Motivation Difference equation Factorial series

Solving Feynman integrals by means of difference equations

Jan Möller, University of Bielefeld

MLWG

Jan Möller, University of Bielefeld Solving Feynman integrals by means of difference equations

(不同) とうり くうり

- What happend so far: Talked a lot about reducting Feynman integrals: IBP relations, Laporta algorithm, Gröbner bases,...
- Today: Want to get an explicit expression for the remaining master integrals, either completely analytic or if not possible with arbitrary numerical accuracy.
- Here: Difference equation generated by IBP relations and the Laporta algorithm

Difference equations [S. Laporta, hep-ph/0102033]

Difference equation

• Let us consider a master integral of the form

$$B=\int \frac{d^D k 1 \dots d^D k_{N_k}}{D_1 D_2 \dots D_{N_d}},$$

where N_k loops and N_d lines.

• We raise one denominator to power x:

$$U_{D_1}(x) = \int \frac{d^D k_1 \dots d^D k_{N_k}}{D_1^x D_2 \dots D_{N_d}}$$

• Using integration-by-parts relations we find difference equations of *R* order

$$\sum_{j=0}^{R} p_j(x) U_{D_1}(x+j) = F(x), \qquad (1)$$

where p_j are polynomials and F(x) are some known functions.

Factorial series

• Factorial series play for difference equations the same role that power series play for differential equations. The series

$$\sum_{s=0}^{\infty} \frac{a_s \Gamma(x+1)}{\Gamma(x-K+s+1)} = \frac{\Gamma(x+1)}{\Gamma(x-K+1)} \left(a_0 + \frac{a_1}{x-K+1} + \dots\right)$$

- is called a factorial series of first kind. The series is similar to an asymptotic expansion in 1/n but with the advantage to be more convergent.
- Example: Let us consider the function $\Psi'(n) = \partial_n^2 \ln \Gamma(n)$. It satisfies the nonhomogeneous first order diff. eq.

$$\Psi'(n+1)-\Psi'(n)=-\frac{1}{n^2}$$

Factorial series: Convergence properties

• Expanding $\Psi'(n)$ in an asymptotic series, we get

$$\Psi'(n) = \frac{1}{n} + \frac{1}{2n^2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{n^{2k+1}}$$

where B_{2k} are the Bernoulli's numbers, convergent for n < 1. • However, if one expands $\Psi'(n)$ in factorial series, one obtains

$$\Psi'(n) = \sum_{k=1}^{\infty} \frac{\Gamma(s)}{s} \frac{\Gamma(n)}{\Gamma(n+s)},$$

convergent for n > 0.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Operators π and ρ

- The idea is to rewrite the factorial expansion by using the π and ρ operators in an expansion in powers of ρ⁻¹.
- → Getting solutions for difference eq. in factorial series in the same manner as power series solutions of differential equations are obtained.
- Define the operator ρ, π as follows

$$\rho^m U(x) = \Gamma(x+1)/\Gamma(x-m+1)U(x-m)$$

$$\pi U(x) = x (U(x) - U(x-1))$$

where m is an arbitrary integer and U(x) the solution of the homogeneous system.

Rewriting the difference equation

 \bullet Using some properties of π and ρ gives

$$\left[f_0(\pi,\mu) + f_1(\pi,\mu)\rho + \dots + f_{m+1}(\pi,\mu)\rho^{m+1}\right]V(x) = 0 \quad (2)$$

where $V(x) = \mu^{x} U(x)$ and f_{i} are polynomials in π and μ .

• In case of difference equation it turns out that

$$f_{m+1}(\pi,\mu) = f_{m+1}(\mu) = 0$$
,

the characteristic equation with R solutions different from zero.

• For each of these values $\mu = \mu_i$, the first canonical form Eq. (2) takes the form

$$[f_0(\pi) + f_1(\pi)\rho + \dots + f_m(\pi)\rho^m] V(x) = 0.$$
 (3)

Motivation Difference equation Factorial series

Rewriting the difference equation

• Now let us try to satisfy the equation in V with the factorial series

$$V(x) = \sum_{s=0}^{\infty} \frac{a_s \Gamma(x+1)}{\Gamma(x-K+s+1)} = \sum_{s=0}^{\infty} a_s \rho^{K-s}$$

• Putting this in Eq. (3) we get

$$\begin{aligned} a_0 f_m(K+m) &= 0, \\ a_1 f_m(K+m-1) + a_0 f_{m-1}(K+m-1) &= 0, \\ \dots \\ a_s f_m(K+m-s) + \dots + a_{s-m} f_0(K+m-s) &= 0 \ (s \ge m). \end{aligned}$$

supposing $a_0 \neq 0 \Rightarrow f_m(K + m) = 0$.

・ロト ・同ト ・ヨト ・ヨト

• To see how this works in practice we consider the massive tadpole

$$J(x) = \pi^{-D/2} \int \frac{d^D k}{(k^2 + m^2)^x}$$

• We want to calculate the master integral J(1). The IBP relation gives

$$(x-1)J(x) - (x-1-D/2)J(x-1) = 0$$
, (4)

which is a homogeneous first-order difference equation with polynomial coefficients.

• We look for a solution in form of a factorial series

$$J(x) = \mu^{x} V(x) = \mu^{x} \sum_{s=0}^{\infty} a_{s} \rho^{K-s}.$$

- 4 回 5 - 4 三 5 - 4 三 5

 $\bullet\,$ Using once again the properties of ρ and π we get

$$((\mu m^2 - 1)\rho^2 + ((2\mu m^2 - 1)(\pi - 1) + D/2)\rho + \mu m^2 \pi(\pi - 1))V(x) = 0.$$

• Now we can immediatly read of the polynomials f_i:

$$f_2(\pi,\mu) = \mu m^2 - 1 \Rightarrow \mu = 1/m^2,$$

$$f_1(\pi,\mu) = (2\mu m^2 - 1)(\pi - 1) + D/2,$$

$$f_0(\pi,\mu) = \mu m^2 \pi (\pi - 1).$$

• Therefore the difference equation becomes

$$(\underbrace{(\pi - 1 + D/2)}_{f_1(\pi)} \rho + \underbrace{\pi(\pi - 1)}_{f_0(\pi)})V(x) = 0.$$

• First recurrence relation says

$$a_0 f_{m=1}(\pi = 1 + K) = 0 \Rightarrow K + 1 - 1 + D/2 = 0 \Rightarrow K = -D/2.$$

• The other one gives us a recurrence for the coefficients a_s :

$$a_s f_1(K+1-s) + a_{s-1} f_0(K+1-s) = 0$$

• Hence $a_s = \prod_{i=1}^{s} \frac{1}{i} \left(i + \frac{D}{2} \right) \left(i + \frac{D}{2} - 1 \right) a_0$. Performing the product we end up with

$$a_s = \frac{\Gamma(D/2+1+s)\Gamma(D/2+s)}{\Gamma(D/2+1)\Gamma(D/2)\Gamma(s+1)}a_0.$$

• The coefficient *a*₀ is still unknown and can be obtained by comparing the large-x behaviours of *J*(*x*) and its factorial series

$$\pi^{-D/2} (m^2)^{D/2+x} \int \frac{d^D k}{(k^2+1)^x} \approx \dots \int_D e^{-xk^2} = (m^2)^{D/2+x} x^{-D/2}$$
$$J(x) = \mu^x \sum_{s=0}^{\infty} \frac{a_s \Gamma(x+1)}{\Gamma(x-K+s+1)} \approx a_0 x^K \mu^x.$$

 \bullet Using the values for μ and K results in

$$a_0 = \left(m^2\right)^{D/2}$$

• The final result for J(x) becomes

$$(m^2)^{D/2-x} \sum_{s=0}^{\infty} \frac{\Gamma(D/2+1+s)\Gamma(D/2+s)}{\Gamma(D/2+1)\Gamma(D/2)\Gamma(s+1)} \frac{\Gamma(x+1)}{\Gamma(x+D/2+s+1)},$$

and after performing the summation we recover the well-known result

$$J(x) = (m^2)^{D/2-x} \frac{\Gamma(x - D/2)}{\Gamma(x)}$$

イロト イヨト イヨト

Backup: Convergence of J(x)

• For $s \to \infty$ the term of the factorial series behaves as

$$\frac{a_s}{\Gamma(x+D/2+s+1)} \approx \frac{s! \, s^{D-1}}{s! \, s^{D/2+n}} = s^{-1+D/2-x}$$

- Means the series is convergent for x > D/2 and diverges for $x \le D/2$.
- However, in order to compute J(1) we just compute J(1 + i) for some large integer *i* and use repeatedly the recurrence relation Eq. (4).