +

+O
(

ε11
)

(4.2)

= − 0.66666666666666666666666666666666666666666666666667 ε−3 −

− 1.6666666666666666666666666666666666666666666666667 ε−2 −

− 5.1290732088140381005700717333376095855758453867530 ε−1 −

− 26.359970069205366659319388577532454678949629074714 −

− 27.711175418518951962132692178901111387631205211816 ε−

− 293.15661097603756640443665077615751632698451158842 ε2 −

− 142.70296384808301760189570443963964069968530061393 ε3 −

− 2882.1838924952422595902727649575335612132315437366 ε4 −

− 801.64629651874722343778241421866459175486305997074 ε5 −

− 26947.975116190322227046885628024191588708203470044 ε6 −

− 5202.1954102253813787831194867097139379256134207497 ε7 −

− 246612.58893683893330836716807041349553641918919392 ε8 −

− 38662.312198716830334636275721442722552625311137805 ε9 −

− 2235893.9169450155346378997842831790622571843918826 ε10 +

+O
(

ε11
)

(4.3)

= + 2.4041138063191885707994763230228999815299725846810 ε−1 −

− 13.125546202841586242894146861604104971473328745577 +

+ 58.026260003878655576719786597271170572487856789112 ε−

− 215.15799420773251496754795359758001229751012774168 ε2 +

+ 741.02167568175382570477503744319405056068752490840 ε3 −

− 2422.8745603243623464433277838674972111388328822910 ε4 +

+ 7691.0946660371679072096695375419004253731139722117 ε5 −

− 23935.477541938694107878632636617038283240279946231 ε6 +

+ 73567.948130076321368433008921329180208448045889323 ε7 −

− 224259.22429731742234354745849077250951082319381698 ε8 +

+ 679949.06185664528482517935972319009053625673803897 ε9 −

− 2054250.6137900838709156880585181458050495843111626 ε10 +

+O
(

ε11
)

(4.4)
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= + 2.4041138063191885707994763230228999815299725846810 ε−1 −

− 10.073203643096893062671213536841941862151359216063 +

+ 46.082030897278984204342981632818973100797752268016 ε−

− 162.84321571472549604685427998929495247564452607777 ε2 +

+ 563.02541599052549921690912303391142482056503193963 ε3 −

− 1822.8278416039379661792322993085062379900421439244 ε4 +

+ 5785.9815122286472118701238800303861843636492370028 ε5 −

− 17968.847688521304415691142884872355494614421789034 ε6 +

+ 55216.376506037509642111329809657803343085975716148 ε7 −

− 168240.56307714987438328576061703042187348961355271 ε8 +

+ 510052.27830760883492002666904963035268124951366379 ε9 −

− 1540802.7858406456522499592944279183737583148997338 ε10 +

+O
(

ε11
)

(4.5)

= + 2.40411380631919 ε−1 − 6.09209302191832 +

+ 35.8130598712514 ε− 104.744695525740 ε2 +

+ 394.7643404810 ε3 − 1200.978166746 ε4 +O
(

ε5
)

(4.6)

= + 2.4041138063191885707994763230228999815299725846810 ε−1 −

− 10.239350912945217732184803670827657230740659540460 +

+ 46.310233388509835938575195677581891346572247104081 ε−

− 163.71903666846274587940160817767510251267798801563 ε2 +

+ 564.30910069499791449917891053192483169414448523830 ε3 −

− 1825.8206691490586101339592917414250683553208417056 ε4 +

+ 5790.4830503256226500389801844087331481909799175043 ε5 −

− 17977.329926014373828927297954140399343188401436964 ε6 +

+ 55229.228709840982549894271961274899889724333654202 ε7 −

− 168262.33984881039469900336415583383277506556682677 ε8 +

+ 510085.27212468040781599787353617454516173782111015 ε9 −

− 1540855.6379207615212777547545938657889645397412471 ε10 +

+O
(

ε11
)

(4.7)

= − 1.000000000000000000000000000000000000000 ε−4 −

− 0.500000000000000000000000000000000000000 ε−3 −

− 3.527777777777777777777777777777777777778 ε−2 −

− 1.995370370370370370370370370370370370370 ε−1 −

− 36.82021604938271604938271604938271604938 −

− 19.87920801451107035069575635156380101575 ε−
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− 1809.001126638637160933894507798781706682 ε2 −

− 941.2486498215135407529753614624254521594 ε3 −

− 49114.80404240275263940837370626747663512 ε4 −

− 25712.87944658606239888301931387195377680 ε5 −

− 1014742.540337323108931396794699794706304 ε6 −

− 533925.9315185165221824312193117157135164 ε7 −

− 18513953.44519328478360685998151320048728 ε8 −

− 9769845.146715270007449428486953016122496 ε9 −

− 317669932.9515691976277658362596784695115 ε10 +O
(

ε11
)

(4.8)

= + 0.2500000000000000000000000000000000000000 ε−4 +

+ 0.5000000000000000000000000000000000000000 ε−3 +

+ 1.000000000000000000000000000000000000000 ε−2 +

+ 1.813369870537362855098298049824424939972 ε−1 −

− 113.8224542836131461311762552843948945680 −

− 33.70692008121875082746730709549318292582 ε−

− 3800.131177952398833364468086486701310324 ε2 −

− 724.2483980459868435529785916706580415218 ε3 −

− 83243.75114211351557600351242603548310943 ε4 −

− 9962.244874731471054690629554209449745080 ε5 −

− 1556494.392681571176934758495668112116219 ε6 −

− 125852.9269007094630774780949002157883896 ε7 −

− 27026768.74324139691004925806420463865625 ε8 −

− 1619900.985945231199760429618558131115494 ε9 −

− 451968203.1707264233126870326577507342793 ε10 +O
(

ε11
)

(4.9)

= + 0.6666666666666666666666666666666666666667 ε−4 +

+ 1.333333333333333333333333333333333333333 ε−3 +

+ 3.333333333333333333333333333333333333333 ε−2 −

− 2.922363183148830477868063138605600049253 ε−1 −

− 52.50529739842769756973487794955803028226 −

− 622.1548972708590376012515685880304077291 ε−

− 1741.392944346262052260405956917114927201 ε2 −

− 17196.12685330902582768340098554237636824 ε3 −

− 35037.76438140725371856293904191777384497 ε4 −

− 350040.6052285494016783912074340410365119 ε5 −

− 619669.7756160060500505884016704452111642 ε6 −
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− 6316632.078794015469602341973684043315269 ε7 −

− 10420684.66626276045383010214928284087492 ε8 −

− 107682720.9936656086807201002498313447872 ε9 −

− 171175743.7334785889316026497774359587050 ε10 +O
(

ε11
)

(4.10)

= − 0.1666666666666666666666666666666666666667 ε−4 −

− 0.8333333333333333333333333333333333333333 ε−3 −

− 5.535390236492927618733071494844783324098 ε−2 −

− 18.82211358179364443034084677047078519365 ε−1 −

− 25.33131709639103630297934297632219102642 −

− 692.6253681383859207802291611352811358818 ε+

+ 1304.406827189023173835521731683389467596 ε2 −

− 17597.62761742767175796342110253040416842 ε3 +

+ 43608.68478725040973761321535022863250602 ε4 −

− 356925.7947952212585233385307804100264907 ε5 +

+ 939175.5208936133499000732308171881559393 ε6 −

− 6467516.567931160982387324881460909595434 ε7 +

+ 17364082.00316543469946942544036134544207 ε8 −

− 110630064.0504718962799294108969364410321 ε9 +

+ 299555848.2967199841801845664112146544429 ε10 +O
(

ε11
)

(4.11)

= − 0.1666666666666666666666666666666666666667 ε−4 −

− 0.8333333333333333333333333333333333333333 ε−3 −

− 4.934361784913130476033202414089058328716 ε−2 −

− 16.20728580177089935860423675579773428042 ε−1 −

− 66.26045267088253719950145322703822192330 −

− 375.8131807648258568590885739785987842170 ε−

− 558.8684980291056611497739327005648555056 ε2 −

− 8005.909258052308131324607228836046381631 ε3 −

− 1919.455472313357401527573620257269458394 ε4 −

− 151678.4473872174906037102434226085312395 ε5 +

+ 45367.13703676553118943884640644928312337 ε6 −

− 2666691.771475554201053771443874777744895 ε7 +

+ 1469487.259313641787542428480707831779115 ε8 −

− 44948193.38776277686896804573212402472750 ε9 +

+ 30458142.54983328875970186426762508169587 ε10 +O
(

ε11
)

(4.12)
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= + 5.184638775716849631656827432285170840285 ε−1 −

− 43.27615856932464061120186605318440014787 +

+ 281.6878028207571441503294898731325032572 ε−

− 1513.439498357334510783856768928671867962 ε2 +

+ 7425.188218180801392788420314778806091908 ε3 −

− 34157.28328369996440389044714608216014037 ε4 +

+ 150927.1863992836861076852919478736657397 ε5 −

− 648212.2200729992344766408701706025837197 ε6 +

+ 2730180.324952706549742379412290749026850 ε7 −

− 11339683.06464037751511038174569497508966 ε8 +

+ 46630964.11789747669532801502683952077042 ε9 −

− 190369535.4103429881202484621694879170262 ε10 +O
(

ε11
)

(4.13)

= + 1.80887954620833474 − 12.7814836099524403 ε+

+ 71.046049240835262 ε2 − 334.59648933739741 ε3 +

+ 1467.5837602507405 ε4 − 6165.5621168597119 ε5 +

+ 25329.619267580422 ε6 +O
(

ε7
)

(4.14)

Just as in the three-dimensional case [10], we have performed various checks on our

results. These can be divided into two categories: first, we had to make sure that the

difference equation, eq. (2.2), as well as the various parts of its solution, eqs. (2.3), (2.4),

were in principle correct, and second, that we have reached the desired accuracy in the

numerical part of our computation. For the first task, it was in general enough to ensure

that the first few ε-orders we obtained for each integral coincided with the existing analytic

results. Here the main difference to our previous three-dimensional computation laid in

the fact that while at d = 3− 2ε most of the integrals were either finite or their expansions

started with a 1/ε term, we now encountered in many cases (often analytically calculable)

divergent terms up to 1/ε4 order. The analytic results relevant to our graphs that we have

found in the literature, as well as a few new ones, are collected in section 6. We have found

agreement in all cases.

The comparisons with existing analytic results also provide an easy and reliable method

to inspect the accuracy of the numerical results, since the number of correct digits usually

stays roughly constant when moving from one ε-order to the next. Just as in our previ-

ous work [10], other methods we have employed to assess the accuracy question include

comparing the results obtained by raising topologically inequivalent lines in a single in-

tegral to a higher power and analyzing the convergence properties of the factorial series,

i.e. checking the stability of our results with respect to varying smax. The results given

in the preceding section have been observed to be stable to at least the number of digits

shown.

One might be concerned about the rapid growth with increasing ε-orders of most of

the coefficients. This is, as was pointed out in ref. [7], caused by poles that the integrals
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(seen as functions of d) develop near d = 4, e.g. at d = 7/2, 3, etc. It is to be expected

that factoring out the first few of these nearby poles in each case will improve the apparent

convergence in ε considerably.

In principle, having a method at hand that is capable of generating coefficients to

very high accuracy, even to a couple of hundred digits, one could now use the algorithm

PSLQ [17] combined with an educated guess of the number content of some of the yet-

unknown constant terms, in order to search for analytic representations of the numerical

results. We have not made any systematic attempts in that direction, since the numerical

accuracy of our results should be sufficient for all practical purposes. However, for a few

leading coefficients we have successfully applied this method. The analytic values are given

in section 6.

5. Laplace transform

As already mentioned in the above, we have encountered one case where the method of

computing the ε-expansion via a factorial series representation does not work (or, more

precisely, does not converge), namely for the 3-loop integral of eq. (4.6). Let us take this

specific example as an opportunity to finally display a difference equation like eq. (2.2) in

full detail and exhibit, following ref. [3], one method other than factorial series to solve it.

Defining the integral

M2(x) ≡

x

=

x

J3

2d−2Γ(1
2 )

Γ(3−d
2 )Γ(d2 )

, (5.1)

where the dot with the label x means that the corresponding propagator is raised to the

x-th power, the difference equation eq. (2.2) it satisfies is of second order and reads

0 = −2(x+ 1)M2(x+ 2) + 3

(

x+ 2−
d

2

)

M2(x+ 1)− (x+ 3− d)M2(x) +

+
Γ(x+ 5− 3d

2 )

Γ(x+ 1)

3− d

Γ(5− 3d
2 )
M2(0) +

Γ(x+ 3− d)

Γ(x+ 1)

1

Γ(2− d)
−

−
Γ(x+ 2− d

2)

Γ(x+ 1)

2

Γ(1− d
2 )

+
Γ(x+ 5− 3d

2 )Γ(x+ 3− d)

Γ(x)Γ(x+ 7− 2d)

2

Γ(1− d
2)
, (5.2)

with boundary conditions M2(xÀ 1) ∼ x−
d
2 (cf. eq. (2.6)) and

M2(0) = = −
Γ(3d

2 )Γ(1− 3d
2 )Γ(d2 − 1)Γ(d2 )

Γ(d)Γ(d− 2)Γ(1 − d)
. (5.3)

We would like to know the master integral M2(1), or at least its ε-expansion in d = 4−2ε

dimensions. Note that only the first two terms of that expansion are known, cf. eq. (6.32)

below. Formally, it is of course possible to solve eq. (5.2) in terms of factorial series,

following the recipe sketched in section 2. However, it turns out that the series does not

converge in this (and only this, of all cases treated in this paper) case, such that in practice

a different method of solving the difference equation is needed.
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One way to tackle eq. (5.2) could be the iterative method used e.g. in ref. [18] (cf.

eq. (11)ff therein): expand in ε, make Ansätze for the ε-coefficients of M2 in terms of (sums

of multiple) harmonic sums with unknown constants, write all ε-expansions of the Gamma

functions in terms of harmonic sums, then rewrite everything in terms of a unique basis,

and finally fix the constants by comparing coefficients. Unfortunately, there does not seem

to exist an algorithm yet that automatizes the choice of Ansatz, hence requiring a fair

amount of hand-work. For the basic literature on harmonic sums, see the references of

ref. [18].

Another way of tackling eq. (5.2) is to transform it to a differential equation, which

should then be solved by analytical or numerical methods, or by a combination of both.

This is what we will do in the following, and this is how we have obtained the numerical

values given in eq. (4.6).

We can use the Ansatz M2(x) =
∫ 1

0 dt t
x−1v(t) to Laplace transform the difference

equation for M2 into a first order differential equation Φ0(t)v(t) − tΦ1(t)v′(t) = w(t),

where Φ0(t) = 3− d− 3(1 − d
2)t− 2t2 and Φ1(t) = (1− t)(1− 2t) [3].

The homogeneous equation is solved by vH(t) = cHt
3−d(1 − t)

d
2
−2(1 − 2t)

d
2
−2, which

however makes M2(x À 1) grow too fast at large x (it would grow like x1− d
2 , in conflict

with the large-x boundary condition), such that cH ≡ 0 and hence M2
H(x) = 0.

For solving the inhomogeneous equation, note that the inhomogeneous piece has four

terms w(z) =
∑4

j=1wj(z), which correspond to the last four terms of eq. (5.2), written as

Tj(x) =
∫ 1

0 dz z
x−1wj(z). For j = 1, 2, 3 we therefore have wj(z) =

bj
Γ(1−aj )

zaj (1 − z)−aj ,

where ~a = (5 − 3d
2 , 3 − d, 2 −

d
2) and ~b = ( (3−d)M2(0)

Γ(5− 3d
2

)
, 1

Γ(2−d) ,−
2

Γ(1− d
2

)
). For w4, we know

that it satisfies

∫ 1

0
dz zx−1w4(z) = T4(x) =

Γ(x+ 5− 3d
2 )Γ(x+ 3− d)

Γ(x)Γ(x+ 7− 2d)

2

Γ(1− d
2)
. (5.4)

For the expression T4(x), we can immediately construct a simple first-order difference

equation, x(x+ 7− 2d)T4(x+ 1) = (x+ 5− 3d
2 )(x+ 3− d)T4(x), from which we get — in

complete analogy to Laplace transforming eq. (5.2) – a differential equation for w4:

0 = (d− 3)(3d − 10− 4z)w4(z)− z(14 − 5d+ 4z(d− 2))w′4(z) + 2z2(1− z)w′′4 (z) . (5.5)

To write its boundary condition eq. (5.4) in a (for numerical treatment) more useful form,

note that the behavior of w4(z) at the singular point z = 1 is connected to the large-x limit

of T4(x). Using Stirling’s formula to write Γ(x+a)
Γ(x+b) = xa−b(1 + (a−b)(a+b−1)

2x +O
(

x−2
)

), we

can fix the three constants in the Ansatz w4(z ≈ 1) = c1(1− z)c2(1 + c3(1− z) + . . .), when

comparing
∫ 1

0 dz z
x−1w4(z ≈ 1) at large x with T4(xÀ 1). Hence, writing

w4(z) = c1(1− z)c2
2z1− d

2

d− 2
w̄4(z) =

4(1 − z)
d
2
−2z1− d

2 w̄4(z)

Γ(1− d
2)Γ(d2 − 1)(d − 2)

=
2 sin πd

2

π
z1− d

2 (1− z)
d
2
−2w̄4(z) , (5.6)
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we get simple boundary conditions w̄4(1) = d−2
2 , w̄′4(1) = d−2

2 (d−2
2 − c3) = (d−4)2

2 for the

new function w̄4(z), which satisfies the differential equation

0 = −(d− 4)2w̄4(z) + z(10 − 3d+ 4z(d− 3))w̄′4(z) + 2z2(z − 1)w̄′′4 (z) . (5.7)

We now get the non-homogeneous solution vNH(t) by varying the constant of the

homogeneous solution. Due to the linearity of the differential equation, the full solution is

simply the sum of four terms, which when plugged back into the definition of the Laplace

transform gives a representation for the master M2:

M2(x) =

∫ 1

0
dt tx+2−d(1− t)

d
2
−2(1 − 2t)

d
2
−2

∫ 1

t
dz zd−4(1− z)1− d

2 (1− 2z)1− d
2 ×

×







3
∑

j=1

bj
Γ(1− aj)

zaj (1− z)−aj + w4(z)







. (5.8)

The integral converges (in 4d) for x > 1, so one can use it to compute M2(2) and get M2(1)

via eq. (5.2).

Unable to solve eq. (5.8) for generic d, let us now go to d = 4−2ε dimensions and start

expanding. First, we need to solve the differential equation eq. (5.7). Writing w̄4(z) =
∑∞

n=0 ε
n fn(z), the boundary conditions translate into f0(1) = 1, f1(1) = −1, fn>1(1) = 0

and f ′0(1) = 0, f ′1(1) = 0, f ′2(1) = 2, f ′n>2(1) = 0. The fn(z) satisfy the differential

equations

0 = z(z − 1)f ′′n(z) + (2z − 1)f ′n(z) + (3− 4z)f ′n−1(z)−
2

z
fn−2(z) , (5.9)

which have to be solved starting with n = 0 (setting fn<0(z) ≡ 0).

One can e.g. solve eq. (5.9) in terms of multiple (nested) integrals. In fact, the Ansatz

fn(z) = δn,0− δn,1 +
∫ z

1 da gn(a) respects the boundary conditions for fn(1) and transforms

eq. (5.9) into a first order differential equation for gn(a), whose boundary conditions gn(1) =

2δn,2 incorporates those for f ′n(1). The homogeneous solution is of the form gHn (a) = cn
a(1−a)

and vanishes due to the boundary condition: cn ≡ 0. The inhomogeneous solution now

follows by variation of the constant, such that finally

fn(z) = δn,0 − δn,1 +

∫ z

1

da

a

hn(a)

1− a
, (5.10)

hn(a) = 2(δn,3−δn,2) ln(a) +

∫ a

1

db

b

(3−4b)hn−1(b)

1− b
− 2

∫ a

1

db

b

∫ b

1

dc

c

hn−2(c)

1− c
. (5.11)

The strategy is now clear: hn(a)→ fn(z)→ w̄4(z)→ w(z) →M2(2)→M2(1). All of

these steps can be performed numerically, and there is a discussion of methods in ref. [3].

In practice, we numerically solved for the fn using Mathematica, changed the order

of integrations in eq. (5.8), dealt with the t-integration (semi-) analytically, and finally

performed the z-integration numerically. The singular point at z = 1/2 was treated as a

principal value integral, and the logarithmically divergent regions near z = 1/2 and z = 1

were split off and treated analytically via a series-expansion in z.
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To check the setup, it is possible to start analytically. Solving eq. (5.11), the first

couple of orders for hn read h0(a) = 0, h1(a) = 0, h2(a) = −2 ln(a) and h3(a) = 2 ln(a)−

3 ln2(a) + 2Li2(1− a), where Lin(z) =
∑∞

k=1
zk

k2 is the polylogarithm.

Using eq. (5.10), this then implies f0(z) = 1, f1(z) = −1, f2(z) = − ln2 z−2Li2(1− z),

f3(z) = (1 + 5 ln(1− z)− ln(z)) ln2(z) + 2(1 + ln(z))Li2(1− z) + 10 ln(z)Li2(z)− 2Li3(1−

z)− 10Li3(z) + 10ζ3.

Knowing now w̄4(z) = 1− ε+ ε2f2(z) +O
(

ε3
)

and using eq. (5.6) to get w4(z), we can

expand the curly bracket of eq. (5.8). The two leading terms cancel, such that we obtain

{· · ·} = 2ε3

3z [(z − 1)(π2 + 2 ln2(1 − z) − 6 ln z ln(1 − z)) + 3z ln2 z + 6Li2(1 − z)] + O
(

ε4
)

.

Now M2(x) =
∫ 1

0 dt t
x−2

∫ 1
t dz

{···}
(1−z)(1−2z) + O

(

ε4
)

=
∫ 1

0 dz
{···}

(1−z)(1−2z)
zx−1

x−1 + O
(

ε4
)

. We

obtain M2(2) = 6ζ3ε
3 + O

(

ε4
)

, which, using eq. (5.2) at x = 0, translates into M2(1) =
4

3(4−d)M2(2) = 2
3εM2(2) = 4ζ3ε

2+O
(

ε3
)

, in nice agreement with the first term of eq. (6.32).

6. Analytic results

For completeness we list here all existing analytic results applicable to our integrals that

we are aware of [12]. Additionally, we give the analytic form of some new coefficients of

4-loop master integrals. These were extracted from our high-precision numerical results of

section 4, with the help of the integer-relation finding algorithm PSLQ [17] combined with

an educated guess of their number content.

Here, we normalize every integral with the appropriate power of the 1-loop tadpole,

such that analytic results are independent of the integration measure. Also, recall that we

have set m = 1.

We will use the following transcendentals:

ζn =

∞
∑

k=1

1

kn
, (6.1)

an =

∞
∑

k=1

1

2kkn
= Lin

(

1

2

)

, (6.2)

Lsj(θ) = −

∫ θ

0
dτ lnj−1

∣

∣

∣

∣

2 sin
τ

2

∣

∣

∣

∣

, (6.3)

and abbreviate the log-sine integrals at their maximum value as Lsj(
2π
3 ) ≡ Lsj below.

6.1 1-loop

There is one 1-loop topology and one coloring by mass. The 1-loop tadpole is solved in

terms of Gamma functions. With measure
∫

ddp, J =
∫

ddp 1
p2+1

= πd/2Γ(1− d/2).

≡ J . (6.4)

6.2 2-loop

There is one 2-loop topology and three colorings by mass. One of them reduces to simpler

cases, while the other two are master integrals. One of the two master integrals has an
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analytic solution in terms of Gamma functions. The other (fully massive) one can be

written in terms of the hypergeometric function 2F1 (see eqs. (4.12) and (4.13) in ref. [19]),

or alternatively in terms of a one-dimensional integral (see eqs. (21), (15) and (16) in

ref. [20]) which has a simple ε-expansion (for 4d in terms of log-sine integrals).

= −
d− 2

2(d− 3)

( )2
(6.5)

J2
=

Γ(3−d
2 )Γ(d2 )

2d−2Γ(1
2)

(6.6)

J2
= −

3(d− 2)

4(d− 3)

{

2F1

(

4− d

2
, 1;

5− d

2
;
3

4

)

− 3
d−5

2
2πΓ(5− d)

Γ(4−d
2 )Γ(6−d

2 )

}

(6.7)

= −
3(d−2)

4(d−3)

{

1−3
d−3

2 (d−4)

∫ π
3

0
dτ(2 sin(τ))4−d−3

d−5
2

2πΓ(5− d)

Γ(4−d
2 )Γ(6−d

2 )

}

(6.8)

d=n−2ε
= −

3(n−2−2ε)

4(n−3−2ε)

{

1+3−ε
n−4

2 − ε

3
3−n

2

∞
∑

j=0

(2ε)j

j!
Ls

(4−n)
j+1 −

−3−ε
3
n−5

2 2πΓ(5 − n+ 2ε)

Γ(4−n
2 + ε)Γ(6−n

2 + ε)

}

(6.9)

The numbers Ls
(a)
j = −

∫

2π
3

0 dτ(2 sin τ
2 )a lnj−1 |2 sin τ

2 | in the 4d (n = 4) case are the log-sine

integrals Ls
(0)
j = Lsj = Lsj(

2π
3 ) of eq. (6.3).

6.3 3-loop

There are three 3-loop topologies.

3-loop, 4 lines: there are four colorings by mass, all of which are master integrals. Two

of them have an analytic solution in terms of Gamma functions. The third one (called

D3(0, 1, 0, 1, 1, 1) in the literature, according to the notation introduced in ref. [15]) can be

written in terms of a single hypergeometric function 3F2 (see eq. (4.33) of ref. [21], where

also the first seven orders of its 4d ε-expansion were given in eq. (4.32)).3 The first seven

orders of the 4d ε-expansion of the fourth (fully massive) master (called BN (0, 0, 1, 1, 1, 1)

in the literature) can be deduced from the function B4 introduced in ref. [24] using the

reductions eqs. (6.26) and (6.27) given below. Two more orders could be obtained from B4

as given in ref. [25], but we refrain from reproducing them here.

J3
= −

3Γ(6−3d
2 )Γ(3− d)Γ2(d−2

2 )

Γ3(2−d
2 )

(6.10)

3In some sense, the representation in terms of special types of hypergeometric functions can be called an

all-order analytic ε-expansion, namely when their expansion can be written in terms of rapidly converging

(multiple inverse binomial) sums, for which efficient algorithms exist [22]. The 3-loop integrals E3, D5 and

D4 [23] below belong to this class as well.
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J3
=

2d−3Γ(8−3d
2 )Γ(3−d

2 )Γ(d2)

Γ(7−2d
2 )Γ(2−d

2 )
(6.11)

J3

d=4−2ε
= −1−

3

4
ε+

1

8
ε2 +

(

91

16
−

9

2

√
3Ls2

)

ε3 +

+

(

913

32
−

3

4

√
3(π3+ 9(3−2 ln 3)Ls2 +18Ls3)

)

ε4 +

+

(

7027

64
+

1

8

√
3(9π3(2 ln 3−3) + 64Ls4

(π

3

)

− 9(67−54 ln 3+18 ln2 3)Ls2+

+ 162(2 ln 3− 3)Ls3 − 216Ls4 + 184πζ3)

)

ε5 +

+

(

48601

128
+

+
√

3

(

−
3

16
π3(67+18 ln 3(ln 3−3))−

23

36
π5 +

69

2
π(3−2 ln 3)ζ3+

+ 81πLs′4 +
9

16
(−457 + 6 ln 3(67 + 3 ln 3(2 ln 3− 9)))Ls2 −

−
27

8
(67 + 8π2 + 18 ln 3(ln 3−3))Ls3 +

81

2
(2 ln 3−3)Ls4 −

−
81

2
Ls5 + 12(3−2 ln 3)Ls4

(π

3

)

+

+ 49Ls5

(π

3

)

−
243

4
Ls′5

))

ε6 +O
(

ε7
)

(6.12)

J3

d=4−2ε
= −2−

5

3
ε−

1

2
ε2 +

103

12
ε3 +

7

24
(163 − 128ζ3)ε4 +

+

(

9055

48
+

136π4

45
+

32

3
ln2 2(π2 − ln2 2)− 168ζ3 − 256a4

)

ε5 +

+

(

63517

96
+

16

5
ln4 2(4 ln 2−15)−

16

3
π2 ln2 2(4 ln 2−9)−

68

15
π4(4 ln 2−3)−

−
1876

3
ζ3 + 1240ζ5 − 1152a4 − 1536a5

)

ε6 +O
(

ε7
)

(6.13)

Ls′j = −
∫

2π
3

0 dττ j−3 ln2 |2 sin τ
2 | are special values of the generalized log-sine function [21].

3-loop, 5 lines: there are eleven colorings by mass. Eight of them reduce, while the

remaining three are master integrals. One of the masters has an analytic solution in terms

of Gamma functions. The second one (called E3 in the literature) can be written in terms

of the hypergeometric function 2F1, cf. eq. (4.24) of ref. [21]. Its first six terms of the 4d ε-

expansion (we will only reproduce the first five of them below) are given in eqs. (4.16), (4.18)

of ref. [21]. The first five terms of the 4d ε-expansion of the third (fully massive) master

integral (called D5 in the literature) can be deduced from ref. [26] using the reduction given

in eq. (6.25) below. One more term has recently been given in eq. (3.28) of ref. [27], but
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we refrain from listing it here.

=
1

6(d− 3)

{

(3d− 8) − 3(d− 2)
}

(6.14)

=
1

4(d− 3)

{

(3d − 8) +
(d− 2)2

d− 3

( )3
}

(6.15)

=
1

2(d− 3)

{

(3d− 8) − (d− 2)
}

(6.16)

= −
1

4(d− 4)

{

(3d − 8) +
2(d − 2)2

d− 3

( )3
}

(6.17)

=
3d− 8

2
−
d− 2

2
+

(d− 2)2

2(d− 3)

( )3

(6.18)

= −
3d− 8

4(2d − 7)
(6.19)

=
3d− 8

d− 2
− 2 (6.20)

= −
3d− 8

d− 4
(6.21)

J3
=

π3

sin2(πd2 ) sin(3πd
2 )

Γ2(d−2
2 )

Γ3(2−d
2 )Γ2(d− 2)Γ(d2 )

(6.22)

J3

d=4−2ε
=

2

3
+

5

3
ε+

(

5 +
π2

6
− 3
√

3Ls2

)

ε2 +

+

(

44

3
+
π2

3
+

1

3
ζ3 − 3

√
3

(

5π3

162
+ (2− ln 3)Ls2 + Ls3

))

ε3 +

+

(

128

3
+

5π2

6
−
π4

60
+

10

3
ζ3+ (6.23)

+
√

3

(

−
1

6
(2π2 + 9 ln 3(10 + (ln 3− 4) ln 3))Ls2 + 3(ln 3− 2)Ls3−

− 2Ls4 −
80

27
Ls4

(π

3

)

+
5π3

54
(ln 3− 2) +

94

27
πζ3

))

ε4 +O
(

ε5
)

J3

d=4−2ε
= 1 +

8

3
ε+

(

25

3
− 6
√

3Ls2

)

ε2 +

+

(

76

3
− 6ζ3 +

√
3

(

−
π3

3
+ 6(ln 3− 2)Ls2 − 6Ls3

))

ε3 +

+

(

76−
7π4

10
+ 18Ls2

2 − 12πLs3 + 18Ls′4 +

(

−
92

3
+ 4
√

3π + 26 ln 3

)

ζ3+

+
√

3

(

π3

3
(ln 3− 2)− 3(10 − 4 ln 3 + ln2 3)Ls2+

+ 6(ln 3− 2)Ls3 − 4Ls4

))

ε4 +O
(

ε5
)

(6.24)

3-loop, 6 lines: there are ten colorings by mass. The first two terms of their 4d ε-
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expansion are given in ref. [26]. Five of them reduce, while the remaining five are masters.

The third term of the 4d ε-expansion of one of the masters (called D4 in the literature) is

given in eq. (4.10) of ref. [21].4 The remaining four masters (called DM , DN , D3 and D6,

respectively) are read from ref. [26].

= −
2(d− 3)

3(d− 4)
+

3d− 8

12(d − 4)
−

2(d− 2)

3(d− 4)
−

−
(d− 2)2

6(d− 4)(d − 3)

( )3

(6.25)

=
(3d−10)(3d−8)

16(d− 4)2

(

+
4(d−4)

2d− 7

)

+

+
(d−2)2(5d−18)

8(d− 4)2(d− 3)

( )3

(6.26)

= −
3(3d− 10)(3d − 8)

16(d − 4)(2d − 7)
−

(d− 2)2

8(d− 4)(d − 3)

( )3
(6.27)

= −
(3d− 10)(3d − 8)

(d− 4)2

(

+
d− 4

4(2d − 7)

)

+

+
d− 2

d− 4
(6.28)

=
2(d− 3)

d− 4
+

2(3d − 10)(3d − 8)

(d− 4)2
(6.29)

J3

d=4−2ε
= −2ζ3ε

2 +

(

77π4

1080
+

27

2
Ls2

2

)

ε3 +

+

(

−
21

8
χ5 +

161

54
πLs4

(π

3

)

−
367

216
π3Ls2−

− 7πLs4 − 2ζ3 +
2615

432
π2ζ3 −

2047

216
ζ5

)

ε4 +O
(

ε5
)

(6.30)

J3

d=4−2ε
= −2ζ3ε

2 +

(

11π4

180
+ 9Ls2

2

)

ε3 +O
(

ε4
)

(6.31)

J3

d=4−2ε
= −2ζ3ε

2 +

(

7π4

60
+

2

3
ln2 2(π2 − ln2 2)− 16a4

)

ε3 +O
(

ε4
)

(6.32)

J3

d=4−2ε
= −2ζ3ε

2 +

(

π4

24
+

27

2
Ls2

2

)

ε3 +O
(

ε4
)

(6.33)

J3

d=4−2ε
= −2ζ3ε

2 +

(

17π4

90
+

2

3
ln2 2(π2 − ln2 2) + 9Ls2

2 − 16a4

)

ε3 +O
(

ε4
)

(6.34)

χ5 =
∑∞

n=1
(n!)2

(2n)!
1
n2

(

∑n−1
j=1

1
j

)3
≈ 0.0678269619272 . . . is a special case of a binomial sum [21].

4Note that there is a typo in eq. (4.10) of ref. [21]. The second-last term should read − 161
54
πLs4(π

3
), see

also ref. [27].
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6.4 4-loop

There are ten topologies.

4-loop QED-type cases, 5 lines: there is one topology, BB.

There are two QED-type colorings of BB. Both of them are masters. One is known

analytically in terms of Gamma functions, while the other one is new.5 Interestingly, the

analytic value of the last two terms in eq. (6.36) were obtained in a physics computation

in which this master integral contributed [29].

J4
= 3(d− 2)4d−3 Γ(5− 2d)Γ( 8−3d

2 )Γ(5−d
2 )Γ2(d2)

Γ(11−3d
2 )Γ3(4−d

2 )
(6.35)

J4

d=4−2ε
= − 1−

1

2
ε+

17

36
ε2 +

1

216
ε3 −

37207

1296
ε4 +

(

−
1976975

7776
+

1792

9
ζ3

)

ε5 +

+

(

−
72443143

46656
−

4352π4

135
+

1024

9
ln2 2(ln2 2−π2)+

8192

3
a4+

47488

27
ζ3

)

ε6+

+O
(

ε7
)

(6.36)

4-loop QED-type cases, 6 lines: there are two topologies, T and G.

There are four QED-type colorings of T. All of them are masters. One of them is

known analytically, while the first six orders of the 4d ε-expansion of two others were given

in eq. (16) of ref. [7] and eq. (18) of ref. [11],6 respectively. The fourth one is new.

J4
=

8d−3Γ3(1
2)Γ(6 − 2d)Γ3(d2)

sin(3πd
2 )Γ(11−3d

2 )Γ2(4−d
2 )Γ2(d− 2)

(6.37)

J4

d=4−2ε
=

3

2
+

7

2
ε+

9

2
ε2 +

(

−
39

2
− 3ζ3

)

ε3 +

(

−208 −
π4

20
+ 109ζ3

)

ε4 +

+

(

−1254 −
547π4

60
+ 32 ln2 2(ln2 2− π2) + 768a4 + 855ζ3 + 189ζ5

)

ε5 +

+O
(

ε6
)

(6.38)

J4

d=4−2ε
=

2

3
+

4

3
ε+

2

3
ε2 +

4

3
(−11 + 4ζ3)ε3 +

(

−116 −
4π4

15
+

200ζ3

3

)

ε4 +

+

(

−
1928

3
−

326π4

45
+

64

3
ln2 2(ln2 2− π2) + 512a4 +

1192ζ3

3
+ 96ζ5

)

ε5 +

+O
(

ε6
)

(6.39)

J4

d=4−2ε
=

1

4
+

1

2
ε+ 0 · ε2 +

(

−8 +
13

2
ζ3

)

ε3 +

(

−
241

4
−

5π4

8
+ 4ζ3

)

ε4 +

5This integral has also been expanded in terms of 1-dimensional harmonic polylogarithms [28].
6Note that in ref. [11] the last term of eq. (6.39) involves a numerical coefficient N10 ≈ 5.3111546, which

we have determined to be N10 = 49π4

720
+ 1

6
ln2 2

(
π2
− ln2 2

)
− 4a4, using our high-precision result eq. (4.10)

and PSLQ [17].
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+

(

−
669

2
−
π4

5
− 36ζ3 +

693

2
ζ5

)

ε5 +O
(

ε6
)

(6.40)

There are five QED-type colorings of G. All of them reduce.

=
2d− 5

4(d− 3)
−

d− 2

2(d − 3)
(6.41)

=
2d− 5

4
−
d− 2

2
+

(d− 2)3

8(d − 3)2

( )4

(6.42)

= −
2d− 5

6(d− 3)
(6.43)

= −
(2d− 5)(3d − 8)

6(d− 3)(d − 4)
(6.44)

=
2d− 5

2(d− 3)
−

d− 2

2(d − 3)
(6.45)

4-loop QED-type cases, 7 lines: there are three topologies, VB, N and U.

There are seven QED-type colorings of VB. Five of them reduce. There are two master

integrals. Both are new.

=
(2d − 5)(3d − 10)(3d − 8)

3(d− 4)2(3d− 11)
+

2(d− 3)2

(d− 4)(3d − 11)
(6.46)

= −
(2d− 5)(3d − 8)

3(d − 4)2
−

4(d− 3)2

3(d− 4)(3d − 10)
+

+
(d− 2)(3d − 8)

8(2d − 7)(3d − 10)
(6.47)

=
(2d−5)(3d−8)

3(d−4)(d−3)
−
d−3

d−4
−

(d−2)(3d−8)

4(d−4)(d−3)
(6.48)

=
(2d−5)(3d−8)

16(d−4)(d−3)
−

2(d−3)

3(d−4)
−

(d−2)(3d−8)

8(d−4)(d−3)
−

−
(d− 2)3

32(d − 4)(d − 3)2

( )4
(6.49)

=
2

3d−10

{

(d−3) −
3d− 8

2(d−3)

(

2d−5

3
−
d−2

4

)}

(6.50)

J4

d=4−2ε
= −

1

6
−

5

6
ε−

(

11

3
+ ζ3

)

ε2 +

(

−
44

3
−
π4

60
+

2

3
ζ3

)

ε3 +

+

(

−
332

6
−
π4

6
+

31

3
ζ3 + 53ζ5

)

ε4 +O
(

ε5
)

(6.51)

J4

d=4−2ε
= −

1

6
−

5

6
ε−

(

11

3
+

1

2
ζ3

)

ε2 +

(

−
44

3
−

π4

120
+

13

6
ζ3

)

ε3 +

+

(

−
166

3
−

5π4

24
+

29

6
ζ3 +

43

2
ζ5

)

ε4 +O
(

ε5
)

(6.52)

There are five QED-type colorings of N. All of them reduce.

=
(2d − 5)(3d − 8)

6(d− 3)2
−

(d− 2)(3d − 8)

4(d− 3)2
−
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−
(d− 2)3

8(d − 3)3

( )4

(6.53)

= −
(2d− 5)(3d − 8)

6(d− 4)(d − 3)
+

(d− 2)(3d − 8)

8(d − 3)(2d − 7)
(6.54)

=
(2d− 5)(3d − 8)

6(d − 4)(3d − 11)
(6.55)

= −
(2d− 5)(3d − 8)

16(d − 4)
+

(d− 2)(3d − 8)

4(2d − 7)
−

−
3(d− 2)3

32(d − 4)(d − 3)

( )4
(6.56)

=
(2d − 5)(3d − 8)

16(d− 3)
+

(d− 2)(3d − 8)

8(d− 4)(d− 3)
−

−
(d− 2)(3d − 8)

8(d− 3)
+

(d− 2)3(3d− 4)

32(d − 4)(d− 3)2

( )4

(6.57)

There are four QED-type colorings of U. All of them reduce.

=
2

3
−

(d− 2)(3d − 8)

8(d − 3)2
−

(d− 2)3

8(d − 3)3

( )4

(6.58)

= −
d−3

d−5
−

3(d−2)(3d−8)

8(d−5)(d−4)
−

3(d− 2)3

4(d−5)(d−4)(d−3)

( )4
(6.59)

= −
d− 3

2(d− 4)
−

(d− 2)(3d − 8)

8(d− 4)(2d − 7)
(6.60)

= −
d− 3

3d− 11
(6.61)

4-loop QED-type cases, 8 lines: there are two topologies, VV and W.

There are seven QED-type colorings of VV. All of them reduce.

= −
(2d−7)(2d−5)(3d−10)(3d−8)

6(d− 4)2(3d− 13)(3d − 11)
−

(d− 3)2(2d − 7)

(d−4)(3d−13)(3d−11)
(6.62)

=
(2d− 7)(2d − 5)(3d − 10)(3d − 8)

18(d − 4)2(d− 3)(3d − 11)
−

(d− 3)(2d − 7)

3(d− 4)(3d − 11)
−

−
(d− 2)(3d − 10)(3d − 8)

48(d − 4)(d− 3)(2d − 7)
(6.63)

= −
(2d− 7)(2d − 5)(3d − 10)(3d − 8)

6(d− 4)2(d− 3)(3d − 11)
+

(d− 3)(2d − 7)

4(d− 4)2
+

+
(d− 2)(3d − 8)(5d2 − 35d + 61)

16(d− 4)2(d− 3)(2d − 7)
(6.64)

= −
(2d− 7)(2d − 5)(3d − 10)(3d − 8)

6(d− 4)2(d− 3)(3d − 11)
−

4(d− 3)2(2d− 7)

3(d− 4)(3d − 11)(3d − 10)
+

+
(d− 2)(3d − 8)(95d3 − 989d2 + 3428d − 3956)

32(d− 4)(d − 3)(2d − 7)(3d − 11)(3d − 10)
+

+
(d− 2)3

16(d − 4)(d− 3)2

( )4

(6.65)
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= −
(2d− 5)(3d − 11)(3d − 8)

32(d− 4)(2d − 9)
−

(d− 3)2

4(d − 4)(2d − 9)
−

−
(3d− 10)

4(2d − 9)
+

(d− 2)(3d − 8)(12d2 − 101d + 204)

32(d − 4)(2d − 9)(2d − 7)
−

−
(d− 2)(3d − 8)

16(d − 4)(2d − 9)
−

3(d− 2)3(3d − 7)

64(d − 4)(d − 3)(2d − 9)

( )4

(6.66)

=
(2d− 5)(3d − 8)

12(d−3)(2d−7)
+

(2d− 5)(3d − 8)

64(d−3)(2d−7)
−

2(d − 3)2

3(2d−7)(3d−10)
+

+
3d− 10

2(2d − 7)
−

(d− 2)3(73d2 − 512d + 896)

128(d − 4)2(d− 3)2(2d− 7)

( )4
−

−
(d− 2)(3d − 8)(19d2 − 128d + 216)

(16(d − 4)(d − 3)(2d − 7)(3d − 10)
− (6.67)

−
(d−2)(3d−10)(3d−8)

32(d − 4)2(d− 3)
−

(d−2)3(73d2−512d+896)

128(d−4)2(d−3)2(2d−7)

( )4

=
(2d− 7)(2d − 5)(3d − 10)(3d − 8)

64(d − 4)2(d− 3)
+

(d− 3)(2d − 7)

3(d− 5)(d− 4)
−

−
(d−2)(3d−10)(3d−8)

8(d− 4)(2d − 7)
+

+
(d− 2)(3d − 8)(11d2 − 77d+ 134)

32(d − 5)(d − 4)2(d− 3)
+

+
(d− 2)3(18d3 − 129d2 + 245d − 58

128(d − 5)(d− 4)2(d− 3)2

( )4

(6.68)

There are five QED-type colorings of W. Four of them reduce. There is one master

integral, whose leading term in 4d can be read from ref. [30] due to the fact that it does

not contain any infrared divergences.

= −
(2d− 5)(3d − 8)(27d3 − 283d2 + 990d− 1156)

12(d − 4)3(2d− 7)(3d − 11)
−

−
(d− 3)(3d − 10)

2(d− 4)(2d − 7)
−

2(d − 3)4(5d− 18)

3(d− 4)2(2d− 7)(3d − 11)(3d − 10)
−

−
(2d − 5)(3d − 8)

64(d− 4)(2d − 7)
+

(d− 2)(3d − 8)(5d − 18)

16(d − 4)(3d − 11)(3d − 10)
−

−
7(d− 2)3

128(d − 4)(d− 3)(2d − 7)

( )4
(6.69)

=
2(2d − 7)(2d − 5)(3d − 10)(3d − 8)

9(d − 4)3(3d− 11)
+

+
8(d− 3)3(2d − 7)

9(d− 4)2(3d− 11)(3d − 10)
+

2(d− 3)3(2d− 7)

3(d− 4)2(3d − 11)
−

−
(d− 2)(3d − 8)(7d2 − 48d+ 82)

24(d− 4)(2d − 7)(3d − 11)(3d − 10)
(6.70)

=
(2d − 5)(3d − 8)

6(d − 4)(2d − 7)
−

(2d − 5)(3d − 8)

32(d− 3)(2d − 7)
+

d− 3

2(d− 4)
−
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−
4(d− 3)3

3(d− 4)(2d − 7)(3d − 10)
+

(d− 3)(3d − 10)

(d− 4)(2d − 7)
−

−
3d− 10

2(d− 4)
−

(d− 2)(3d − 8)

8(2d− 7)(3d − 10)
+ (6.71)

+
(d− 2)(3d − 8)

16(d− 4)(d − 3)
+

(d− 2)3(9d− 28)

64(d− 4)(d − 3)2(2d− 7)

( )4

=
(2d − 5)(3d − 8)

32(d − 4)(d − 3)
+

2(d − 3)2(2d− 7)

3(d− 4)2(3d− 11)
−

d− 3

2(d − 4)
+

+
3d− 10

2(d− 4)
+

(d− 2)(3d − 8)(d2 − 4d+ 2)

8(d− 4)2(d− 3)(3d − 11)
+

+
(d− 2)3(29d2 − 177d + 268)

64(d− 4)2(d− 3)2(3d− 11)

( )4
(6.72)

J4

d=4−2ε
= 5ζ5ε

3 +O
(

ε4
)

(6.73)

4-loop QED-type cases, 9 lines: there are two topologies, H and X.

There are five QED-type colorings of H. All of them reduce.

= −
3(2d− 5)(3d − 11)(3d − 8)(54 − 29d+ 4d2)

256(d − 5)(d − 4)2(d− 3)(2d − 9)
−

−
4(d− 3)2(2d− 7)

3(d− 5)(3d − 13)(3d − 11)
+

+
3(d− 3)(d2 − 11d + 27)

8(d− 5)(d − 4)(2d − 9)
−

9(d− 4)(3d − 10)

8(d − 5)(2d − 9)
−

−
(d− 2)(3d − 8)(13d3 − 77d2 + 9d+ 351)

32(d − 5)(d− 3)(2d − 9)(3d − 13)(3d − 11)
−

−
3(d− 2)(3d − 8)(13d2 − 92d+ 162)

64(d − 5)(d − 4)(2d − 9)(2d − 7)
−

−
(d− 2)3(2452d5− 43031d4 + 329345d3− 1198763d2 + 2170827d −1564110)

512(d − 5)(d − 4)2(d− 3)2(2d− 9)(3d − 13)(3d − 11)
×

×
( )4

(6.74)

= −
3(2d − 7)(2d − 5)(3d − 10)(3d − 8)

2(d− 4)(3d − 14)(3d − 13)(3d − 11)
−

−
6(d − 3)2(2d− 7)

(3d− 14)(3d − 13)(3d − 11)
−

−
32(d − 3)3(2d− 7)

9(3d − 14)(3d − 13)(3d − 11)(3d − 10)
+

+
(d− 2)(3d − 8)(139d3 − 1495d2 + 5344d − 6348)

96(2d − 7)(3d − 14)(3d − 13)(3d − 11)(3d − 10)
(6.75)

=
7(2d − 7)(2d − 5)(3d − 10)(3d − 8)

9(d− 4)2(3d− 13)(3d − 11)
+

4(d − 3)2(2d− 7)

3(d−4)(3d−13)(3d−11)
+
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+
32(d− 3)3(2d− 7)

9(d− 4)(3d − 13)(3d − 11)(3d − 10)
−

d− 4

2(3d − 13)
−

−
(d− 2)(3d − 8)(409d3 − 4285d2 + 14944d − 17348)

96(d − 4)(2d − 7)(3d − 13)(3d − 11)(3d − 10)
−

−
(d− 2)3

16(d − 4)(d− 3)(3d − 13)

( )4

(6.76)

= −
(2d− 5)(3d − 8)(3d3 − 19d2 + 19d+ 38)

12(d − 5)(d − 4)2(2d− 7)(3d − 11)
+

+
(2d− 5)(3d − 11)(3d − 8)(2d3 − 14d2 + 23d+ 6)

128(d − 5)(d− 4)3(d− 3)(2d − 7)
−

−
2(d− 3)2(2d− 7)

3(d− 5)(d − 4)(3d − 11)
−

−
2(d− 3)3(17d2 − 125d + 230)

3(d− 5)(d − 4)(2d − 7)(3d − 11)(3d − 10)
+

+
(d− 3)(5d2 − 37d + 69)

4(d − 5)(d − 4)2
+

3(d− 3)(3d − 10)

2(d − 5)(2d − 7)
− (6.77)

−
3(3d−10)

4(d−5)
−

(d−2)(3d−8)(10d3−87d2+235d−186)

32(d − 5)(d− 4)2(d− 3)(3d − 11)
−

−
(d− 2)(3d − 8)(38d4 − 568d3 + 3174d2 − 7863d + 7290)

16(d− 5)(d − 4)2(2d− 7)(3d − 11)(3d − 10)
−

−
(d−2)3(418d5− 7346d4 + 51389d3− 178846d2 + 309603d −213234)

256(d − 5)(d − 4)3(d− 3)2(2d− 7)(3d − 11)

( )4

= −
(2d− 5)(3d − 8)(69d3 − 725d2 − 2543d − 2978)

12(d − 4)2(2d− 9)(2d − 7)(3d − 11)
−

−
3(2d− 5)(3d − 8)

128(d − 3)(2d − 9)(2d − 7)
−

−
2(d− 3)3(d− 2)(13d − 47)

9(d− 4)(2d − 9)(2d − 7)(3d − 11)(3d − 10)
−

−
(d− 3)(d2 − 11d+ 27)

8(d− 4)2(2d − 9)
−

3(d− 3)(3d − 10)

2(2d − 9)(2d − 7)
+

+
3(3d − 10)

8(2d− 9)
+

(d− 2)(3d − 8)(5d − 18)

64(d − 4)2(d− 3)(2d − 9)
+

+
(d−2)(3d−8)(1139d4−16453d3 +89068d2−214178+193044)

192(d − 4)2(2d− 9)(2d − 7)(3d − 11)(3d − 10)
+

+
(d− 2)3(48d3 − 445d2 + 1352d − 1344)

256(d − 4)2(d− 3)2(2d− 9)(2d − 7)

( )4

(6.78)

There are two QED-type colorings of X. One reduces. The other one is a master

integral. Its leading coefficient (denoted by X0 below) is not yet known analytically.

=
(2d−5)(3d−8)(2109d4−31288d3+173302d2−425005d+389562)

36(d− 4)(2d − 9)2(2d− 7)(3d − 13)(3d − 11)
+

+
(2d− 5)(3d − 8)(24d3 − 268d2 + 1003d − 1258)

256(d − 4)2(2d − 9)2(2d− 7)
+
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+
14(d− 3)2(2d− 7)

3(2d − 9)(3d − 13)(3d − 11)
+

+
2(d− 3)3(295d3 − 3332d2 + 12431d − 15334)

9(2d − 9)2(2d− 7)(3d − 13)(3d − 11)(3d − 10)
+

+
3(d− 4)(d − 3)(3d − 10)

2(2d − 9)2(2d − 7)
+

(d− 4)2

2(2d − 9)(3d − 13)
−

−
(d−2)(3d−8)(599d4−9067d3+51340d2−12886d+121044)

48(2d − 9)2(2d− 7)(3d − 13)(3d − 11)(3d − 10)
+

+
(d− 2)3(392d4 − 6204d3 + 36843d2 − 97323d + 96502)

512(d − 4)2(d− 3)(2d − 9)2(2d− 7)(3d − 13)

( )4
(6.79)

J4

d=4−2ε
= X0ε

4 +O
(

ε5
)

(6.80)

All the above formulas agree with our numerical results of section 4.

7. Conclusions

We have employed the general method of numerically solving single-scale integrals in terms

of their ε-expansion around d = 4 − 2ε via difference equations, to high precision and to

high ε-orders. We have covered the set of all vacuum master integrals up to three loops,

as well as ‘QED-type’ vacuum master integrals at 4-loop order. These integrals play a role

in state-of-the-art perturbative calculations for precision tests of the standard model.

The main vehicle of solving the difference equations treated in this work was a formal

representation in terms of factorial series, which could then be evaluated numerically in a

truncated form.

In cases where the factorial series representation does not converge, a more general

(and hence more complicated) method can be used, which transforms the problem into

differential equations. We have encountered only one such case, and have shown in detail

how it can be represented in terms of multiple integrals, which we then solved numerically.

Furthermore, we have made an attempt to collect all presently known analytic results

for the class of vacuum master integrals that we have treated here, up to the 4-loop level.

This is meant as a concise reference for practitioners in the field.
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A. Numerical results for analytically known master integrals

As a complement to section 4, we here list the first few terms of the Laurent expansions in

ε = (4− d)/2 of those single-mass-scale vacuum master integrals up to four loops that are

known analytically (see the explicit d-dimensional expressions of section 6).

Notation and integral measure are as in section 4, which in particular determines the

1-loop tadpole to be J = 1
Γ(2+ε)

∫ d4−2εp
π2−ε

1
p2+1

= −1
ε(1−ε2)

= −
∑∞

n=0 ε
2n−1.

= − 1.0000000000000000000000000000000000000000000000000 ε−1 −

− 1.0000000000000000000000000000000000000000000000000 ε−

− 1.0000000000000000000000000000000000000000000000000 ε3 +

+O
(

ε5
)

(A.1)

= − 0.5000000000000000000000000000000000000000000000000 ε−2 −

− 0.5000000000000000000000000000000000000000000000000 ε−1 −

− 3.6449340668482264364724151666460251892189499012068 −

− 3.4428771636886321510726770051345751984539636088663 ε−

− 17.748133915933433322311939139507906328597192596121 ε2 −

− 16.366439374126401323669287645924253086404587829687 ε3 +

+O
(

ε4
)

(A.2)

= − 0.083333333333333333333333333333333333333333333333333 ε−2 −

− 0.37500000000000000000000000000000000000000000000000 ε−1 −

− 2.4683003667574465515695409166563459279428082839367 −

− 8.5848042311088475775631523236940150167718153674315 ε−

− 38.120827450450135424466436253406610052456582985006 ε2 +

+O
(

ε3
)

(A.3)

= + 0.33333333333333333333333333333333333333333333333333 ε−3 +

+ 0.16666666666666666666666666666666666666666666666667 ε−2 +

+ 0.58333333333333333333333333333333333333333333333333 ε−1 +

+ 0.41381840842558476106596843069719997537329677957466 −

− 24.905969600320865917659060143145414845610363033237 ε−

− 12.059724940640299353325034075589267393005352211165 ε2 +

+O
(

ε3
)

(A.4)

= − 0.33333333333333333333333333333333333333333333333333 ε−3 −

− 0.66666666666666666666666666666666666666666666666667 ε−2 −

− 5.9565348003631195396114969999587170451045664690803 ε−1 −

− 10.976993729846780032023343117902167435855817881707 −

− 67.587197404302297868575437012376235190940093056288 ε−
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− 120.04368176952781664333978568556636327245719008030 ε2 +

+O
(

ε3
)

(A.5)

= + 0.08333333333333333333333333333333333333333 ε−3 +

+ 0.2361111111111111111111111111111111111111 ε−2 +

+ 0.4189814814814814814814814814814814814815 ε−1 +

+ 0.5870437170675600697079437393391752840153 −

− 38.15649063807203021274518890590965524153 ε+O
(

ε2
)

(A.6)

= + 0.1666666666666666666666666666666666666667 ε−4 +

+ 0.1666666666666666666666666666666666666667 ε−3 −

− 0.1666666666666666666666666666666666666667 ε−2 +

+ 0.1130270533440971408650083562391832748449 ε−1 −

− 78.06045784302350379977045250776444270422 −

− 77.68037792722049725359022296531379645497 ε+O
(

ε2
)

(A.7)

In fact, the results shown here have been obtained via numerically evaluating truncated

factorial series along the lines of sections 2 and 3, but they of course coincide perfectly

with the analytical results of section 6 (note the different normalization there).
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Abstract

We compute the four-loop QCD contribution to the electroweakρ parameter induced by the singlet diagrams of theZ-boson
self-energy. The numerical impact on the weak mixing angle and theW -boson mass is small.
 2005 Elsevier B.V. All rights reserved.

PACS: 12.38.-t; 14.65.Ha; 13.66.Jn

1. Introduction

The electroweakρ parameter as introduced by Veltman[1] measures the relative strength of the charged
neutral current. Considering QCD corrections it can be written as

(1)ρ = 1+ δρ,

with

(2)δρ = ΠZZ(0)

M2
Z

− ΠWW(0)

M2
W

.

ΠZZ(0) andΠWW(0) are the transverse parts of theW - andZ-boson self-energies evaluated for vanishing exte
momentum. The parameterδρ enters a variety of quantities which are determined from experiment with an
mous precision. In particular, it enters the relation between theW -boson mass,MW , the fine structure constant,α,
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Fig. 1. Sample three- and four-loop singlet diagrams contributing to theρ parameter. In the fermion loops either top- or bottom-quarks
present.

the Fermi constant,GF , and theZ-boson mass,MZ , which is given by[2]

(3)M2
W = M2

Z

2

(
1+

√
1− 4πα√

2M2
ZGF (1− �r)

)
.

The quantity�r is conveniently parameterized in the form

(4)�r = �α − c2
W

s2
W

δρ + �r rem,

with cW = MW/MZ ands2
W = 1 − c2

W . �α contains contributions from light fermions giving rise to a correct
of about 6%. The leading corrections proportional toGF M2

t are incorporated inδρ and amount at one-loop ord
to roughly−3% whereas the remaining part is small.

Eqs.(3) and (4)can be used to predictMW , where the formula

(5)δMW = MW

2

c2
W

c2
W − s2

W

δρ

immediately accounts for the dominant shift inMW due to the corrections to theρ parameter. We can also look
the change of the effective leptonic weak mixing angle, sin2 θ

lept
eff , defined through the coupling of theZ-boson to

leptons. The leading universal corrections originating fromδρ can in analogy to Eq.(5) be written as

(6)δ sin2 θ
lept
eff = − c2

Ws2
W

c2
W − s2

W

δρ.

Currently the uncertainties forMW and sin2 θ
lept
eff are given byδMW = 34 MeV andδ sin2 θ

lept
eff = 1.7 × 10−4

[3], respectively. However, a future linear collider running at theZ-boson pole, the so-called Giga-Z option, and
around theW -pair threshold might reduce the uncertainties toδMW = 6 MeV andδ sin2 θ

lept
eff = 1.3× 10−5 [4].

The one-loop corrections toρ have been computed in 1977[1] and also the two-loop QCD corrections are kno
since almost 20 years[5–7]. Roughly 10 years ago the orderGF M2

t α2
s QCD corrections[8,9] constituted one o

the first applications of the three-loop massive vacuum integrals. At three-loop order for the first time a ne
of Feynman graphs has to be considered, the so-called singlet diagrams as shown inFig. 1 which only contribute
to theZ-boson self-energy. They are characterized by the fact that in contrast to the non-singlet contribu
externalZ-bosons couple to different fermion lines. We want to note that the singlet contribution forms a
and gauge-independent subset. At three-loop order it completely dominates the numerical corrections ifMS
definition is adopted for the top-quark mass. In the case of the pole mass definition the singlet part still a
to about 30% of the total three-loop contribution. We want to mention that also two-loop[10,11] and three-loop
mixed electroweak/QCD[12] and even three-loop pure electroweak corrections[12] have been evaluated. Recen
also corrections in the large Higgs boson mass limit have been considered[13,14]. For non-universal correction
to MW and sin2 θ

lept
eff we refer to[15,16].

In this Letter we consider the four-loop contribution to theρ parameter originating from the singlet diagram
In Fig. 1 some sample diagrams are shown. This constitutes one of the first applications of the four-loop
master integrals evaluated recently in Ref.[17].
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2. Technicalities

Since the boson self-energies have to be evaluated for zero external momentum and only QCD correc
considered, only the axial-vector part of theZ-boson correlator gives a non-zero contribution. Whereas for
non-singlet contribution the naive anti-commuting definition ofγ5 can be adopted, special care has to be take
the singlet case. Actually, the definition of ’t Hooft and Veltman[18] has to be adopted and additional counterte
have to be introduced in order to ensure the validity of the Ward identities. In the practical calculation we
Ref. [19] and perform the following replacement in the axial-vector current

(7)γ µγ 5 = 1

3!ε
µνρσ γνγργσ .

We pull out theε-tensor from the actual integral and consider instead the completely antisymmetrized pro
the threeγ -matrices which can be written as

(8)γ [νγ ργ σ ] = 1

2

(
γ νγ ργ σ − γ σ γ ργ ν

)
.

As a consequence we have to deal with an object with six indices. Thus, for zero external momentum we

(9)ΠZZ = gµµ′

4
Π

µµ′
ZZ = gµµ′εµνρσ εµ′ν′ρ′σ ′

144
Π[νρσ ][ν′ρ′σ ′] = − 1

24
Π

[νρσ ]
[νρσ ] .

In the practical calculation we consider the objectΠ
[νρσ ]
[νρσ ] for which we also perform the renormalization as d

scribed in the following. Thus, in Eq.(9) the limit D → 4 has been considered whereD = 4−2ε is the space–time
dimension.

The additional finite counterterm is only needed to one-loop order, since the singlet diagrams appear
time at three-loop level. For each axial-vector vertex a factor[19,20]

(10)Zs
5 = 1− CF

αs

π
+O

(
α2

s

)
,

with CF = (N2
c − 1)/(2Nc) has to be considered. Furthermore, we have to consider the one-loop counterte

the strong coupling constant and the top-quark mass defined by

(11)α0
s = Zαs αs, m0

t = Zmmt ,

wheremt ≡ mt(µ) is renormalized in theMS scheme. The renormalization constants are given by

(12)Zαs = 1+ 1

ε

(
−11

12
CA + 1

3
T nf

)
αs

π
+O

(
α2

s

)
, Zm = 1− 3

4ε
CF

αs

π
+O

(
α2

s

)
,

with CA = Nc andT = 1/2. nf = 6 is the number of active flavours. The transition to the pole mass is ach
via

(13)mt(µ) =
[
1+ CF

(
−1− 3

4
ln

µ2

M2
t

)
αs

π
+O

(
α2

s

)]
Mt.

We generate the Feynman diagrams withQGRAF [21] and adopt with the help of the packagesq2e andexp
[22,23] the topologies and notation to the program performing the reduction of the four-loop vacuum dia
[24]. As an output we obtain the corrections to theρ parameter as a linear combination of several master integ
All of them have been computed in Ref.[17].

It is interesting to note that some of the master integrals are multiplied by spurious poles of order 1/ε2. As a
consequence, for these theO(ε) and even theO(ε2) contribution is needed. In the case of the master integralBB4
(which is the four-loop sunset vacuum bubble with one massless and four massive lines, see Eqs. (4.8) and
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ess we
Ref.[17]) it happens that the coefficient of orderε, which originally has only been evaluated in numerical form[17],
enters the pole part ofδρ. Thus an analytical expression can be deduced (in Eq.(14) below denoted byBB4(1))
which perfectly agrees with the known numerical result. Furthermore, we have obtained an analytical exp
for the coefficient of orderε2, by combining the numerically known value with the basis of transcendentals k
from an independent investigation[25]. These two coefficients read

BB4= J 4
∑
n≥0

εnBB4(n−4),

BB4(1) = −1976975

7776
+ 1792

9
ζ(3) = −14.897726533029588869214274870082319534267. . . ,

BB4(2) = −72443143

46656
+ 47488

27
ζ(3) − 8704

3
ζ(4) + 1024

9
ln4 2− 2048

3
ζ(2) ln2 2+ 8192

3
a4

(14)= −1678.886929107772963403030310267917509151. . . ,

whereJ is the one-loop tadpole,ζ(n) is Riemann’s zeta function and

(15)a4 = Li4(1/2) ≈ 0.51747906167389938633.

Let us mention that we performed the calculation using an arbitrary gauge parameter of the QCD gluon
gator,ξ . As expected the final result is independent ofξ even before inserting the values for the master integ
This constitutes a nice check of our result.

3. Results and discussion

Let us in the following present our analytical result and discuss its numerical implications. For completen
also repeat the QCD corrections up to three-loop order. For theMS definition of the top-quark mass we obtain

δρMS = 3xt

{
1+ αs

4π

[
8− 16

3
ζ(2) + 8 ln

µ2

m2
t

]

+
(

αs

4π

)2[26459

81
− 25064

81
ζ(2) − 3560

27
ζ(3) + 1144

9
ζ(4) − 16

9
B4 − 8

9
D3 + 882S2

+ nf

(
−50

3
+ 112

9
ζ(2) − 64

9
ζ(3)

)
− 56ζ(3)

+
(

668

3
− 304

3
ζ(2) + nf

(
−88

9
+ 32

9
ζ(2)

))
ln

µ2

m2
t

+
(

76− 8

3
nf

)
ln2 µ2

m2
t

]

+
(

αs

4π

)3[256

9
− 4528ζ(3) + 20816

3
ζ(4) − 2624

9
ln4 2+ 5248

3
ζ(2) ln2 2

(16)− 20992

3
a4 − 1232ζ(3) ln

µ2

m2
t

]
+ · · ·

}
,

where the “−56ζ(3)” in the third line stems from the three-loop singlet diagram. In orderα3
s only the singlet

contribution is presented. Furthermore, we have

xt = GF m2
t

8π2
√

2
,

S2 = 4√ Im
(
Li2

(
eiπ/3)) ≈ 0.26043413763216209896,
9 3
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result
e in the

gher

o holds at
lues in
B4 = 16a4 + 2

3
ln4 2− 4ζ(2) ln2 2− 13

2
ζ(4) ≈ −1.7628000870737708641,

D3 = 6ζ(3) − 15

4
ζ(4) − 6

[
Im

(
Li2

(
eiπ/3))]2 ≈ −3.0270094939876520198.

In Appendix A, we present the three- and four-loop result for the singlet contribution corresponding to E(16)
retaining, however, the colour factorsCF , CA andT . With the help of Eq.(13)one obtains the singlet result in th
on-shell scheme. Together with the non-singlet terms one gets

δρOS= 3Xt

{
1+ αs

4π

[
−8

3
− 16

3
ζ(2)

]

+
(

αs

4π

)2[314

81
− 26504

81
ζ(2) − 3416

27
ζ(3) − 64

3
ζ(2) ln 2+ 1144

9
ζ(4) − 16

9
B4 − 8

9
D3 + 882S2

+ nf

(
−8

9
− 208

9
ζ(2) − 64

9
ζ(3)

)
− 56ζ(3) +

(
−88

3
− 176

3
ζ(2) + nf

(
16

9
+ 32

9
ζ(2)

))
ln

µ2

M2
t

]

+
(

αs

4π

)3[256

9
− 11792

3
ζ(3) + 20816

3
ζ(4) − 2624

9
ln4 2+ 5248

3
ζ(2) ln2 2

(17)− 20992

3
a4 − 784ζ(3) ln

µ2

M2
t

]
+ · · ·

}
,

with Xt = GF M2
t /(8π2

√
2).

Inserting the numerical values for the constants in Eqs.(16) and (17)and adoptingµ = mt andµ = Mt , respec-
tively, the numerical corrections read

δρMS = 3xt

[
1− 0.19325

αs

π
+ (−4.2072+ 0.23764)

(
αs

π

)2

− 3.2866

(
αs

π

)3]
,

(18)δρOS= 3Xt

[
1− 2.8599

αs

π
+ (−4.2072− 10.387)

(
αs

π

)2

+ 7.9326

(
αs

π

)3]
,

where the three-loop contribution is split into the singlet (first number in round brackets) and the non-single
If we furthermore adoptαs(mt ) = 0.108 andαs(Mt) = 0.107, the expression forδρ looks like

δρMS = 3xt (1− 0.00664− 0.00469− 0.00013),

(19)δρOS= 3Xt(1− 0.09741− 0.01693+ 0.00031),

where thenth term inside the round brackets corresponds to the contribution of orderGF M2
t α

(n−1)
s . One observes

that the new four-loop singlet contribution is numerically small and amounts to about 3% of the three-loop
in the MS scheme and to less than 2% for on-shell top-quark masses. Note that the correction is positiv
on-shell and negative in theMS scheme. In the on-shell scheme the shift inMW and sin2 θ

lept
eff according to Eqs.(5)

and (6)amounts to 0.175 MeV and 10−6, respectively, which is significantly below the recent estimates of hi
order contributions and variations of input parameters[15,16].

It is interesting to mention that at three-loop order the singlet contribution completely dominates forMS top-
quark masses and amounts to about 30% in the on-shell scheme. Thus, in case the same pattern als
four-loop order, the complete QCD corrections would be well under control. However, the numerical va
Eq.(18)suggest that for some reason the four-loop singlet contribution seems to be accidentally small.

Let us also comment on the dependence of the singlet contribution on the renormalization scaleµ which
can be done separately from the non-singlet part. The latter is discussed in Ref.[9] (cf. Fig. 1 of Ref. [9]).
As far as the singlet contribution is concerned one obtains for the quantity(δρOS/(3X ) − 1) the values
t singlet
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f
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e
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the three-
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The
{−0.00457,−0.00437,−0.00455} corresponding toµ = {Mt,Mt/2,2Mt }. Theµ-dependence, being formally o
higher order, is less then 5% of the sum of the three- and four-loop singlet part which can be used as an es
theO(α4

s ) term.
In the remaining part of this section we briefly compare the numerical effect of the new terms with

corrections toδρ. In the on-shell scheme the three-loop QCD corrections of orderα2
s Xt lead to a shift of abou

−10 MeV in theW -boson mass and to+5 × 10−5 in the effective weak mixing angle. For Higgs-boson mas
between 200 GeV and 300 GeV the three-loop corrections of orderαsX

2
t [12] have the opposite sign and wi

roughly half the magnitude they are still relevant for the precision to be reached at the Giga-Z option of a future
e+e− linear collider. However, the pure electroweak corrections of orderX3

t are very small and give rise to co
rections well below 1 MeV for the shift in theW -boson mass. The same is true for the four-loop QCD sin
contributions considered in this Letter.

In conclusion, we computed the four-loop singlet contribution to theρ parameter which constitutes one
the first applications of the four-loop massive vacuum integrals to a physical quantity. The numerical siz
corrections turn out to be surprisingly small and lead to a shift in theW -boson mass below 1 MeV and to th
effective weak mixing angle below 10−5—beyond the accuracy foreseen in a future linear collider. This illustr
the good convergence properties of the perturbation theory and confirms the stable predictions based on
loop corrections. However, for a definite conclusion also the non-singlet contribution has to be evaluated.
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Appendix A. Singlet contribution to the ρ parameter

In this appendix we present the three- and four-loop singlet result expressed in terms ofCA = Nc, CF = (N2
c −

1)/(2Nc) and T = 1/2. Furthermore, we keep the labelnl which counts the number of massless quarks.
three-loop term can also be found in Ref.[26].

δρMS
sing= 3xt

(
αs

4π

)2

CF T

{
−84ζ(3)

+ αs

4π

[
CF

(
−336ζ(3) + 2400ζ(4) − 128 ln4 2+ 768ζ(2) ln2 2− 3072a4 − 504ζ(3) ln

µ2

m2
t

)

+ CA

(
−7064

3
ζ(3) + 3056ζ(4) − 320

3
ln4 2+ 640ζ(2) ln2 2− 2560a4 − 616ζ(3) ln

µ2

m2
t

)

+ nlT

(
1120

3
ζ(3) − 784ζ(4) + 64

3
ln4 2− 128ζ(2) ln2 2+ 512a4 + 224ζ(3) ln

µ2

m2
t

)

(A.1)+ T

(
256

3
− 1280

3
ζ(3) + 224ζ(3) ln

µ2

m2
t

)]
+O

(
α2

s

)}
.
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1. Introduction

As is well known, finite-temperature QCD seems to show two different phases: it is confining
at low temperatures (the realm of mesons and baryons) while asymptotic freedom and a quark-
gluon plasma are expected to appear in the high-temperatureregime. A good observable to witness
the change is the QCD free energy density, given essentiallyby the familiar Stefan-Boltzmann law
of blackbody radiation, multiplied by the number of light effective degrees of freedom.

To study the free energy density requires different methodsin different regimes. At low tem-
peratures the problem has to be treated with numerical lattice simulations, while at high tempera-
tures perturbation theory should allow at least for some progress, given that the coupling constant
g is small. Nevertheless, even for smallg, certain coefficients in the weak-coupling expansion do
remain non-perturbative [1], and can only be determined with numerical techniques.

In the high-temperature regime, the theory contains three different momentum scales [2],
namelyT (hard modes),gT (soft modes) andg2T (ultrasoft modes). The contribution of each
of these modes is best isolated in an effective theory setup.This is accomplished viadimensional
reduction[2, 3, 4] by integrating out the hard and soft modes to obtain a3d pure Yang-Mills SU(3)
theory (“MQCD”). MQCD can then be analysed on the lattice andthe results can be added to the
various perturbative contributions to obtain the completeanswer.

To add the MQCD lattice results to the perturbative ones, we need to change regularization
scheme from lattice to dimensional regularization. To thisaim, a matching between lattice and
continuum computations is needed and this is achieved by means of Lattice Perturbation Theory
applied to MQCD. The strategy we adopt for this purpose here is the one ofNumerical Stochastic
Perturbation Theory(NSPT) developed in recent years by the Parma group.

2. The NSPT method

NSPT relies onStochastic Quantization[5] which is characterized by the introduction of an
extra coordinate, a stochastic timet, together with an evolution equation called the Langevin equa-
tion,

∂φ(x, t)
∂ t

= −
∂S[φ ]

∂φ
+ η(x, t) , (2.1)

whereη(x, t) is a Gaussian noise which effectively generates the quantumfluctuations of the theory.
The average over this noise is such that, together with the appropriate limit int, the desired

Feynman-Gibbs functional integration is reproduced:

〈

O[φη(x,t)]
〉

η
t→∞
−→

1
Z

∫

[Dφ ]O[φ(x)]e−S[φ(x)] . (2.2)

For SU(3) Yang-Mills theory, the Langevin equation becomes

∂tUη = −i
(

∇S[Uη ]+ η
)

Uη , (2.3)

guaranteeing the proper evolution of variables within the group.
In this framework, perturbation theory comes into play by means of the expansion [6]

Uη(x, t) −→ ∑
k

gk
0U

(k)
η (x, t) , (2.4)
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whereg0 is the bare gauge coupling. This results in a system of coupled equations that can be
numerically solved via a discretization of the stochastic time t = nτ , whereτ is a time step. In
practice, we let the system evolve according to the Langevinequation for different values ofτ ,
average over each thermalized signal (this is the meaning ofthe above-mentioned limitt → ∞), and
then extrapolate in order to get theτ = 0 value of the desired observable. This procedure is then
repeated for different values of the various parameters appearing in the action.

3. Mass as an IR regulator

As stated above, the quantity we are interested in is the contribution to the QCD free energy
density f coming from the 3d pure SU(3) theory. On the lattice, this observable is related to the
trace of the plaquette〈1−ΠP〉, whereΠP ≡ N−1

c ReTrP andP is the elementary plaquette, via

〈1−Πp〉 =
2ad

d(d−1)

∂
∂β0

(

f
T

)

, (3.1)

with bare lattice couplingβ0 = 2Nc/(a4−dg2
0). The outcome can be expanded in powers ofβ0 as

〈1−Πp〉 =
c1

β0
+

c2

β 2
0

+
c3

β 3
0

+
c̃4

β 4
0

+O(β−5
0 ) . (3.2)

The determinations of the first three coefficients in the present setting have been discussed in
Ref. [7]. The non-perturbative value of the whole quantity has been determined with lattice si-
mulations in Ref. [8]. Terms ofO(β−5

0 ) disappear in the continuum limit, thanks to the super-
renormalizability of the theory. Thus only the fourth ordercoefficient is missing at the moment.

As shown parametrically in Ref. [1] and explicitly in Refs. [9], the coefficient̃c4 is actually IR
divergent, and consequently an appropriate regulator mustbe introduced for its determination. In
a non-perturbative setting this is provided by confinement,while in fixed-order computations one
could employ a finite volume (as in Ref. [7]) or a mass. Since the use of a mass is more convenient
in continuum computations involving dimensional regularization, we need to implement it in lattice
perturbation theory as well.

Apart from introducing a mass, we also fix the gauge in order tomatch the setting of the
continuum computations. Consequently, the functional integral is given by

Z =
∫

[Dφ ]Det
(

−∑
µ

∂̂ L
µ D̂µ [φ ]+m2

)

exp
(

−SW −SGF

)

=
∫

[Dφ ] exp
(

−SW −SGF −SFP

)

, (3.3)

where we assume the use of lattice units (i.e.a = 1), and

SW = β0∑
P

(1−ΠP)+
β0m2

4Nc
∑

x,µ ,A

φA
µ (x)φA

µ (x) , (3.4)

SGF =
β0

4Ncα ∑
x,A

[

∑
µ

∂̂ L
µ φA

µ (x)
]2

, (3.5)

SFP = −Tr
[

ln
(

−∑
µ

∂̂ L
µ D̂µ [φ ]+m2

)]

, (3.6)
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where we have followed the conventions of Ref. [10], writingin particularUµ = exp(iφµ ), φµ =

φA
µ TA, with the normalization Tr[TATB] = δ AB/2. Moreoverm is the common gluon and ghost

mass,α is the gauge parameter, andD̂µ is the discrete Faddeev-Popov operator, given by [10]

D̂µ [φ ] =

[

1+
i
2

Φµ −
1
12

Φ2
µ −

1
720

Φ4
µ −

1
30240

Φ6
µ +O(Φ8

µ)

]

∂̂ R
µ + iΦµ , (3.7)

with Φµ = φA
µ FA, where[FA]BC ≡−i f ABC are the generators of the adjoint representation.

To treat the Faddeev-Popov determinant as a part of the action means that, because of the
Langevin equation, one has to face the quantity∇SFP = −∇Tr[lnB] = −Tr[∇BB−1] with B[φ ] =

−∑µ ∂̂ L
µ D̂µ [φ ] + m2. We perform the inversion as in Ref. [11], while the trace is computed by

means of sources in the usual way.
The global strategy is then to perform simulations with lattices of different sizes at fixed mass

in order to extrapolate to infinite volume and, afterwards, to repeat this procedure for other values
of the mass. At this point, after subtracting the expected logarithmic divergence, one extrapolates
to zero mass, obtaining the needed fourth order coefficient.It is crucial to take the infinite-volume
limit before the zero-mass one because, by performing the limits in the opposite order, the final IR
regulator would be the volume and not the mass as we want.

4. First (benchmark) results

So far, the statistics we took are not sufficient to carry out the infinite-volume and zero-mass
limits for the fourth order coefficient ˜c4, but it is already possible to crosscheck the reliability of
the general method. As a first test, we compare the 1-loop numerical results for the trace of the
plaquette for the various masses with the known analytic values. As shown in Fig. 1 for a lattice
extentL = 5, the agreement between the numerical values and the analytic curve is very good.

A second check could consist of extrapolating at fixed lattice extent to zero mass, to see if one
recovers the already known coefficients [7]. Figs. 2 – 5 show these extrapolations for a lattice extent
L = 7: the fitting curve is a polynomial inm2 (the most naive choice) and it seems to approach the
expected result (the point atm = 0) very well for all the loop orders. The numerical values are
given in Table 1. Both of the mentioned checks are well satisfied also for the other lattice extents
that we have employed so far.

Loop Result from a fit tom= 0 Direct measurement atm= 0

1 -2.6594(17) -2.6580(8)

2 -1.9166(63) -1.9095(30)

3 -6.304(37) -6.307(21)

4 -28.43(27) -28.68(15)

Table 1: Comparison of the zero-mass extrapolations with the known results [7] (lattice extent= 7).

As for the 4-loop order, Fig. 6 shows the behavior with respect to the lattice size at fixed mass:
the result seems to stabilise towards the infinite-volume value in the way one would expect. Once
a few more lattice sizes are available and similar extrapolations can be carried out for all masses,
we will finally be in a position to carry out the mass extrapolation that is our ultimate goal.
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Figure 1: The 1-loop trace of the plaquette vs.
mass (forL = 5): the numerical results (blue
dots) agree with the analytical red curve.
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Figure 2: The 1-loop trace of the plaquette vs.
mass (forL = 7): the fitted curve in red ap-
proaches the expected value atm= 0.
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Figure 3: The 2-loop trace of the plaquette (for
L = 7), together with a polynomial fit inm2.
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Figure 4: The 3-loop trace of the plaquette (for
L = 7), together with a polynomial fit inm2.

5. Conclusions and prospects

It is worth stressing once again that our approach has successfully passed the reliability checks
we adopted: known zero-mass limits are reproduced through an extrapolation, and the volume
dependence at a fixed mass appears to disappear once the dimensionless combinationmL, wherem
is the mass andL the lattice extent, is large enough.

In order to obtain the asymptotic large-volume value at a fixed mass, it is still necessary to
collect more statistics on bigger lattices (for example,L = 12 and 14) at least for the two or three
smallest masses. Then, the fitting function should be a combination of a negative exponential and
polynomials inmL, as explained for instance in Ref. [12].

After subtracting the logarithmic divergence from the fitted infinite-volume values, the sub-
sequent extrapolation to zero mass does not appear to be troublesome, given that tests with lower
loop orders have produced good results so far.
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Figure 5: The 4-loop trace of the plaquette (for
L = 7), together with a polynomial fit inm2.
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Figure 6: The 4-loop trace of the plaquette vs.
lattice size, for a fixed massm= 0.2.
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1. Introduction

The strong coupling constant, αs, constitutes a fundamental parameter in the Standard

Model and thus its precise numerical value is very important for many physical predictions.

An interesting property of αs is its scale dependence, in particular its strong rise for low and

its small value for high energies which make perturbative calculations within the framework

of QCD possible. The scale dependence is governed by the β function. However, in order to

relate αs at two different scales it is also necessary to incorporate threshold effects of heavy

quarks which is achieved with the help of the so-called matching or decoupling relations.

Thus, when specifying αs it is necessary to indicate next to the scale also the number of

active flavours. In this paper we evaluate the decoupling relations to four-loop accuracy.

This makes it possible to perform a consistent running of the strong coupling evaluated at

a low scale, like, e.g., the mass of the τ lepton, to a high scale like the Z boson mass —

once the five-loop β function is available.

Many different techniques have been developed and applied to various classes of Feyn-

man diagrams. The complexity increases both with the number of legs and the number of

loops. As far as the application of multi-loop diagrams to physical processes is concerned

the current limit are four-loop single-scale Feynman diagrams, where either all internal

particles are massless and one external momentum flows through the diagram (see, e.g.,

ref. [1] for a recent publication), or all external momenta are zero and besides massless lines

there are also particles with a common mass M . The latter case has been developed in

refs. [2, 3] and first applications can be found in refs. [4, 5]. In this paper we consider a fur-

ther very important application: the four-loop contribution to the matching or decoupling

relation for the strong coupling.

The paper is organized as follows: In the next section we define the decoupling con-

stants and the theoretical framework of our calculation. In section 3 we present analytical

– 1 –
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results and discuss the numerical consequences. In section 4 the connection of the de-

coupling constant to the coupling of a Higgs boson to two gluons is explained and the

corresponding coupling strength is evaluated to five-loop order. Finally, we conclude in

section 5. In the appendix we present the result for the decoupling constant parameterized

in terms of the on-shell heavy quark mass.

2. Theoretical framework

We consider QCD with nf active quark flavours. Furthermore it is assumed that nl quarks

are massless and nh quarks are massive, i.e. we have nf = nl + nh. In practice one often

has nh = 1, however, it is convenient to keep a generic label for the massive quarks.

The decoupling relations relate quantities in the full and effective theory where the

latter is defined through the lagrangian L′ given by

L′
(

g0
s ,m

0
q , ξ

0;ψ0
q , G0,a

µ , c0,a; ζ0
i

)

= LQCD
(

g0′
s ,m0′

q , ξ0′;ψ0′
q , G0′,a

µ , c0′,a
)

. (2.1)

ψq, Ga
µ and ca are the fermion, gluon and ghost fields, respectively, mq are the quark

masses, ξ is the gauge parameter, and αs = g2
s/(4π) is the strong coupling constant. LQCD

is the usual QCD Lagrange density and the effective nl-flavour quantities are marked by

a prime. Eq. (2.1) states that the lagrangian in the effective theory has the same form as

the original one with rescaled fields, masses and coupling. It is convenient to define the

decoupling constants ζi in the bare theory through

g0′
s = ζ0

gg0
s , m0′

q = ζ0
mm0

q , ξ0′ − 1 = ζ0
3 (ξ0 − 1) ,

ψ0′
q =

√

ζ0
2ψ0

q , G0′,a
µ =

√

ζ0
3G0,a

µ , c0′,a =

√

ζ̃0
3c0,a . (2.2)

In a next step the renormalized quantities are obtained by the usual renormalization

procedure introduced by the multiplicative renormalization constants through [6]

g0
s = µεZggs , m0

q = Zmmq , ξ0 − 1 = Z3(ξ − 1) ,

ψ0
q =

√

Z2ψq , G0,a
µ =

√
Z3G

a
µ , c0,a =

√

Z̃3c
a . (2.3)

Combining eqs. (2.2) and (2.3) leads to renormalized decoupling constants, e.g.

ζg =
Zg

Z ′
g

ζ0
g , ζ3 =

Z3

Z ′
3

ζ0
3 , ζ̃3 =

Z̃3

Z̃ ′
3

ζ̃0
3 . (2.4)

Note that since we are interested in the four-loop results for ζi the corresponding renor-

malization constants have to be known with the same accuracy. In ref. [7] the results up

to four-loop order have nicely been summarized (see also refs. [8, 9]).

Due to the well-known Ward identities [6] there are several ways to compute the

renormalization constant for the strong coupling, Zg. A convenient relation, which has the

advantage that due to the appearance of renormalization constants involving ghosts less

diagrams contribute, is given by

Zg =
Z̃1

Z̃3

√
Z3

, (2.5)
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where Z̃1 is the renormalization constant of the ghost-gluon vertex gsGc̄c. The same is

true for the corresponding equation for the decoupling constant, such that one can use the

relation

ζ0
g =

ζ̃0
1

ζ̃0
3

√
ζ
0
3

, (2.6)

where ζ̃0
1 denotes the decoupling constant for the ghost-gluon vertex. Alternatively, one

can use the renormalized objects ζ3, ζ̃3 from eq. (2.4) as well as ζ̃1 = Z̃1

Z̃′

1

ζ̃0
1 and then obtain

ζg from the renormalized version of eq. (2.6).

In refs. [10, 11] formulae for the bare decoupling constants ζ0
i are derived which relate

the n-loop decoupling constants to n-loop vacuum integrals. In particular, one has

ζ0
3 = 1 + Π0h

G (0) ,

ζ̃0
3 = 1 + Π0h

c (0) ,

ζ̃0
1 = 1 + Γ0h

Gc̄c(0, 0) , (2.7)

where ΠG(p2) and Πc(p
2) are the gluon and ghost vacuum polarizations, respectively, and

the superscript h denotes the so-called hard part which survives after setting the external

momentum to zero. Specifically, ΠG(p2) and Πc(p
2) are related to the gluon and ghost

propagators through

i

∫

dx eip·x
〈

TG0,aµ(x)G0,bν(0)
〉

=δab

{

gµν

p2
[

1 + Π0
G(p2)

] + terms proportional to pµpν

}

,

i

∫

dx eip·x
〈

Tc0,a(x)c̄0,b(0)
〉

=− δab

p2 [1 + Π0
c(p

2)]
, (2.8)

respectively, while Γ0
Gc̄c(p, k) is defined through the one-particle-irreducible (1PI) part of

the amputated Gc̄c Green function as

i2
∫

dxdy ei(p·x+k·y)
〈

Tc0,a(x)c̄0,b(0)G0,cµ(y)
〉1PI

= pµg0
s

{

−ifabc
[

1 + Γ0
Gc̄c(p, k)

]

+ other colour structures
}

, (2.9)

where p and k are the outgoing four-momenta of c and G, respectively, and fabc are the

structure constants of the QCD gauge group. Sample four-loop diagrams for each line of

eq. (2.7) are shown in figure 1(a)–(c).

From eqs. (2.6), (2.4) and (2.7) it becomes clear that for the calculation of ζg four-

loop vacuum diagrams are needed. Currently the only practical method to express an

arbitrary four-loop vacuum integral in terms of a small set of master integrals is based

on the algorithm developed in ref. [12]. The application to four-loop bubbles has been

discussed in ref. [2]. First physical results deal with moments of the photon polarization

function [4] and the singlet contribution to the electroweak ρ parameter [5]. The essence

of the Laporta algorithm [12] is the generation of large tables containing relations between
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(a) (b) (c) (d) (e)

Figure 1: Sample diagrams for the gluon (a) and ghost (b) propagator and the ghost-gluon vertex

(c). In (d) the lowest-order diagram is shown mediating the Higgs-gluon coupling in the Standard

Model and (e) shows an example for a five-loop diagram contributing to the result in eq. (4.4).

arbitrary integrals and the so-called master integrals. For the calculation at hand the tables

have a size of about 8 GB and contain 6 million equations.

The master integrals needed for the evaluation of ζg have been computed in ref. [13],

where, however, some of the higher order coefficients in ε could only be determined numer-

ically.

3. Running and decoupling for αs

Whereas at three-loop level of the order of 1000 diagrams have to be considered, at four

loops there are almost 20000 diagrams which contribute to the gluon and ghost propagators

and the ghost-gluon vertex. They are generated with the program QGRAF [14]. With the

help of the packages q2e and exp [15, 16] the topologies and notation are adopted to the

program performing the reduction of the four-loop vacuum diagrams [2]. As an output we

obtain the bare four-loop results as a linear combination of several master integrals. All of

them have been computed in ref. [13].

Since at four-loop order the renormalization is quite non-trivial, let us in the following

briefly describe the procedure necessary to arrive at a finite result. It is convenient to

build in a first step the sum of the bare contributions to ζ0
3 , ζ̃0

3 and ζ̃0
1 and combine them

immediately to ζ0
g according to eq. (2.6). Already at this point the gauge parameter,

ξ, which for the individual pieces starts to appear at three-loop order, drops out and

hence spares us from renormalizing ξ. Let us mention that due to the complexity of the

intermediate expressions, the four-loop diagrams have been evaluated for Feynman gauge,

whereas the lower-order diagrams were computed for general ξ.

In a next step it is convenient to renormalize the parameters αs = g2
s/(4π) and mh

applying the usual multiplicative renormalization (cf. eq. (2.3)). The corresponding coun-

terterms have to be known up to the three-loop order. At this point one has to apply

eq. (2.4) which requires the ratio Zg/Z
′
g up to four-loop order. In order to evaluate this

ratio one has to remember that Z ′
g is defined in the effective theory and thus depends on

α′
s and nl whereas Zg depends on αs and (nl + nh). Thus it is necessary to use ζg up to

three-loop level in order to transform α′
s to αs where due to the presence of the divergences

in Z ′
g also higher-order terms in ε of ζg have to be taken into account.
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Finally one arrives at the following finite result for (ζg)
2 which for Nc = 3 and nh = 1

is given by

ζ2
g = 1 +

α
(nl+1)
s (µ)

π

(

−1

6
ln

µ2

m2
h

)

+

(

α
(nl+1)
s (µ)

π

)2
(

11

72
− 11

24
ln

µ2

m2
h

+
1

36
ln2 µ2

m2
h

)

+

(

α
(nl+1)
s (µ)

π

)3
[

564731

124416
− 82043

27648
ζ(3) − 955

576
ln

µ2

m2
h

+
53

576
ln2 µ2

m2
h

− 1

216
ln3 µ2

m2
h

+ nl

(

− 2633

31104
+

67

576
ln

µ2

m2
h

− 1

36
ln2 µ2

m2
h

)]

+

(

α
(nl+1)
s (µ)

π

)4
[

291716893

6123600

+
3031309

1306368
ln4 2 − 121

4320
ln5 2 − 3031309

217728
ζ(2) ln2 2 +

121

432
ζ(2) ln3 2 − 2362581983

87091200
ζ(3)

−76940219

2177280
ζ(4) +

2057

576
ζ(4) ln 2 +

1389

256
ζ(5) +

3031309

54432
a4 +

121

36
a5 −

151369

2177280
X0

+

(

7391699

746496
− 2529743

165888
ζ(3)

)

ln
µ2

m2
h

+
2177

3456
ln2 µ2

m2
h

− 1883

10368
ln3 µ2

m2
h

+
1

1296
ln4 µ2

m2
h

+nl

(

−4770941

2239488
+

685

124416
ln4 2 − 685

20736
ζ(2) ln2 2 +

3645913

995328
ζ(3)

− 541549

165888
ζ(4) +

115

576
ζ(5) +

685

5184
a4 +

(

−110341

373248
+

110779

82944
ζ(3)

)

ln
µ2

m2
h

− 1483

10368
ln2 µ2

m2
h

− 127

5184
ln3 µ2

m2
h

)

+ n2
l

(

− 271883

4478976
+

167

5184
ζ(3) +

6865

186624
ln

µ2

m2
h

− 77

20736
ln2 µ2

m2
h

+
1

324
ln3 µ2

m2
h

)]

+ O





(

α
(nl+1)
s (µ)

π

)5


 , (3.1)

where the heavy quark mass mh is renormalized in the MS scheme at the scale µ. The

corresponding expression for the on-shell mass is given in appendix A. In eq. (3.1), ζ(n) is

Riemann’s zeta function and an = Lin(1/2) =
∑∞

k=1 1/(2kkn). The constant X0, which is

the leading coefficient of a certain finite four-loop master integral, is only known numerically

with the value [13]

X0 = +1.808879546208334741426364595086952090 . (3.2)

Interestingly, in principle the number of numerical coefficients occurring in eq. (3.1) should

be three. One relation among them can be established through the separate renormalization

of the ghost propagator while a further constant has become available recently in analytical

form [17]. Thus one remains with one coefficient which is only known numerically.

Inserting numerical values into eq. (3.1) one obtains

ζ2
g ≈ 1 + 0.1528

(

α
(nl+1)
s (mh)

π

)2

+ (0.9721 − 0.0847nl)

(

α
(nl+1)
s (mh)

π

)3

+
(

5.1703 − 1.0099nl − 0.0220n2
l

)

(

α
(nl+1)
s (mh)

π

)4

. (3.3)
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It is interesting to note that the nl-independent four-loop coefficient is relatively big as

compared to the corresponding constants at lower loop-order. However, for the interesting

values nl = (3, 4, 5) one observes a big cancellation leading to a well-defined perturbative

series with coefficients (−0.4288,+0.7790,+1.9428) in front of (αs/π)4. Note, that the

two-loop result for ζg has been computed in refs. [18, 19] and the three-loop terms have

been evaluated for the first time in ref. [20].

We are now in a position to study the numerical impact of our result. As an example

we consider the evaluation of α
(5)
s (MZ) from α

(4)
s (Mτ ), i.e. we apply our formalism to the

crossing of the bottom quark threshold with nl = 4. In general one assumes that the value

of the scale µb, where the matching has to be performed, is of order mb. However, it is

not determined by theory. Thus this uncertainty contributes significantly to the error of

physical predictions. On general grounds one expects that while including higher order

perturbative corrections the relation between α
(4)
s (Mτ ) and α

(5)
s (MZ) becomes insensitive

to the choice of the matching scale. This has been demonstrated in refs. [21, 10] for the

three- and four-loop evolution, respectively. In the following we want to extend the analysis

to five loops.

The procedure is as follows. In a first step we calculate α
(4)
s (µb) by exactly integrating

the equation

µ2d

dµ2

α
(nf )
s

π
= β(nf )

(

α
(nf )
s

)

= −
∑

i≥0

β
(nf )
i

(

α
(nf )
s

π

)i+2

, (3.4)

with the initial condition α
(4)
s (Mτ ) = 0.36. Afterwards α

(5)
s (µb) is obtained from the

renormalized version of the first equation in (2.2) where we use ζg parameterized in terms

of the on-shell mass (cf. eq. (A.1)) Mb = 4.7 GeV. Finally, we compute α
(5)
s (MZ) using

again eq. (3.4). For consistency, i-loop evolution must be accompanied by (i − 1)-loop

matching, i.e. if we omit terms of O(αi+2
s ) on the right-hand side of eq. (3.4), we need to

discard those of O(αi+1
s ) in eq. (A.1) at the same time. Since the five-loop coefficient in

eq. (3.4) is not yet known we set β
(nf )
4 to zero in our numerical analysis.

In figure 2 the result for α
(5)
s (MZ) as a functions µb is displayed for the one- to five-

loop analysis. For illustration, µb is varied rather extremely, by almost two orders of

magnitude. While the leading-order result exhibits a strong logarithmic behaviour, the

analysis is gradually getting more stable as we go to higher orders. The five-loop curve

is almost flat for µb ≥ 1 GeV and demonstrates an even more stable behaviour than the

four-loop analysis of ref. [10]. It should be noted that around µb ≈ 1 GeV both the three-,

four- and five-loop curves show a strong variation which can be interpreted as a sign for the

breakdown of perturbation theory. Besides the µb dependence of α
(5)
s (MZ), also its absolute

normalization is significantly affected by the higher orders. At the central matching scale

µb = Mb, we encounter a rapid convergence behaviour.

4. Effective coupling between a Higgs boson and gluons

In this section we want to discuss the relation between ζg and the coupling of a scalar

Higgs boson to gluons. Due to the fact that gluons are massless, there is no coupling at

– 6 –
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µb(GeV)

α s(
M

Z
)

0.12

0.121

0.122

0.123

0.124

0.125

0.126

0.127

0.128

0.129

0.13

1 10

Figure 2: µb dependence of α
(5)
s (MZ) calculated from α

(4)
s (Mτ ) = 0.36 and Mb = 4.7GeV. The

procedure is described in the text. The dotted, short-dashed, long-dashed and dash-dotted line

corresponds to one- to four-loop running. The solid curve includes the effect of the new four-loop

matching term.

tree-level. At one-loop order the HGG coupling is mediated via a top-quark loop depicted

in figure 1(d).

For an intermediate-mass Higgs boson which formally obeys the relation MH ¿ mt it

is possible to construct an effective lagrangian of the form

Leff = −H0

v0
C1O1 , (4.1)

with the effective operator

O1 =
(

Ga
µν

)2
, (4.2)

where Ga
µν is the colour field strength. The coefficient function C1 incorporates the contri-

bution from the top-quark loops. At one-loop order it is easy to see that the contribution

from the triangle diagrams can be obtained through the derivative of the one-loop diagram

for Π0
G with respect to the top-quark mass. However, at higher-loop orders this simple pic-

ture does not hold anymore and the relation between the HGG diagrams and derivatives

of the two-point functions containing a top-quark loop gets more involved. In ref. [10] an

all-order low-energy theorem has been derived which establishes such a relation and which

has a surprisingly simple form (for definiteness we specify to the top-quark in this section):

C1 = −1

2

m2
t ∂

∂m2
t

ln ζ2
g . (4.3)

– 7 –
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An appealing feature of eq. (4.3) is that at a given order in αs only the logarithmic con-

tributions of ζg are needed for the calculation of C1 at the same order. Thus, from our

calculation we can reconstruct the five-loop logarithms of ζg from lower-order terms and

the β and γm functions governing the running of αs and the top-quark mass, respectively.

This leads to the following result, at Nc = 3 and nh = 1,

C1 = − 1

12

α
(nl+1)
s (µ)

π

{

1 +
α

(nl+1)
s (µ)

π

(

11

4
− 1

6
ln

µ2

m2
t

)

+

(

α
(nl+1)
s (µ)

π

)2 [

2821

288
− 3

16
ln

µ2

m2
t

+
1

36
ln2 µ2

m2
t

+ nl

(

−67

96
+

1

3
ln

µ2

m2
t

)

]

+

(

α
(nl+1)
s (µ)

π

)3 [

− 4004351

62208
+

1305893

13824
ζ(3) − 859

288
ln

µ2

m2
t

+
431

144
ln2 µ2

m2
t

− 1

216
ln3 µ2

m2
t

+ nl

(

115607

62208
− 110779

13824
ζ(3) +

641

432
ln

µ2

m2
t

+
151

288
ln2 µ2

m2
t

)

+ n2
l

(

− 6865

31104
+

77

1728
ln

µ2

m2
t

− 1

18
ln2 µ2

m2
t

)

]

+

(

α
(nl+1)
s (µ)

π

)4 [

− 69820734619

27993600
− 39407017

373248
ln4 2 +

11011

8640
ln5 2 +

39407017

62208
ζ(2) ln2 2

− 11011

864
ζ(2) ln3 2 +

27642438179

24883200
ζ(3) +

996205247

622080
ζ(4) − 187187

1152
ζ(4) ln 2 − 894391

4608
ζ(5)

− 39407017

15552
a4 −

11011

72
a5 +

1967797

622080
X0

−
(

1276661933

1492992
− 226222121

331776
ζ(3)

)

ln
µ2

m2
t

+
33517

1728
ln2 µ2

m2
t

+
140357

20736
ln3 µ2

m2
t

+
1

1296
ln4 µ2

m2
t

+ nl

(

58259821853

195955200
+

3896297

580608
ln4 2 − 121

1440
ln5 2 − 3896297

96768
ζ(2) ln2 2 +

121

144
ζ(2) ln3 2

−74306021071

348364800
ζ(3) +

141211087

3870720
ζ(4) +

2057

192
ζ(4) ln 2 − 20227

2304
ζ(5) +

3896297

24192
a4 +

121

12
a5

−151369

725760
X0 +

(

23250409

186624
− 8736121

82944
ζ(3)

)

ln
µ2

m2
t

+
569

2304
ln2 µ2

m2
t

+
2551

2592
ln3 µ2

m2
t

)

+ n2
l

(

−33014371

8957952
+

685

41472
ln4 2 − 685

6912
ζ(2) ln2 2 +

970259

110592
ζ(3) − 518509

55296
ζ(4)

+
115

192
ζ(5) +

685

1728
a4 −

(

1107181

186624
− 28297

9216
ζ(3)

)

ln
µ2

m2
t

− 1729

13824
ln2 µ2

m2
t

− 1205

5184
ln3 µ2

m2
t

)

+ n3
l

(

− 255947

1492992
+

5

64
ζ(3) +

481

5184
ln

µ2

m2
t

− 77

6912
ln2 µ2

m2
t

+
1

108
ln3 µ2

m2
t

)

+ 6
(

β
(nl)
4 − β

(nl+1)
4

)

]

+ O





(

α
(nl+1)
s (µ)

π

)5




}

, (4.4)

with mt being the MS top-quark mass renormalized at the scale µ. Note the appearance of

the flavour-dependent part of β4 in the five-loop contribution, whereas the corresponding

coefficient from the anomalous mass dimension does not appear. We want to stress that the

term of order α5
s covers the contributions from five-loop diagrams like the one in figure 1(e).
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Evaluating eq. (4.4) numerically leads to

C1 ≈ − 1

12

α
(nl+1)
s (mt)

π

[

1 + 2.7500
α

(nl+1)
s (mt)

π
+ (9.7951 − 0.6979nl)

(

α
(nl+1)
s (mt)

π

)2

+
(

49.1827 − 7.7743nl − 0.2207n2
l

)

(

α
(nl+1)
s (mt)

π

)3

+
(

−662.5065 + 137.6005nl − 2.5367n2
l − 0.0775n3

l + 6
(

β
(nl)
4 − β

(nl+1)
4

))

×
(

α
(nl+1)
s (mt)

π

)4 ]

. (4.5)

Again one observes large cancellations between the n0
l and n1

l term in the five-loop contri-

bution to C1.

Note that the result of eq. (4.4) constitutes a building block for the N4LO calculation

to the Higgs boson production and decay in the two-gluon channel, for which the complete

answer currently is certainly out of range. Still, the five-loop result for C1 constitutes a

high-order result in perturbative QCD which is of theoretical interest by itself.

5. Conclusions

In this paper the decoupling constant of the strong coupling is presented to four-loop order.

This constitutes a fundamental quantity of QCD and is one of the very few known to such a

high order. The decoupling constant is necessary for performing a consistent running of αs

with five-loop accuracy including important effects from the crossing of quark thresholds.

The calculation has been performed analytically, and the main result can be found in

eq. (3.1). With the help of a low-energy theorem it is possible to derive the five-loop result

for the effective coupling of the Higgs boson to gluons, which constitutes a building block

in the corresponding production and decay processes.

We want to mention that the result for ζ2
g in eq. (3.1) has been obtained independently

in ref. [22]. Except for QGRAF, which is used for the generation of the diagrams, there is

no common code. Even the master integrals have meanwhile been computed indepen-

dently [23] and for the renormalization a different procedure has been chosen.
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A. Results for ζOS
g

Replacing in eq. (3.1) the MS mass mh by the pole mass Mh using the three-loop approx-

imation [24 – 26] one gets
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(

ζOS
g

)2
= 1 +

α
(nl+1)
s (µ)

π

(

−1

6
ln

µ2

M2
h

)

+

(

α
(nl+1)
s (µ)

π

)2
(

− 7

24
− 19

24
ln

µ2

M2
h

+
1

36
ln2 µ2

M2
h

)

+

(

α
(nl+1)
s (µ)

π

)3
[

− 58933

124416
− 2

3
ζ(2) − 2

9
ζ(2) ln 2 − 80507

27648
ζ(3) − 8521

1728
ln

µ2

M2
h

−131

576
ln2 µ2

M2
h

− 1

216
ln3 µ2

M2
h

+ nl

(

2479

31104
+

1

9
ζ(2) +

409

1728
ln

µ2

M2
h

)]

+

(

α
(nl+1)
s (µ)

π

)4 [

− 141841753

24494400
+

3179149

1306368
ln4 2 − 121

4320
ln5 2 − 697121

19440
ζ(2)

+
1027

162
ζ(2) ln 2 − 2913037

217728
ζ(2) ln2 2 +

121

432
ζ(2) ln3 2 − 2408412383

87091200
ζ(3)

+
1439

216
ζ(3)ζ(2) − 71102219

2177280
ζ(4) +

2057

576
ζ(4) ln 2 +

49309

20736
ζ(5)

+
3179149

54432
a4 +

121

36
a5 −

151369

2177280
X0

−
(

19696909

746496
+

29

9
ζ(2) +

29

27
ζ(2) ln 2 +

2439119

165888
ζ(3)

)

ln
µ2

M2
h

− 7693

1152
ln2 µ2

M2
h

− 8371

10368
ln3 µ2

M2
h

+
1

1296
ln4 µ2

M2
h

+ nl

(

1773073

746496
+

173

124416
ln4 2 +

557

162
ζ(2)

+
22

81
ζ(2) ln 2 − 1709

20736
ζ(2) ln2 2 +

4756441

995328
ζ(3) − 697709

165888
ζ(4) +

115

576
ζ(5) +

173

5184
a4

+

(

1110443

373248
+

41

54
ζ(2) +

2

27
ζ(2) ln 2 +

132283

82944
ζ(3)

)

ln
µ2

M2
h

+
6661

10368
ln2 µ2

M2
h

+
107

1728
ln3 µ2

M2
h

)

+ n2
l

(

− 140825

1492992
− 13

162
ζ(2) − 19

1728
ζ(3)

−
(

1679

186624
+

1

27
ζ(2)

)

ln
µ2

M2
h

− 493

20736
ln2 µ2

M2
h

)

]

≈ 1 − 0.2917

(

α
(nl+1)
s (Mh)

π

)2

+ (−5.3239 + 0.2625 nl)

(

α
(nl+1)
s (Mh)

π

)3

+
(

−85.8750 + 9.6923 nl − 0.2395 n2
l

)

(

α
(nl+1)
s (Mh)

π

)4

. (A.1)
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[4] K.G. Chetyrkin, J.H. Kühn, P. Mastrolia and C. Sturm, Heavy-quark vacuum polarization:

first two moments of the O(α3
sn

2
f ) contribution, Eur. Phys. J. C 40 (2005) 361

[hep-ph/0412055].

– 10 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C012003
http://xxx.lanl.gov/abs/hep-ph/0412350
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C116%2C402
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C116%2C402
http://xxx.lanl.gov/abs/hep-ph/0211288
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC40%2C361
http://xxx.lanl.gov/abs/hep-ph/0412055


J
H
E
P
0
1
(
2
0
0
6
)
0
5
1
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Quark mass thresholds in QCD thermodynamics

Mikko Laine∗ and York Schröder†

Faculty of Physics, University of Bielefeld, D-33501 Bielefeld, Germany

We discuss radiative corrections to how quark mass thresholds are crossed, as a function of the
temperature, in basic thermodynamic observables such as the pressure, the energy and entropy
densities, and the heat capacity of high temperature QCD. The indication from leading order that
the charm quark plays a visible role at surprisingly low temperatures, is confirmed. We also sketch
a way to obtain phenomenological estimates relevant for generic expansion rate computations at
temperatures between the QCD and electroweak scales, pointing out where improvements over the
current knowledge are particularly welcome.

PACS numbers: 11.10.Wx, 11.15.Bt, 12.38.Bx, 98.80.Cq

I. INTRODUCTION

Besides being of fundamental theoretical interest to finite temperature field theory, the thermodynamic pressure of
the Standard Model, as a function of the temperature T and of various chemical potentials µi, has several potential
phenomenological applications. Most notably it dictates, through the Einstein equations, the expansion rate of the
radiation dominated Early Universe. The expansion rate in turn determines when various dark matter candidates
decouple, thus fixing their relic densities: fine details of the pressure could become observable for instance if dark
matter is made of electroweak scale WIMPs [1, 2] or of keV-scale sterile neutrinos [3, 4]. Furthermore, the pressure is
in principle visible in the present-day spectrum of the gravitational wave background that was generated during the
inflationary epoch [5]. More generally, the pressure incorporates the fact that the Standard Model possesses a trace
anomaly, i.e. T µ

µ 6= 0, which in turn can influence many kinds of gravity-related cosmological scenarios (for recent
examples, see Refs. [6]).

Apart from cosmology, the pressure is potentially also relevant for the hydrodynamic expansion that the dense mat-
ter generated in current and upcoming heavy ion collision experiments may undergo. In this case there is some room
for caution, however, since the issue of whether local thermodynamic equilibrium is reached remains controversial [7].

Given that the biggest theoretical challenges are related to strongly interacting particles, considerable efforts have
been devoted to the determination of the QCD part of the pressure over a course of years. Denoting by g the renor-
malised strong coupling constant, perturbative corrections to the non-interacting Stefan-Boltzmann law have been
determined at relative orders O(g2) [8], O(g3) [9], O(g4 ln(1/g)) [10], O(g4) [11], O(g5) [12], and O(g6 ln(1/g)) [13], as
a function of the number of colours, Nc, and the number of massless quark flavours, Nf . The first presently unknown
order, O(g6), contains non-perturbative coefficients [14, 15], but those can also be attacked [16, 17]. All orders of g
are available in the formal limit of large Nf [18]. These results have been extended to the case of finite quark chemical
potentials [19, 20, 21], and a similar computation has recently also been finalised for the weakly interacting part of
the Standard Model, at temperatures higher than the electroweak scale [22]. Moreover, the fact that several orders
are available allows to experiment with various kinds of resummations [23, 24].

Surprisingly, however, relatively little seems to be known about the dependence of the QCD pressure on the quark
masses mi, i = 1, ..., Nf . While the non-interacting Stefan-Boltzmann law is readily extended to this situation, it
in fact appears that even the first non-trivial term, O(g2), has not been exhaustively investigated in the literature
(see, however, Ref. [25]). In principle this term has of course been available since almost 30 years [9], but in explicit
form only in a renormalization scheme for quark masses which differs from the current standard, the MS scheme.
Furthermore, no general numerical evaluation of the basic integrals appearing has been presented, as far as we know.
For T = 0 but µi 6= 0, the full O(g2) analysis has also only been carried out recently [26].

Several probable reasons for the apparent lack of interest can surely be envisaged. First of all, the dependence on
Nf is known to a high order in the massless case, and interpolating between integer values of Nf should give much of
the information that we may need for the massive case. Second, including quark masses turns out to be technically
cumbersome [9]. Third, there are several indications, for instance from considerations of the baryon chemical poten-
tial [19, 20] and of mesonic correlation lengths [27], that the convergence is much better in the quark sector than in

∗Electronic address: laine@physik.uni-bielefeld.de
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the gluonic sector, so that the lowest non-trivial order may already provide sufficient accuracy. Nevertheless, we feel
that the last assumption deserves to be checked, at least at the next-to-leading order (NLO) O(g2), and this is the
purpose of the present paper.

In short, our general philosophy will then be to account for the gluonic contributions to the highest order available,
O(g6 ln(1/g)), and consider the change that quarks with finite physical masses inflict on this result at NLO, O(g2).
We do find that the quark mass effects at NLO are not too different from those at the leading order, O(g0), such
that the philosophy of terminating at O(g2) is at least self-consistent. Nevertheless, we also outline the procedure for
determining the quark mass dependence up to the order O(g6).

Apart from the theoretical goals mentioned, we also wish to sketch certain phenomenological results in this paper.
Consider the temperature evolution of an expanding system in the case of cosmology, for instance. Einstein equations
then lead to (see, e.g., Ref. [28])

1

T

dT

dt
= −

√

24πe(T )

m2

Pl

s(T )

c(T )
, (1)

where t is the time; we assumed the Universe to be flat (k = 0); and we ignored the cosmological constant. All the
quantities appearing here follow from the pressure: s(T ) = p′(T ) is the entropy density, e(T ) = Ts(T ) − p(T ) is the
energy density, and c(T ) = e′(T ) = Tp′′(T ) is the heat capacity. We wish to present our favoured “fits” for all these
functions for temperatures between the QCD and electroweak scales, indicating where further work is required.

The plan of this paper is the following. We start by elaborating on the basic formalism in Sec. II, discuss quark
mass thresholds in Sec. III, present a phenomenological evaluation of the various thermodynamic functions relevant
for physical QCD in Sec. IV, include weakly interacting particles in Sec. V, and conclude in Sec. VI.

II. BASIC FORMALISM

In order to determine the basic thermodynamic quantities of the Standard Model, all of which can be derived from
minus the grand canonical free energy density, or the pressure p(T,µ), where µ collects together the various chemical
potentials associated with conserved global charges [54], we make use of the framework of dimensionally reduced
effective field theories [29, 30, 31]. This framework allows to organise the computation in a transparent way, and
implements various resummations of higher order effects. We start by briefly reviewing certain aspects of the general
framework for QCD; further details can be found in Ref. [13].

Dimensional reduction proceeds by first integrating out the “hard modes”, with momenta or Matsubara frequencies
of order 2πT . This produces an effective theory [29], called EQCD [31], which is a three-dimensional SU(Nc) gauge
theory with a scalar field in the adjoint representation. The effective theory has a certain number of couplings,
parametrised by functions denoted by αE1...αE7 [contributing up to O(g6 ln(1/g))] and βE1...βE5 [contributing at
O(g6)] in Ref. [13]; in the following we explicitly specify the definitions for only a subset of them. These parameters
contain all the information concerning the hard modes. Assuming the use of dimensional regularization, we denote
by αMS

Ei
, βMS

Ei
parameters from which the 1/ǫ-divergences have been removed by the MS-prescription.

To proceed, we need to specify explicitly the effective mass parameter m2

3
and the effective gauge coupling g2

3
of

EQCD at NLO:

m̂2

3
≡

m2

3

T 2
≡ g2αMS

E4
+

g4

(4π)2
αMS

E6
, (2)

ĝ2

3
≡

g2

3

T
≡ g2 +

g4

(4π)2
αMS

E7
. (3)

Both parameters are renormalization group invariant up to the order computed, i.e., the dependence on the scale
parameter µ̄ is of order O(g6).

With this notation, the physical pressure of hot QCD can be written in the form

pQCD ≡ phard + psoft , (4)

where phard represents the contribution of the hard modes (by definition containing both all direct hard contributions
to the pressure, and all finite terms emerging from products like ǫ · 1/ǫ), while psoft represents the contribution of the
soft modes. Up to the accuracy O(g6), phard can conveniently be expressed as

phard

T 4
= αMS

E1 + ĝ2

3α
MS

E2 +
ĝ4

3

(4π)2

(

αMS

E3 − αMS

E2α
MS

E7 −
1

4
dACAα

MS

E5

)

+



3

+
ĝ6

3

(4π)4

{

[

dACA(αMS

E6 − αMS

E4α
MS

E7) − dAC
3

A

(43

3
−

27

32
π2

)]

ln
µ̄

4πT
+ ∆hard

}

, (5)

where dA ≡ N2

c
− 1, CA ≡ Nc, and we have separated a term on the last line which cancels the µ̄-dependence of psoft

at O(g6). The function ∆hard,

∆hard ≡
[

dACA(αMS

E6 − αMS

E4α
MS

E7) − dAC
3

A

(43

3
−

27

32
π2

)]

ln
4πT

µ̄
+

+βMS

E1 + 2αMS

E2(α
MS

E7)
2 − 2αMS

E3α
MS

E7 −
1

4
dACA

(

βMS

E2 − αMS

E5α
MS

E7 + αMS

E4β
MS

E3

)

, (6)

depends on Nc, Nf ,mi, µi, and µ̄/T . The contributions of the soft modes are [13]

psoft

T 4
=

m̂3
3

12π
dA −

ĝ2
3m̂

2
3

(4π)2
dACA

(

ln
µ̄

2m3

+
3

4

)

−
ĝ4
3m̂3

(4π)3
dAC

2

A

(

89

24
+
π2

6
−

11

6
ln 2

)

+

+
ĝ6

3

(4π)4
dAC

3

A

[(

43

4
−

491

768
π2

)

ln
µ̄

2m3

+

(

43

12
−

157

768
π2

)

ln
µ̄

2CAg2
3

+ ∆soft

]

. (7)

The function ∆soft reads

∆soft = βM + βG − αMS

E4

[

dA + 2

4C3

A

βMS

E4 +
2dA − 1

4C4

A

βMS

E5

]

, (8)

where βM can be found in Ref. [32], and a numerical estimate of βG in Ref. [17].
Let us stress that the formulae presented apply independently of whether quark masses are included or not: all

quark mass effects can be incorporated in the perturbative functions αMS

E1
...αMS

E7
, βMS

E1
...βMS

E5
. In particular, the non-

perturbative numerical value βG and the contribution from the Debye scale βM in Eq. (8) are “universal”.
In the following, we refer to the various orders of the weak-coupling expansion according to the power of ĝ3, m̂3

that appear, with the rule O(m̂3) = O(ĝ3) = O(g). In other words, “O(gn)” denotes O(ĝn−k
3

m̂k
3) in the expression

constituted by Eqs. (4), (5), (7). If ĝ2

3
, m̂2

3
were to be re-expanded in terms of g2, the result of Ref. [13] would be

reproduced up to O(g6). In practice, however, it is advisable to keep the result in an unexpanded form, because this
makes it more manageable, and because the unexpanded form introduces resummations of higher order contributions.

III. QUARK MASS THRESHOLDS IN THE PRESSURE

In the absence of an explicit O(g6 ln(1/g))-computation with mi 6= 0, one can envisage various recipes for estimating
the change that quark masses cause on the Nf = 0 result. For instance, one could multiply the Nf = 0 result with
the change indicated by the Stefan-Boltzmann law, i.e. by αMS

E1
(Nf)/α

MS

E1
(0) [2]. An alternative would be to define an

effective non-integer Nf by evaluating the massive αMS

E1
(Eq. (11) below), fitting it to the massless formula (Eq. (A.1)

in Ref. [13]), and using the resulting Nf in the massless result of O(g6 ln(1/g)) [33]. What we propose here is an

improvement of the first of these alternatives: we determine the functions αMS

E1
, αMS

E2
, αMS

E7
in the general massive case,

which allows us to evaluate the order O(g2) result for the pressure, viz.

pQCD

T 4
≈ αMS

E1
+ ĝ2

3
αMS

E2
. (9)

Afterwards, we may modify the Nf = 0 result with a “correction factor”,

[αMS

E1
+ ĝ2

3
αMS

E2
](Nf)

[αMS

E1
+ ĝ2

3
αMS

E2
](0)

. (10)

Comparing the outcome of this O(g2) recipe with the corresponding O(g0) recipe allows to probe the convergence.

Note that it is important to also determine αMS

E7
, since only this way can the renormalisation scale that appears in ĝ2

3

be reasonably fixed (cf. Eq. (3)).

We thus proceed to compute αMS

E1
, αMS

E2
, αMS

E7
. We do this in full generality, keeping Nf , Nc, the quark masses mi,

and the chemical potentials µi as free parameters. The quark masses and the strong gauge coupling are renormalised
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FIG. 1: Left: the pressure for Nf = 0, 3, 4, at O(g0) and O(g2). Right: the “correction factors” accounting for the effects
of quarks, at O(g0) and O(g2) (cf. Eq. (10)). They grey bands indicate the effect of MS scheme scale variations by a factor
0.5 ... 2.0 around the “optimal” value. It is observed that while the O(g2) corrections are of order 20...30% in the pressure,
they are of order 10% in the correction factors for Nf = 3, and even less for the physical case Nf = 4.

in the MS scheme. Some details concerning the computation are collected in Appendix A. As final results, we obtain

αMS

E1 = dA
π2

45
+ 4CA

Nf
∑

i=1

F1

(

m2

i

T 2
,
µi

T

)

, (11)

αMS

E2
= −

dACA

144
− dA

Nf
∑

i=1

{

1

6
F2

(

m2

i

T 2
,
µi

T

)[

1 + 6F2

(

m2

i

T 2
,
µi

T

)]

+

+
m2

i

4π2T 2

(

3 ln
µ̄

mi
+ 2

)

F2

(

m2

i

T 2
,
µi

T

)

−
2m2

i

T 2
F4

(

m2

i

T 2
,
µi

T

)}

, (12)

αMS

E7 =
22CA

3

[

ln

(

µ̄eγE

4πT

)

+
1

22

]

−
2

3

Nf
∑

i=1

[

2 ln
µ̄

mi
+ F3

(

m2

i

T 2
,
µi

T

)]

, (13)

where the functions F1, ..., F4 and some of their properties are detailed in Appendix B.
To estimate the numerical importance of the O(g2) corrections, we need to assign a value to all the parameters that

appear. Following a simple-minded logic, we use 1-loop running,

g2(µ̄) =
24π2

(11CA − 4TF ) ln(µ̄/Λ
MS

)
, mi(µ̄) = mi(µ̄ref)

[

ln(µ̄ref/ΛMS
)

ln(µ̄/Λ
MS

)

]

9CF
11CA−4TF

, (14)

where TF = Nf/2, CF = (N2

c − 1)/2Nc, µ̄ref ≡ 2 GeV. The quark masses at µ̄ = µ̄ref are taken from Ref. [34].
To choose µ̄, we apply the principle of minimal sensitivity criterion for the parameter ĝ2

3
, as suggested in Ref. [35].

Furthermore, for illustration, we set Λ
MS

≡ 200 MeV.
The outcome of this procedure is shown in Fig. 1, for µi = 0. It is observed that while the O(g2) corrections are

of order 20...30% in the pressure (left panel), the “correction factors”, i.e. the ratios in Eq. (10), only contain O(g2)
corrections of order 10% for Nf = 3, and even less for the physical case Nf = 4 (right panel). This implies that the
quark mass dependence of the pressure probably converges faster than the weak-coupling expansion as a whole.

Finally, we note from Fig. 1(right) that the charm quark contribution starts to be visible already at fairly low
temperatures. At leading order, the quark mass dependence is determined by the function F1 (cf. Eq. (11)), which at
low temperatures has the familiar classical form

F1

(m2

T 2
, 0

)

≈

(

m

2πT

)
3

2

exp
(

−
m

T

)

. (15)

It is observed that F1 obtains 5% of its asymptotic value 7π2/720 at temperatures as low as T ≈ m/5. (For the
precise numerical values of F1, see Fig. 5.) As Fig. 1(right) shows, the onset of a visible charm mass dependence is
postponed to about T ∼ 350 MeV at O(g2), but the basic pattern remains unchanged.
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IV. PHENOMENOLOGICAL RESULTS FOR QCD

We now move from fairly well-defined expressions towards phenomenology. The goal is to present, where possible,
an educated numerical guess for the physical QCD pressure. We set all chemical potentials to zero in the following.

The general philosophy we adopt is that, for temperatures above the deconfinement transition, the weak-coupling
expansion needs to be evaluated up to the order where the dominant contributions from all the different scales
(2πT , gT , g2T ) have made their entrances. There is some support for such a recipe from a number of non-trivial
observables [36, 37]. In practice, this means that the QCD pressure would need to be evaluated up to O(g6).

Unfortunately, only some of the O(g6) terms (parametrised by βM, βG, β
MS

Ei
in Sec. II) are known at present. This

introduces a certain unknown “constant” into the prediction. We propose to fix the constant by the following recipe.
Let us start by considering the case Nf = 0, Nc = 3. Then the expressions in Sec. II depend on only two parameters:

on µ̄/T (through αMS

E1
...αMS

E7
, βMS

E1
...βMS

E5
), and on µ̄/Λ

MS
(through g2(µ̄)). It so happens that the dependence on µ̄,

which formally cancels up to the order of the computation, is numerically non-monotonous (see, e.g., Ref. [23]), so
that the specific choice is not terribly important, as long as we are close to the extremum. In practice we choose µ̄/T
according to the principle of minimal sensitivity criterion for the parameter ĝ2

3
, as already mentioned. Thereby the

results only depend on T/Λ
MS

and on the unknown O(g6) terms, contained in ∆hard and ∆soft, defined in Eqs. (5), (7).
It is important to note that once µ̄/T has been fixed, the ∆’s can be treated as temperature-independent constants.
It is furthermore convenient to combine them into a single term [55],

∆hard + dAC
3

A∆soft ≡ dAC
3

A∆ . (16)

In order to now eliminate the dependence on ∆, we “match” the perturbative prediction to 4d lattice simulation
results for the case Nf = 0, where the continuum limit has been reached with reasonable precision [38, 39]. It should
be stressed that this step is purely phenomenological: in principle ∆ is computable from the theory. On the other
hand, there is every reason to expect that results obtained through the dimensionally reduced framework do match
4d lattice results as soon as T >∼2Tc, where Tc is the temperature of the deconfinement phase transition (see, e.g.,
Refs. [36], [40]–[42]). Moreover, that a family of functions specified by a single parameter should match a given
function for a whole range of argument values, provides for a non-trivial consistency check.

Now, lattice results are usually presented in terms of T/Tc, rather than T/Λ
MS

. We thus need a value for Tc/ΛMS
;

we use Tc/ΛMS
≈ 1.20 which appears to be consistent with all independent determinations (cf. Ref. [37], Sec. 4.2).

After this choice, an excellent match can be obtained (we do this by minimising the difference squared of the function
values in the range T > 3Tc), with a value ∆ ≈ −3.287 (cf. Fig. 2). In the following we will take the cubic spline
interpolation shown in Fig. 2 as the “starting point”, which will then be “corrected” by the effects of quarks.

To now include quarks, we simply multiply the result just obtained by the correction factor in Eq. (10). We should
expect this construction to work the better the higher the temperature, but surely at least T > 200 MeV is required.

It needs to be noted, however, that like in Fig. 1, the evaluation of the correction factor necessitates fixing Λ
MS

in physical units. This exercise is non-trivial. We again choose a purely phenomenological but rather convenient
procedure, which makes use of the pressure produced by the full set of hadronic resonances [34]. Indeed, it has been
demonstrated recently that if the resonance masses are tuned to correspond to the quark masses accessible to current
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lattice simulations, the resulting “resonance gas pressure” works surprisingly well even for temperatures deep into the
crossover region [43].

Thus, we tune Λ
MS

such that our analytic recipe and the first derivative thereof match the resonance gas result (in
which the temperature is automatically measured in physical units) at a certain temperature. Examples are shown
in Fig. 3(left). The values of Λ

MS
that result depend slightly on Nf and on variations of quark masses within their

experimental errors, but the typical range is Λ
MS

≈ 175...180 MeV. We should stress that this matching is of course
rather arbitrary, but it does produce qualitatively reasonable results with, for instance, an inflection point on the side
T > Tc ∼ 175 MeV, as suggested by lattice results [44]–[47].

Naturally, the resonance gas results cannot really be trusted in quantitative detail for temperatures above, say,
150 MeV. Therefore, for a certain interval (which we choose to be T = 150...350 MeV, and shade in all figures), the
results remain to be established by lattice simulations. The matter becomes even more urgent, when one considers
derivatives of the pressure, to which we now turn.

Apart from the pressure, its first and second derivatives play an important role, as already mentioned in connection
with Eq. (1). There are various ways of presenting the information contained in these derivatives: we may for instance
parametrise the physical observables e(T ), s(T ), c(T ) through effective numbers of bosonic degrees of freedom,

geff(T ) ≡
e(T )

[

π2T 4

30

] , heff(T ) ≡
s(T )

[

2π2T 3

45

] , ieff(T ) ≡
c(T )

[

2π2T 3

15

] , (17)

in terms of which Eq. (1) becomes

3

2

√

5

π3

mPl

T 3

dT

dt
= −

√

geff(T )heff(T )

ieff(T )
, (18)

or we can consider dimensionless ratios like

w(T ) ≡
p(T )

e(T )
=

p(T )

Tp′(T ) − p(T )
, (19)

c2s(T ) ≡
p′(T )

e′(T )
=

p′(T )

Tp′′(T )
=
s(T )

c(T )
. (20)

Both the “equation-of-state” w(T ) and the sound speed squared c2s(T ) equal 1/3 in the non-interacting limit. The
deviation of the parameter w(T ) from 1/3 is proportional to the trace anomaly, sometimes also called the interaction
measure.

Results for all of these quantities, based on our interpolation, are shown in Fig. 3(middle, right). It can be seen
that quantities involving derivatives show a significant amount of structure around the QCD crossover, even if there
were no singularities. We remark that to smooth the behaviour we have evaluated p(T,µ) with a relatively sparse
temperature grid in the critical region.

Clearly, it is important to correct the results in the “shaded region” by using results from future lattice simulations
of the type in Refs. [44]–[47]. In particular, the recent Refs. [46, 47] display direct results for c2s and w, respectively.
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Unfortunately, it does not appear that these results would be useful for our present purposes: they for instance fail
to reproduce the significant rise in w and c2s that is seen in Fig. 3(right) at temperatures down from the critical one,
displaying rather a much deeper dip (down to ∼ 0.1) around the critical region, and then rising at most slightly as the
temperature is lowered. Therefore, it could be feared that the dip itself is affected by the unphysically heavy quark
masses that are used in the simulations.

We finally comment on the peak visible in ieff in Fig. 3(middle). While the details are of course not captured by
our phenomenological recipe, the fact that a peak exists in the heat capacity is not unexpected for rapid crossovers;
in second order phase transition, the heat capacity even diverges as T → Tc.

V. PHENOMENOLOGICAL RESULTS FOR THE STANDARD MODEL

While in heavy ion collisions at most strongly interacting particles have time to thermalise, the expansion rate is
much smaller in cosmology, so that all Standard Model degrees of freedom do reach thermal equilibrium, and remain
thermalised until neutrino decoupling at around T ∼ MeV. Therefore, their contributions need to be added to the
QCD pressure. In practice, we count gluons and the four lightest quarks as the QCD degrees of freedom, while the
bottom and top quark are treated as part of the “weakly interacting” sector, so that the result splits into a sum of
two terms.

We will assume that it is sufficient to treat the weakly interacting sector at 1-loop level. That is, we construct
the free energy density f in the presence of a Higgs expectation value v, temperature T , and chemical potentials µi,
according to

f(v, T,µ) = −
1

2
ν2(µ̄)v2 +

1

4
λ(µ̄)v4 +

∑

i

σiJi(mi(v), T, µi) , (21)

where the sum extends over all physical degrees of freedom, with their proper degeneracies; σi = +1 (−1) for bosons
(fermions); and the tree-level masses mi(v) depend on v in the standard way (it is sufficient at this order to work in
unitary gauge). For scalar (Js), vectors (Jv) and fermions (Jf),

Js = −
m4

64π2

(

ln
µ̄2

m2
+

3

2

)

+
T 4

4π2

∫ ∞

0

dxx
1

2 ln
(

1 − e−
√

x+y
)

y=
m2

T2

, (22)

Jv = −
m4

64π2

(

ln
µ̄2

m2
+

5

6

)

+
T 4

4π2

∫ ∞

0

dxx
1

2 ln
(

1 − e−
√

x+y
)

y=
m2

T2

, (23)

Jf = −
m4

64π2

(

ln
µ̄2

m2
+

3

2

)

+ T 4F1

(

m2

T 2
,
µ

T

)

. (24)

The renormalised pressure is then given by

p(T,µ) = minvf(v, 0,0) − minvf(v, T,µ) . (25)

The renormalised pressure depends on a number of parameters defined in the MS scheme: the Higgs potential
parameters ν2(µ̄), λ(µ̄) (cf. Eq. (21)); and the weak gauge and the top and bottom Yukawa couplings g2

w(µ̄), h2

t (µ̄),
h2

b(µ̄) (through the tree-level masses). The first four of these we express through the Fermi constant and the W±,
Higgs, and top pole masses, employing the explicit relations listed in Ref. [30], while the last one is fixed through
the bottom mass in the MS scheme [34]. Given that the electroweak theory contains a multitude of scales, both zero
temperature and thermal, we simply choose a fixed µ̄ = 100 GeV for the weakly interacting part of the pressure (we
have varied the scale by a factor 0.5 ... 2.0, and seen that the dependence is invisible on our resolution).

Let us remark that Eq. (25) suffers from the problem that it leads to a first order electroweak phase transition
at a certain temperature, while there is none if the theory is treated more carefully [48, 49]. In practice this does
not lead to any serious complications, however: we again smooth the behaviour by evaluating p(T,µ) with a sparse
temperature grid around the critical region. In our figures, we shade the corresponding temperature interval, where
our estimates are qualitative at best.

With these reservations, the whole Standard Model pressure, and the parameters defined in Eqs. (17), (19), (20),
are shown in Fig. 4.

At temperatures above the electroweak scale, our results are already very close to the ideal gas results. Recently,
higher loop corrections in this region have been considered in some detail [22]. The authors find a rather more signifi-
cant deviation from the ideal gas value, due for instance to the top Yukawa coupling. We have not implemented these
corrections, however, since they would require a correspondingly higher order computation in the broken symmetry
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FIG. 4: Left: The Standard Model pressure for mH = 150 GeV, 200 GeV. The shaded intervals correspond to the QCD and
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parameter w and the speed of sound squared c2

s, for the same system. Various sources of uncertainties are discussed in the text.

phase. Though such a computation exists in principle up to 2-loop level [50], we did not consider the non-trivial
challenges posed by its numerical evaluation for general masses to be worth tackling at present, given that in the
quantities plotted in Fig. 4(right), the 2-loop contributions (which do not contribute to the trace anomaly on the
symmetric phase side) are expected to largely cancel out. Nevertheless, it would be important to finalise this compu-
tation, if physics is made with the temperature interval T = 10...100 GeV, where the W±, Z0 bosons and top quark
cross their mass thresholds.

Finally, once a definite Higgs model is available, it will of course be important to carry out lattice simulations for
the transition region. Fortunately, for the electroweak theory this can be achieved within the dimensionally reduced
effective theory [30], whereby also all fermions with their physical Yukawa couplings can be fully accounted for.

VI. CONCLUSIONS

The functional dependence of the QCD pressure at a high temperature T on most of the parameters of the theory
(number of coloursNc, number of active massless flavoursNf , and quark chemical potentials µi) is known up to relative
order O(g6 ln(1/g)), while the dependence on the quark masses mi has gained much less interest. The purpose of
this note has been to study whether it indeed is justified to consider the effects of finite non-zero quark masses at the
level of the non-interacting Stefan-Boltzmann law (i.e. O(g0)), as has been the standard procedure. For this purpose,
we have determined the corrections of order O(g2) in full generality in the MS scheme, and presented a numerical
evaluation of all the integrals that appear in this result.

We find that while the O(g2) corrections are in general 20...30% (Fig. 1(left)), they are numerically at most 10% for
the quark mass dependence (Fig. 1(right)). This is perhaps in accord with previous observations according to which
quarks are fairly perturbative as soon as they are deconfined, even though gluons do display strong interactions up
to very high temperatures.

Finally, we have sketched educated “guesses” for the thermodynamic quantities that play a role in various physical
contexts, for temperatures between the QCD and electroweak scales. For the case of heavy ion collisions, in particular,
it is perhaps relevant to keep in mind that if the charm quark does thermalise, it has a rather significant effect even
at relatively low temperatures (Fig. 3(left)). Of course, it is by no means clear whether such a thermalization should
take place in practice [51].

In order to improve on our QCD results, the missing perturbative O(g6) computations and, naturally, lattice
simulations in the transition region, with physical values of the quark masses, remain to be completed.

For the full Standard Model, we have presented similar guesses for the various quantities that are relevant for expan-
sion rate and particle decoupling computations (Figs. 4). Although the deviations from previous phenomenological
estimates that have appeared in the literature [1, 2] are in general fairly small, we nevertheless hope that our results
help for their part to gauge the systematic uncertainties that still exist in these quantities.

In particular, we have stressed the need for repeating the computations of Ref. [22] in the broken symmetry phase
and, of course, the need for effective theory lattice simulations in the transition region, once the electroweak model /
Higgs mass is known.
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APPENDIX A: OUTLINE OF THE COMPUTATION

In this Appendix we present a few details for the computation leading to Eqs. (11)–(13). We concentrate on the
fermionic contributions; the bosonic ones are elementary.

We write the fermionic contributions in terms of the renormalised gauge coupling g2 and the renormalised quark
masses mi, i = 1, ..., Nf . The master integrals emerging are

Ib ≡
∑

∫

Pb

1

P 2

b

, (A1)

Jf(m,µ) ≡
1

2

∑

∫

P
f

ln(P̃ 2

f +m2) , (A2)

If(m,µ) ≡
∑

∫

P
f

1

P̃ 2

f
+m2

, (A3)

Hf(m,µ) ≡
∑

∫

Pf,Qf

1

(P̃ 2

f
+m2)(Q̃2

f
+m2)(P̃f − Q̃f)2

, (A4)

where Pb, Pf denote bosonic and fermionic Matsubara four-momenta, respectively, and P̃f ≡ Pf + (−iµ,0) includes
the chemical potential µ. With this notation, the fermionic contributions to the parameters of interest are

T 4αf

E1 = 4CA

Nf
∑

i=1

Jf(mi, µi) , (A5)

T 4αf

E2
= 2CAδ̂1m

2

Nf
∑

i=1

m2

i If(mi, µi) +

+ dA

Nf
∑

i=1

{

d− 1

2

[

2Ib − If(mi, µi)
]

If(mi, µi) + 2m2

iHf(mi, µi)

}

, (A6)

1

(4π)2
αf

E7 = δ̂1g
2 +

2

3

Nf
∑

i=1

dIf(mi, µi)

dm2

i

, (A7)

where δ̂1m
2, δ̂1g

2 are counterterms defined by writing the bare mass parameter and gauge coupling as m2

Bi = m2

i (1 +

g2δ̂1m
2), g2

B = g2(1 + g2δ̂1g
2); it is understood that only the fermionic part of δ̂1g

2 is considered; and d ≡ 3 − 2ǫ.
The next step is the evaluation of the Matsubara sums appearing in the master integrals. For the 1-loop structures

(Eqs. (A1)–(A3)), it is straightforward to obtain

Ib =

∫

dd
p

(2π)d

1

2|p|

[

1 + 2nB(|p|)
]

, (A8)

Jf(m,µ) =

∫

dd
p

(2π)d

−p
2

2dE

[

1 − nF(E − µ) − nF(E + µ)
]

E=

√
p2+m2

, (A9)

If(m,µ) =

∫

dd
p

(2π)d

1

2E

[

1 − nF(E − µ) − nF(E + µ)
]

E=

√
p2+m2

, (A10)

where we have carried out a partial integration after the sum in Jf, and

nB(E) ≡
1

eβE − 1
, nF(E) ≡

1

eβE + 1
. (A11)

As is well known, the momentum integral in Eq. (A8) can be carried out explicitly, Ib = πd/2T dΓ(1−d/2)ζ(2−d)/2π2T ,
but the ones in Eqs. (A9), (A10) with m,µ 6= 0 cannot in general be integrated in closed form.
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For the genuine 2-loop integral Hf in Eq. (A4) the sums are slightly more complicated, so we give here some
details. The method we employ follows the standard procedure [9] (see also Refs. [52, 53]). The twofold sum over the
Matsubara modes is first written as a threefold sum with a Kronecker delta-function, and the delta-function is then

written as δ(p0) = T
∫ β

0
dx exp(ip0x). The sums can now be performed:

T
∑

pb

eip
b

x

p2

b
+ E2

=
1

2E
nB(E)

[

e(β−x)E + exE
]

, (A12)

T
∑

pf

eip̃fx

p̃2

f
+ E2

=
1

2E

[

nF(E + µ)e(β−x)E+βµ − nF(E − µ)exE
]

, (A13)

where pb, pf denote the bosonic and fermionic Matsubara frequencies, respectively; and p̃f = pf− iµ. The integral over
x is then simple. All the exponents appearing can be written in terms of inverses of the distribution functions nB,
nF, and multiplying with their explicit appearances, we are left with at most quadratic products of the distribution
functions, and fractions containing the three “energies”.

The fractions containing the energies can be organized in a transparent form, once we introduce the zero-temperature
objects

Hvac(m
2

1
,m2

2
,m2

3
) =

∫

d4−2ǫP

(2π)4−2ǫ

∫

d4−2ǫQ

(2π)4−2ǫ

1

[P 2 +m2

1
][Q2 +m2

2
][(P −Q)2 +m2

3
]
, (A14)

Π(Q2;m2

1
,m2

2
) =

∫

d4−2ǫP

(2π)4−2ǫ

1

[P 2 +m2

1
][(P −Q)2 +m2

2
]
, (A15)

∆(Q2;m2

3
) =

1

Q2 +m2

3

. (A16)

Indeed, carrying out the integrals over P0, Q0 in these functions, one obtains similar energy fractions. Making
furthermore use of the O(4 − 2ǫ) rotational invariance of the Q-dependence in Eq. (A15), which is present once also
the integration over p is performed, the various fractions can be identified with each other.

In order to write the subsequent result in a compact but generic form, we introduce the notation

Ei ≡

√

p2

i +m2

i , Pi ≡ (Ei,pi) , Pi · Pj ≡ EiEj − pi · pj , (A17)

and denote

n±(Ei) ≡

{

nB(Ei) for bosons (≡ E3)
−nF(Ei ± µ) for fermions (≡ E1, E2)

. (A18)

Then, allowing for generality for three different masses, like in Eq. (A14),

Hf = Hvac(m
2

1
,m2

2
,m2

3
) +

+
∑

i6=j 6=k

∑

σ=±1

∫

dd
pi

(2π)d

nσ(Ei)

2Ei
Π(−m2

i ;m
2

j ,m
2

k) +

+
∑

i6=j 6=k

∑

σ,τ=±1

∫

dd
pi

(2π)d

∫

dd
pj

(2π)d

nσ(Ei)nτ (Ej)

4EiEj
∆[−(σPi − τPj)

2;m2

k] , (A19)

where
∑

i6=j 6=k ≡
∑

(i,j,k)=(1,2,3),(2,3,1),(3,1,2). Individual terms in this sum may contain infrared poles (or, after

performing some of the integrations in complex plane, imaginary parts), but the expression as a whole is finite and
real for ǫ 6= 0.

We return now to the case of physical interest (m2

1
= m2

2
≡ m2;m2

3
≡ 0), and ignore all temperature-independent

terms. We note, furthermore, that the contribution originating from the last term in Eq. (A19) for (i, j, k) = (3, 1, 2),
contains ∆[−(P3 + P1)

2;m2] + ∆[−(P3 − P1)
2;m2] which vanishes, given that P 2

1
+ P 2

3
= m2. The same is true for

(i, j, k) = (2, 3, 1). This leaves us with

Hf(m,µ) = [temperature-independent terms] +

+ Ib Π(0;m2,m2) + 2If(m;µ)Π(−m2;m2, 0) +
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+

∫

dd
p1

(2π)d

∫

dd
p2

(2π)d

n−(E1)n+(E2) + n+(E1)n−(E2)

8E1E2

1

p1 · p2 −m2 − E1E2

+

+

∫

dd
p1

(2π)d

∫

dd
p2

(2π)d

n−(E1)n−(E2) + n+(E1)n+(E2)

8E1E2

1

p1 · p2 −m2 + E1E2

, (A20)

where we substituted p1 → −p1 in the last term. We can still perform the integration over z ≡ p1 · p2/|p1||p2|,
leaving a rapidly convergent integral over |p1|, |p2|.

The final step is the expansion in ǫ. The only temperature-dependent ultraviolet divergences are in the factorised
terms on the second row in Eq. (A20). Adding together with the contributions from the other master integrals, as
specified in Eqs. (A5)–(A7), a straightforward computation reproduces the fermionic parts of Eqs. (11)–(13).

APPENDIX B: FUNCTIONS DETERMINING THE MASS DEPENDENCE

The functions that appear in Eqs. (11)–(13) are defined as

F1(y, µ̂) ≡
1

24π2

∫ ∞

0

dx

[

x

x+ y

]
1

2 [

n̂F(
√
x+ y − µ̂) + n̂F(

√
x+ y + µ̂)

]

x , (B1)

F2(y, µ̂) ≡
1

8π2

∫ ∞

0

dx

[

x

x+ y

]
1

2 [

n̂F(
√
x+ y − µ̂) + n̂F(

√
x+ y + µ̂)

]

, (B2)

F3(y, µ̂) ≡ −

∫ ∞

0

dx

[

x

x+ y

]
1

2 [

n̂F(
√
x+ y − µ̂) + n̂F(

√
x+ y + µ̂)

] 1

x
, (B3)

F4(y, µ̂) ≡
1

(4π)4

∫ ∞

0

dx1

∫ ∞

0

dx2

1
√
x1 + y

√
x2 + y

×

×

{

[

n̂F(
√
x1 + y − µ̂)n̂F(

√
x2 + y + µ̂) + n̂F(

√
x1 + y + µ̂)n̂F(

√
x2 + y − µ̂)

]

×

× ln

[√
x1 + y

√
x2 + y + y −

√
x1x2

√
x1 + y

√
x2 + y + y +

√
x1x2

]

+

+
[

n̂F(
√
x1 + y − µ̂)n̂F(

√
x2 + y − µ̂) + n̂F(

√
x1 + y + µ̂)n̂F(

√
x2 + y + µ̂)

]

×

× ln

[√
x1 + y

√
x2 + y − y +

√
x1x2

√
x1 + y

√
x2 + y − y −

√
x1x2

]}

, (B4)

where

n̂F(x) ≡
1

ex + 1
. (B5)

These functions are related to the functions Jf, If and Hf defined in Eqs. (A2)–(A4): the medium-modified part of Jf

reads T 4F1 for ǫ = 0; the medium-modified part of If reads −T 2F2 for ǫ = 0; the medium-modified part of dIf/dm
2

reads −F3/(4π)2 for ǫ = 0; and the “non-factorizable” part of Hf (the last two terms in Eq. (A20)) reads T 2F4 for
ǫ = 0. The functions F1, F2, F3 are related by

F2(y, µ̂) = −2
∂F1(y, µ̂)

∂y
, F3(y, µ̂) = (4π)2

∂F2(y, µ̂)

∂y
. (B6)

The functions introduced possess some solvable limiting values. For y → 0,

F1(0, µ̂) =
7π2

720
+
µ̂2

24
+

µ̂4

48π2
, (B7)

F2(0, µ̂) =
1

24
+

µ̂2

8π2
, (B8)

F3(0, µ̂) ≈ ln
y

π2
+ 2γE + D

( µ̂

π

)

= ln
y

16π2
−

[

ψ
(1

2
+ i

µ̂

2π

)

+ ψ
(1

2
− i

µ̂

2π

)]

, (B9)

where “≈” denotes that the logarithmic divergence displayed on the right-hand side needs to be subtracted before
setting y → 0, and the function D, which has the property D(0) = 0, corresponds to the notation in Ref. [40].
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FIG. 5: The functions defined in Eqs. (B1)–(B4), for µ̂ = 0.0 (left) and µ̂ = 1.0 (right) (all functions are even in µ̂). Note that
the ranges of the vertical axes are different in the two plots.

The analytic expression in terms of ψ(z) = Γ′(z)/Γ(z) comes from Ref. [20]. For µ̂ 6= 0, the function F4 diverges
logarithmically at small y, but as it is always multiplied by y, this behaviour has little interest in the present context.
Inserting the values in Eqs. (B7)–(B9) into our expressions for αMS

E1
, αMS

E2
, αMS

E7
, Eqs. (3.14), (3.15), (3.20) of Ref. [20]

are reproduced.
For y → ∞ and µ̂ fixed, the functions F1, F2, F3 vanish as exp(−

√
y), the function F4 as exp(−2

√
y), modulo a

powerlike prefactor. An interesting limit is obtained, however, by setting y, µ̂ simultaneously to infinity but keeping
the ratio z ≡ y/µ̂2 = m2/µ2 fixed. This corresponds to setting the temperature to zero but keeping m,µ finite. Then

lim
T→0

T 4F1

(m2

T 2
,
µ

T

)

= θ(1 − z)
µ4

96π2
(2w3 − 3zf2) , (B10)

lim
T→0

T 2F2

(m2

T 2
,
µ

T

)

= θ(1 − z)
µ2

8π2
f2 , (B11)

lim
T→0

F3

(m2

T 2
,
µ

T

)

= θ(1 − z)
2

z
(f2 − w) , (B12)

lim
T→0

T 2F4

(m2

T 2
,
µ

T

)

= θ(1 − z)
µ2

64π4z
(w4 − f2

2 ) , (B13)

where

w ≡
√

1 − z , f2 ≡
√

1 − z − z ln
1 +

√
1 − z

√
z

. (B14)

Inserting into our expressions for αMS

E1
, αMS

E2
, Eqs. (1) and (4) of Ref. [26] are reproduced.

Unfortunately the limit µ̂→ 0, of most interest to us in this paper, does not render any of the functions analytically
solvable, as far as we know. We show the results of numerical evaluations in Fig. 5.
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