Elements of group theory

- The color change introduced above can be treated much more rigorously.

- Before leaving the connection, let us review some basic facts about the theory of contravariant symmetry groups.

- (Much) more detail eg. in [H. Georgi: Lie Algebras in Particle Physics] or at http://www.physik.uni-bielefeld.de/~klein/symmetrien/cover.html

- Our provisional color assignment to gluons (cf. §1.3) can be rewritten in a different basis (just different linear combinations) of 3×3 matrices (labeled eg. rows by colors, columns by the indices i, j, k)

\[
T^1 = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \hspace{1cm} T^2 = \frac{1}{2} \begin{pmatrix} 0 & 0 & 1 \\ 0 & -i & 0 \\ 1 & 0 & 0 \end{pmatrix} \hspace{1cm} T^3 = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}
\]

- Actually, $T^a = \lambda^a$, where λ^a are "Gell-Mann matrices," $a = 1, 2, 3, 8$

- They form a possible representation of the infinitesimal generators of the "special unitary group" $SU(3)$, the fundamental representation.

- Some important properties (check?!

\[[T^a, T^b] = i \epsilon^{abc} T^c \]

\[\epsilon^{abc} \text{ antisymmetric structure constants} \]

\[\{ T^a, T^b \} = \frac{1}{2} \delta^{ab} [4_{abc} + \epsilon^{abc} T^c] \]

\[\epsilon^{abc} \text{ symmetric structure constants} \]

\[T^a T^b = \frac{1}{2} \left(\delta^{ab} [4_{abc} + \epsilon^{abc} T^c] \right) \]

\[T^a T^b = \frac{1}{2} \left(\delta^{ab} - \frac{1}{2} \delta^{ij} \delta_{kl} \right) \]

- The identity

\[\text{Tr} (T^a) = 0 \]

\[\text{Tr} (T^a T^b) = \frac{1}{2} \delta^{ab} \]

- Often we will need traces

\[\text{etc.} \]
→ could calculate \(f^{abc} \) by multiplying Lie algebra with \(T^a \), then taking traces:
\[
f^{abc} = \frac{2}{i} \left(\text{Tr}(T^a T^b T^c) - \text{Tr}(T^b T^a T^c) \right)
\]
result (check?!) : \(f^{123} = f^{132} = f^{213} = f^{231} = f^{312} = f^{321} = \frac{1}{2} \)
\(f^{458} = f^{485} = \frac{1}{2} \) ; rest by antisymmetry

• from a more general viewpoint, we have just seen one example of a broader mathematical concept: representations of Lie Groups

well : group contains abstract entities that obey certain algebraic rules
well : interested in groups of unitary operators, acting in vector space of states
here : interested in continuously generated groups
contain elements arbitrarily close to identity

can reach general group element by repeated action of infinitesimal ones
\(g(x) = 1 + ix^a T^a + O(x^2) \)

→ Hermitian ops; "generators" of unitary group

→ a group with this structure is called a "Lie group"

• the set \(T^a \) spans space of infinitesimal group transformations

→ commutator is linear combination of generators
\([T^a, T^b] = i f^{abc} T^c \)

→ vector space spanned by generators + commutator = Lie Algebra

→ \([T^a, [T^b, T^c]] + [T^b, [T^c, T^a]] + [T^c, [T^a, T^b]] = 0 \) \(\text{Jacobi identity} \)

→ \(f^{abc} f^{def} + f^{ade} f^{bef} + f^{ade} f^{cfb} = 0 \)

• for us, symmetry is unitary transformation of a set of fields

→ interested in Lie groups with finite # of generators: "compact"

• classification of Lie Algebras

→ (group of phase rotations)

→ if one \(T^a \) commutes with all others : Abelian subgroup, \(g = e^{i \theta_a T_a} \)

→ if set of \(T^a \)'s cannot be divided into two mutually commuting sets: "Simple"

→ general Lie algebra \(\cong \) direct sum of non-Abelian simple components

→ \(SU(N) \) (\((U^a, det(U) = 1) \)), \(SO(N) \) (\((R^T I, det R = 1) \)), \(Sp(N) \); \(G_2, F_4, E_6, E_7, E_8 \)

→ is complete set of compact simple Lie groups!
1.5 Notation and conventions

- **Natural units**
 \(\hbar = c = \ell_P = 1 \)
 \[\text{[length]} = \text{[time]} = \text{[energy]}^{-1} = \text{[mass]}^{-1} = \text{GeV}^{-1} \]

- **Vectors + Tensors**
 - indices \(\mu = 0, 1, 2, 3 \) or \(t, x, y, z \)
 - metric tensor \(g_{\mu \nu} = g^{\mu \nu} = \text{diag} (1, -1, -1, -1) \)
 - four vectors \(x^\mu = (x^0, \hat{x}) \), \(\hat{x} = x_\mu = (0, \vec{x}) \)
 - totally antisymmetric tensor \(\varepsilon_{0123} = 1 \) \((\Rightarrow \varepsilon_{0123} = -1, \varepsilon^{0123} = 1 \text{ etc.)} \)

- **Matrices**
 - Pauli: \(\sigma^i \sigma^j = i \varepsilon^{ijk} \sigma^k \)
 - \(\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma^3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \)

- **Dirac**
 - \(\{ \gamma^\mu, \gamma^\nu \} = 2 \gamma^{\mu \nu} \)
 - standard basis: \(\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \gamma^1 = \begin{pmatrix} 0 & \sigma^1 \\ -\sigma^1 & 0 \end{pmatrix}, \gamma^2 = \begin{pmatrix} 0 & \sigma^2 \\ -\sigma^2 & 0 \end{pmatrix}, \gamma^3 = \begin{pmatrix} 0 & \sigma^3 \\ -\sigma^3 & 0 \end{pmatrix} \)

- **Einstein summation convention**
 - \(\rho^\mu x^\nu = \sum_{\mu=0}^{3} \rho^\mu x^\nu = \rho^0 x^0 + (-\vec{p}) \cdot \vec{x} = \rho x^0 - \vec{p} \cdot \vec{x} \)
 - \(A^\mu T^\nu = \sum_{\mu=0}^{3} A^\mu T^\nu \)