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Goal

What happend so far: Talked a lot about reducting Feynman
integrals: IBP relations, Laporta algorithm, Gröbner bases,...

Today: Want to get an explicit expression for the remaining
master integrals, either completely analytic or if not possible
with arbitrary numerical accuracy.

Here: Difference equation generated by IBP relations and the
Laporta algorithm

Difference equations [S. Laporta, hep-ph/0102033]
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Difference equation

Let us consider a master integral of the form

B =

∫
dDk1 . . . dDkNk

D1D2 . . . DNd

,

where Nk loops and Nd lines.

We raise one denominator to power x:

UD1
(x) =

∫
dDk1 . . . dDkNk

Dx
1 D2 . . . DNd

.

Using integration-by-parts relations we find difference
equations of R order

R∑

j=0

pj(x)UD1
(x + j) = F (x) , (1)

where pj are polynomials and F(x) are some known functions.
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Factorial series

Factorial series play for difference equations the same role that
power series play for differential equations. The series

∞∑

s=0

asΓ(x + 1)

Γ(x − K + s + 1)
=

Γ(x + 1)

Γ(x − K + 1)

(

a0 +
a1

x − K + 1
+ . . .

)

is called a factorial series of first kind. The series is similar to
an asymptotic expansion in 1/n but with the advantage to be
more convergent.

Example: Let us consider the function Ψ′(n) = ∂2
n ln Γ(n). It

satisfies the nonhomogeneous first order diff. eq.

Ψ′(n + 1) − Ψ′(n) = −
1

n2
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Factorial series:Convergence properties

Expanding Ψ′(n) in an asymptotic series, we get

Ψ′(n) =
1

n
+

1

2n2
+

∞∑

k=1

B2k

n2k+1
,

where B2k are the Bernoulli’s numbers, convergent for n < 1.

However, if one expands Ψ′(n) in factorial series, one obtains

Ψ′(n) =

∞∑

k=1

Γ(s)

s

Γ(n)

Γ(n + s)
,

convergent for n > 0.
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Operators π and ρ

The idea is to rewrite the factorial expansion by using the π
and ρ operators in an expansion in powers of ρ−1.

→ Getting solutions for difference eq. in factorial series in the
same manner as power series solutions of differential
equations are obtained.

Define the operator ρ, π as follows

ρmU(x) = Γ(x + 1)/Γ(x − m + 1)U(x − m)

πU(x) = x (U(x) − U(x − 1))

where m is an arbitrary integer and U(x) the solution of the
homogeneous system.
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Rewriting the difference equation

Using some properties of π and ρ gives

[
f0(π, µ) + f1(π, µ)ρ + · · · + fm+1(π, µ)ρm+1

]
V (x) = 0 (2)

where V (x) = µxU(x) and fi are polynomials in π and µ.

In case of difference equation it turns out that

fm+1(π, µ) = fm+1(µ) = 0 ,

the characteristic equation with R solutions different from
zero.

For each of these values µ = µi , the first canonical form
Eq. (2) takes the form

[f0(π) + f1(π)ρ + · · · + fm(π)ρm]V (x) = 0 . (3)
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Rewriting the difference equation

Now let us try to satisfy the equation in V with the factorial
series

V (x) =
∞∑

s=0

asΓ(x + 1)

Γ(x − K + s + 1)
=

∞∑

s=0

asρ
K−s

Putting this in Eq. (3) we get

a0fm(K + m) = 0,

a1fm(K + m − 1) + a0fm−1(K + m − 1) = 0,

. . .

as fm(K + m − s) + · · · + as−mf0(K + m − s) = 0 (s ≥ m) .

supposing a0 6= 0 ⇒ fm(K + m) = 0.
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Example: Massive tadpole

To see how this works in practice we consider the massive
tadpole

J(x) = π−D/2

∫
dDk

(k2 + m2)x
.

We want to calculate the master integral J(1). The IBP
relation gives

(x − 1)J(x) − (x − 1 − D/2)J(x − 1) = 0 , (4)

which is a homogeneous first-order difference equation with
polynomial coefficients.

We look for a solution in form of a factorial series

J(x) = µxV (x) = µx

∞∑

s=0

asρ
K−s .
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Example: Massive tadpole

Using once again the properties of ρ and π we get

((µm2−1)ρ2+((2µm2−1)(π−1)+D/2)ρ+µm2π(π−1))V (x) = 0 .

Now we can immediatly read of the polynomials fi :

f2(π, µ) = µm2 − 1 ⇒ µ = 1/m2 ,

f1(π, µ) = (2µm2 − 1)(π − 1) + D/2 ,

f0(π, µ) = µm2π(π − 1) .

Therefore the difference equation becomes

((π − 1 + D/2)
︸ ︷︷ ︸

f1(π)

ρ + π(π − 1)
︸ ︷︷ ︸

f0(π)

)V (x) = 0 .

First recurrence relation says

a0fm=1(π = 1+K ) = 0 ⇒ K +1−1+D/2 = 0 ⇒ K = −D/2 .
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Example: Massive tadpole

The other one gives us a recurrence for the coefficients as :

as f1(K + 1 − s) + as−1f0(K + 1 − s) = 0

Hence as =
∏s

i=1
1
i

(
i + D

2

) (
i + D

2 − 1
)
a0. Performing the

product we end up with

as =
Γ(D/2 + 1 + s)Γ(D/2 + s)

Γ(D/2 + 1)Γ(D/2)Γ(s + 1)
a0 .

The coefficient a0 is still unknown and can be obtained by
comparing the large-x behaviours of J(x) and its factorial
series

π−D/2
(
m2

)D/2+x
∫

dDk

(k2 + 1)x
≈ . . .

∫

D

e−xk2
=

(
m2

)D/2+x
x−D/2

J(x) = µx

∞∑

s=0

asΓ(x + 1)

Γ(x − K + s + 1)
≈ a0x

Kµx .
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Example: Massive tadpole

Using the values for µ and K results in

a0 =
(
m2

)D/2
.

The final result for J(x) becomes

(
m2

)D/2−x
∞∑

s=0

Γ(D/2 + 1 + s)Γ(D/2 + s)

Γ(D/2 + 1)Γ(D/2)Γ(s + 1)

Γ(x + 1)

Γ(x + D/2 + s + 1)
,

and after performing the summation we recover the
well-known result

J(x) =
(
m2

)D/2−x Γ(x − D/2)

Γ(x)
.
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Backup: Convergence of J(x)

For s → ∞ the term of the factorial series behaves as

as

Γ(x + D/2 + s + 1)
≈

s! sD−1

s! sD/2+n
= s−1+D/2−x .

Means the series is convergent for x > D/2 and diverges for
x ≤ D/2 .

However, in order to compute J(1) we just compute J(1 + i)
for some large integer i and use repeatedly the recurrence
relation Eq. (4).
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