[Besprechung 15.1 - 17.1 in den Übungen]

Aufgabe 42: 1D Fourier-Transformation

Konvention: $f(x)=\int \frac{\mathrm{d}k}{2\pi}\;e^{+ikx}\tilde{f}(k)$; $\tilde{f}(k)=\int \mathrm{d}x\;e^{-ikx}f(x)$

(a) Zu einer Funktion f(x) sei die Fourier-Transformierte (FT) $\tilde{f}(k)$ bekannt. Geben Sie die FT der folgenden Funktionen an (mit $a \in \mathbb{R}$, $n \in \mathbb{N}$):

$$f(x-a)$$
, $f(x/a)$, $f(-x)$, $f^*(x)$, $\tilde{f}(x)$, $x^n f(x)$, $\partial_x^n f(x)$

(b) Gegeben sei die Funktion

$$f(x) = \begin{cases} \frac{1}{2a}, & |x| < a \\ 0, & |x| > a \end{cases}.$$

Ermitteln Sie die FT $\tilde{f}(k)$. Überprüfen Sie den Wert $\tilde{f}(0)$ mittels direkter Berechnung von $\int_{-\infty}^{\infty} \mathrm{d}x \ f(x)$.

Aufgabe 43: 3D Fourier-Transformation

Das "Coulomb-Potential" der starken Wechselwirkung hat die Form

$$\phi(\vec{r}) = \frac{\alpha e^{-m_{\pi}r}}{4\pi r}, \quad r = |\vec{r}|,$$

wobei m_π die Pion-Masse bezeichnet. Ermitteln Sie die entsprechende FT $\tilde{\phi}(\vec{k})$.

Aufgabe 44: Anfangswertproblem für Felder im Vakuum

Seien $\rho(\vec{r})=0$, $\vec{j}(\vec{r})=0$, und die Werte $\vec{E}(\vec{r},0)$, $\vec{B}(\vec{r},0)$ der E- und B-Felder zum Zeitpunkt t=0 bekannt. Bestimmen Sie $\vec{B}(\vec{r},t)$.

[Hinweis: In der Vorlesung (S.94) wurde diese Rechnung bereits für das E-Feld durchgeführt.]

Aufgabe 45: Differentialgleichung via Fourier

Gegeben sei die 1D-Ladungsdichte $\rho(x)$ mit FT $\tilde{\rho}(k) = Ak^2e^{-\alpha|k|}$.

- (a) Bestimmen Sie das Potential $\phi(x)$ durch Fourier-Transformation.
- (b) Bestimmen und skizzieren Sie $\rho(x)$.