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Jan Möller1∗, York Schröder1
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Abstract

Finite-temperature QCD at high temperature T exhibits three different momentum scales T, gT

and g2T . Naive perturbation theory in a small gauge coupling g does not work beyond leading
order. In the framework of effective theories, a separation of contributions originating from the dif-
ferent momentum scales can be systematically performed, allowing for higher-order weak-coupling
expansions. In this talk, we review finite-temperature QCD in the EQCD/MQCD framework, and
outline a specific high-precision calculation of matching coefficients therein.

1 Introduction

The bulk equilibrium properties of matter at high temperatures can in principle be calculated within
a quantum field theory at finite temperature T . The equilibrium properties of such a system are
described by its free energy F or, equivalently, its thermodynamic pressure P , as functions of T .
In nature, such high-temperature conditions are present in the early universe, while a large ongoing
experimental program is reproducing similar conditions in heavy-ion collisions at RHIC or the LHC.
On the theoretical side, as pointed out by Linde in 1979 [1], a naive perturbative expansion of the free
energy in the small gauge coupling g breaks down at order g6. The effects which are responsible for the
breakdown are qualitatively new and of nonperturbative nature and therefore only accessible through
lattice simulations.

The first correction of order O(g2) to P (T ) was calculated more than 30 years ago [2]. Beyond
that order, it was not just simply determining one more term in the perturbative expansion. Naively,
one would expect the next correction to be of O(g4), but in fact it is a screening effect leading to
odd powers in the coupling expansion and starting to contribute at O(g3). At high temperatures, the
typical distance of particles in the plasma is of order 1/T . On the other hand, interactions mediated by
exchange of particles are long-range effects and get screened over distances larger than 1/gT . Screening
of the chromoelectric force can be taken into account by resumming an infinite number of ring diagrams
and its contribution was first calculated in [3] to O(g3). Higher corrections were calculated [4, 5, 6] using
the same or similar resummation techniques to O(g5). Beyond that order the expansion is afflicted with
infrared divergencies due to the lack of a screening mass for the chromomagnetic force.

A solution based on the old idea of dimensional reduction was given in [7] by constructing a sequence
of two effective field theories. The so-called electrostatic QCD (EQCD) is constructed by integrating
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out the hard scale T whereas the second one called magnetostatic QCD (MQCD) can be obtained by
further integrating out the soft scale gT . The free energy or the pressure of hot QCD is then decomposed
into its different contributions from the momentum scales T, gT and g2T starting at O(g0),O(g3) and
O(g6), respectively. In contrast to the momentum scales T and gT , the low momentum scale g2T is
only accessible nonperturbatively via lattice simulations. In this framework, the already known O(g5)
contribution was recalculated [8], and the unknown O(g6 ln (1/g)) correction was determined [9]. The
weak coupling expansion of the pressure normalized to the Stefan-Boltzmann pressure PSB reads

P (T )

PSB
= 1 + c2g

2 + c3g
3 + (c′4 ln g + c4) g

4 + c5g
5 + (c′6 ln g + c6) g

6 + O(g7) . (1)

The coefficient c6 is still unknown due to the fact that a 4-loop calculation within thermal QCD is
involved, requiring the evaluation of a large number of yet-unknown sum-integrals, at present is a major
challenge. The O(g6) contribution is of great interest because at this order, all three above-mentioned
physical scales contribute to P (T ) for the first time.

2 The basic setting

The underlying theory is finite-temperature QCD with Nf flavours of massless quarks and gauge group
SU(Nc). Before gauge fixing the corresponding bare Euclidean Lagrangian is given by

SQCD =

∫ β

0

dτ

∫

ddxLQCD ,

LQCD =
1

4
F a

µνF
a
µν + ψ̄γµDµψ ,

(2)

with β = 1/T, d = 3−2ǫ, µ, ν = 0, . . . , d, F a
µν = ∂µA

a
ν−∂νA

a
µ+gfabcAb

µA
c
ν , Dµ = ∂µ−igAµ, Aµ = Aa

µT
a,

with Tr[T aT b] = δab/2, γ†µ = γµ, {γµ, γν} = 2δµν , g is the bare gauge coupling, and ψ carries Dirac,
colour, and flavour indices. At high temperatures particle masses can be neglected and the quantities
we are interested in are solely functions of temperature T and the gauge coupling g. The fundamental
quantity is the partition function Z(T ). Taking the logarithm and the limit V → ∞ we get the pressure
or minus the free energy defined by

PQCD(T ) ≡ lim
V →∞

T

V
lnZ(T ) = lim

V →∞

T

V
ln

∫

DAa
µDψDψ̄ exp (−SQCD) , (3)

where V denotes the d-dimensional volume. In the imaginary time formalism the bosonic fields are
periodic in imaginary time τ with period 1/T . Thus the fields Aa

µ can be expanded into their Fourier
modes Aa

µ,n exp [i2πnTτ ] with the corresponding propagators [p2 + (2πnT )2]−1. For nonstatic modes,
2πnT acts like a mass and at sufficiently high temperature T these modes decouple like infinitely
heavy particles from the theory. In contrast to zero-temperature field theories with heavy particles,
the decoupling is not ‘complete’ [10]. At sufficiently high temperatures, and for modes with momenta
p ∼ gT , the dynamics of Eq. (2) reduce to a simpler 3-dimensional SU(Nc) coupled to an adjoint scalar
Aa

0

PQCD = PE(T ) + lim
V →∞

T

V
ln

∫

DAkDA0 exp (−SE) ,

SE =

∫

ddxLE ,

LE =
1

2
TrF 2

kl + Tr [Dk, A0]
2 +m2

ETrA2
0 + λ

(1)
E

(

TrA2
0

)2
+ λ

(2)
E TrA4

0 + . . . ,

(4)
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where k = 1, . . . , d, Fkl = i/gE [Dk, Dl] , Dk = ∂k − igEAk. The electrostatic gauge field Aa
0 and magne-

tostatic gauge field Aa
i appearing in Eq. (4) can be related (up to normalisation) to the zero modes of

Aa
µ in thermal QCD, Eqs. (2). The effective field theory shown above is known as electrostatic QCD

(EQCD) and contains four effective couplings m2
E, g

2
E, λ

(1)
E , λ

(2)
E as well as the matching parameter PE(T ).

These coefficients can be obtained by performing a matching computation, requiring the same result on
the QCD and EQCD side within the domain of validity. For the moment let us only note the leading
behaviour

PE ∼ T 4 , m2
E ∼ g2T 2 , g2

E ∼ g2T , λ
(1)
E ∼ g4T , λ

(2)
E ∼ g4T . (5)

As soon as these coefficients are determined up to sufficiently high accuracy, it remains to evaluate the
pressure using lattice simulations in EQCD, or to perturbatively expand it in a small coupling expansion
in gE. Unfortunately, the latter approach is afflicted with infrared divergencies and causes a breakdown
of the expansion. However, EQCD still contains two dynamical scales gT and g2T . Integrating out the
color electric field A0 (having a mass mE ∼ gT ) results in a pure 3-dimensional SU(Nc) effective field
theory called magnetostatic QCD (MQCD) only containing the magnetostatic gauge field Ak

lim
V →∞

T

V
ln

∫

DAkDA0 exp (−SE) ≡ PM(T ) + lim
V →∞

T

V
ln

∫

DAk exp (−SM) ,

SM =

∫

ddxLM ,

LM =
1

2
TrF 2

kl + . . . ,

(6)

where Fkl = i/gM [Dk, Dl] , Dk = ∂k − igMAk. One again finds a new effective coupling gM as well as a
new matching parameter PM, which are can be related to the parameters of EQCD, Eq. (5) by suitable
matching computations and behave as

g2
M ∼ g2

E , PM(T ) ∼ m3
ET . (7)

Higher-order operators were neglected in Eqs. (4,6) simply due to fact that they do not contribute at
the level we are currently working. The schematic structure of higher-order operators in Eqs. (4) and
(6) reads

δLE = g2 DkDl

(2πT )2
LE , δLM = g2

E

DkDl

m3
E

LM , (8)

and lead to a contribution in the most conservative case at

δPQCD(T )

T
∼ δLE ∼ g7T 3 ,

δPQCD(T )

T
∼ δLM ∼ g9T 3 . (9)

The contribution of the ultrasoft scale g2T is completely nonperturbative and its contribution can be
obtained via a lattice measurement of the plaquette operator [11] giving

PG(T ) ≡ lim
V →∞

T

V
ln

∫

DAk exp (−SM) (10)

and subsequently translated from lattice to continuum regularisation scheme with the help of lattice
perturbation theory [12]. The Lagrangian given in Eq. (6) depends only on one parameter and because
of dimensional reasons PG(T ) behaves as PG(T ) ∼ Tg6

M. Putting all contributions together we finally
obtain the desired decomposition

PQCD(T ) = PE(T ) + PM(T ) + PG(T ) . (11)

A more detailed summary can be found in Refs. [9] or [13].
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3 Matching computation

So far we have reviewed the effective field theory framework we are working in. However, in order to
actually perform computations we still need to determine the emerging coefficients up to sufficiently
high accuracy. Let us start recalling what is already known about the matching coefficients. As we have
seen, there are five different effective couplings to be determined, the EQCD coefficients m2

E, g
2
E, λ

(1)
E , λ

(2)
E

and the MQCD effective coupling g2
M. Up to 2-loop accuracy, they read

m2
E = T 2

[

g2
(

αE4 + αE5ǫ+ O(ǫ2)
)

+
g4

(4π)2

(

αE6 + βE2ǫ+ O(ǫ2)
)

+ O(g6)

]

,

g2
E = T

[

g2 +
g4

(4π)2

(

αE7 + βE3ǫ+ O(ǫ2)
)

+
g6

(4π)4
(γE1 + O(ǫ)) + O(g8)

]

,

λ
(1,2)
E = T

[

g4

(4π)2
(βE4,5 + O(ǫ)) + O(g6)

]

,

g2
M = g2

E

[

1 −
1

48

g2
ENc

πmE

−
17

4608

(

g2
ENc

πmE

)2

+ O

(

(

g2
ENc

πmE

)3
)]

,

(12)

where we have used the notation of [9, 14] and [15].
In the following we want to focus on the m2

E and g2
E and push the perturbative expansion one step

further to the 3-loop level. Going back to the Lagrangian in Eq. (4), we observe that the effective
screening mass m2

E and effective gauge coupling g2
E can be computed from suitable 2-, 3-, and 4-point

functions. We perform the matching computation in a strict perturbation in g2 and remove all infrared
divergencies with an appropriate infrared cutoff.

The mass parameter m2
E can be understood as the large momentum contribution to the electric

screening mass m2
el in the full theory. The screening mass m2

el is defined by the pole of the propagator
for Aa

0(τ,x) at p2 = −m2
el and p0 = 0

p2 + Π(p2) = 0 , (13)

with Π(p2) ≡ Π00(p
2). On the EQCD side, the mass parameter m2

E is defined in a similar way by

p2 +m2
E + ΠEQCD(p2) = 0 , (14)

evaluated at p2 = −m2
el, and ΠEQCD denotes the self-energy on the EQCD side. Taylor expanding the

self energy Π(p2) in Eq. (13) we obtain the next-to-next to leading order in terms of Taylor coefficients

m2
el = g2Π1(0) + g4 [Π2(0) − Π′

1(0)Π1(0)] + g6
[

Π3(0) − Π′
1(0)Π2(0) −

− Π′
2(0)Π1(0) + Π′′

1(0)Π2
1(0) + Π1(0)Π′2

1 (0)
]

+ O(g8) .
(15)

The only scale in ΠEQCD(p2) is p2 and therefore the Taylor expansion simplifies the computation con-
siderably. All dimensionally regularized integrals are vanishing and with Eq. (14) we immediately get
m2

E = m2
el.

To simplify the calculation of g2
E, we choose background field gauge [16] and the Lagrangian in

Eqs. (4) reads symbolically
Leff ∼ c2A

2 + c3gA
3 + c4g

2A4 + . . . , (16)

where A denotes the background field potential and ci = 1 + O(g2). Defining A2
eff ≡ c2A

2 we get

Leff ∼ A2
eff + c3c

−3/2
2 gA3

eff + c4c
−2
2 g2A4

eff + . . . , (17)

and under consideration of the gauge invariant structure in terms of the effective background potential
we obtain gE = c3c

−3/2
2 g = c

1/2
4 c−1

2 g. In addition, gauge invariance in the original potential A and
Eq. (16) yields c3 = c2 = c4 and

gE = c
−1/2
2 g . (18)
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Figure 1: The 1-loop, 2-loop and some 3-loop self-energy diagrams in the background field gauge. Wavy

lines represent gauge fields, dotted lines ghosts, and solid lines fermions.

From here, we proceed in the same way as for the effective mass m2
E and obtain

g2
E = T

{

g2 − g4Π′
T1(0) + g6

[

(Π′
T1(0))

2
− Π′

T2(0)
]

+

+g8
[

2 Π′
T1(0)Π′

T2(0) − (Π′
T1(0))

3
− Π′

T3(0)
]

+ O(g10)
}

, (19)

where

Π00(p) ≡ ΠE(p2) , Πij(p) ≡

(

δij −
pipj

p2

)

ΠT(p2) +
pipj

p2
ΠL(p2) . (20)

The external momentum p is taken purely spatial, p = (0,p), while the heat bath is timelike, with
Euclidean four-velocity u = (1, 0), so that u ·u = 1, u · p = 0. Under these circumstances, Πµν has three
independent components (Π0i, Πi0 vanish identically). The loop corrections to the spatially longitudinal
part ΠL also vanish, so that only the two non-trivial functions ΠE and ΠT remain. A more detailed
derivation can be found in [15, 19].

Both coefficients are now expressed in terms of Taylor coefficients cf. Eqs. (15) and (19) evaluated at
zero external momentum p2 = 0. In other words, we are left with vacuum tadpoles at finite temperature
up to 3-loop. A systematic reduction with the help of integration-by-parts relations and symmetry
properties of the different topologies, both implemented using Laporta’s algorithm [17], enabled us to
reduce the calculation of the 3-loop Taylor coefficients that we need to rather compact expressions of
the form [18, 19]

Π3 =
∑

i

aiAi +
∑

j

bj Bj , (21)

where A ∈ {IbIbIb, IfIbIb, IfIfIb, IfIfIf} and B ∈ {J,K, L} according to the topologies shown in Fig. 2,
with various powers of propagators as well as numerator factors of the form u · k, where k is a loop
momentum. The coefficients ai, bj are rational functions of the space-time dimension d. Important
cross-checks have been performed to confirm the validity of our result e.g. ΠL3 = 0,Π′

L3 = 0 as well as
gauge parameter independence of m2

E and g2
E.
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Ib = , If = , J = , K = , L = .

Figure 2: A shorthand for the bosonic and fermionic master sum-integrals encountered after 3-loop

reduction. Each arrow-line corresponds to a fermionic propagator.

4 Outlook

The reduction step for all sum-integrals required for the diagrams of Fig. 1 has been completed success-
fully, and the number of master integrals in Eq. (21) is small enough (in the case of m2

E of the order of
30) to tackle their analytic evaluation. However, we are still facing some problems related to the eval-
uation of such 3-loop basketball-like sum-integrals [20] beyond the constant terms in the ǫ-expansion;
for a number of solved 3-loop examples, see e.g. [21].

Expanding beyond constant terms is necessary because many of the prefactors in (21) are singular
when expanded around d = 3 − 2ǫ. As a possible strategy for improving this situation, it might be
advantageous to perform a change of basis [22] to get rid of or at least reduce the number of divergent
prefactors. Work along these lines is under way.
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