Reduction of Feynman integrals with integration by parts relations and the Laporta algorithm

Jan Möller, University of Bielefeld

MLWG

Goal

- Reduce many Feynman integrals to a small set of so-called master integrals:
- Use integration by parts relations (IBP) [K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B 192 (1981) 159]
- and a systematic way to combine them:

The Laporta algorithm [S. Laporta, hep-ph/0102033]

Reduce Feynman integrals

- Why do we want to reduce Feynman integrals?
- Usually we are faced with many Feynman integrals in a state of the art perturbative computation
- number of integrals \neq number of diagrams
- 1 Feynman diagram can result in thousands of Feynman integrals.
- Typically millions of Fintegrals to compute \rightarrow impossible without computer algebra

Reminder: Perturbative Expansion

- Any perturbative calculation consist of a combinatoric, algebraic and analytic part.
- combinatoric: Wick contractions
- algebraic: Feynman rules, gamma algebra, expansions, projections, tensor decompositions, etc. + reduction
- The former ones are well suited problems for automatization.
- BUT: in order to calculate master integrals human intervention unavoidable.
- Ideal starting point: small set of master integrals.

Integration by parts relations I

- n-loop Feynman integral with m external momenta:

$$
F\left(p_{1}, \ldots, p_{m}\right) \equiv \int_{k_{1}, \ldots, k_{n}} d^{d} k_{1} \ldots d^{d} k_{n} \prod_{i} \frac{(p \cdot k)_{i}^{b_{i}}}{\left(q_{i}^{2}+m_{i}^{2}\right)^{a_{i}}}
$$

- Integration by parts relations are generated by

$$
\int_{k_{1}, \ldots, k_{n}} d^{d} k_{1} \ldots d^{d} k_{n} \frac{\partial}{\partial k_{j}^{\mu}}\left(k_{l}^{\mu} \prod_{i} \frac{(p \cdot k)_{i}^{b_{i}}}{\left(q_{i}^{2}+m_{i}^{2}\right)^{a_{i}}}\right)=0
$$

Zero-temperature massiv tadpole

- Example 1: $I(a) \equiv \int d^{d} k \frac{1}{\left(k^{2}+m^{2}\right)^{\alpha}}, 0$ pt 1-loop fct. $\rightarrow 1 \mathrm{IBP}$
- IBP relation $\partial_{k} k$:

$$
\begin{aligned}
0 & =\int d^{d} k \partial_{k} k \frac{1}{\left(k^{2}+m^{2}\right)^{a}} \\
& =\int d^{d} k\left\{D \frac{1}{\left(k^{2}+m^{2}\right)^{a}}-2 a \frac{k^{2}+m^{2}-m^{2}}{\left(k^{2}+m^{2}\right)^{a+1}}\right\} \\
& =I(a)(D-2 a)+2 a m^{2} I(a+1)
\end{aligned}
$$

- $\Rightarrow I(a+1)=-\frac{D-2 a}{2 a m^{2}} I(a)$, for $a \geq 1$.

Finite-temperature tadpole

- Example 2: $I(a, b) \equiv \sum_{n=-\infty}^{\infty} \int d^{D-1} k \frac{K_{0}^{b}}{\left(K^{2}\right)^{2}}, K^{2}=\omega_{n}^{2}+k^{2}$
- IBP relation $\partial_{k} k$:

$$
\begin{aligned}
& 0=\sum_{K} \partial_{k} k \frac{K_{0}^{b}}{\left(K^{2}\right)^{a}} \\
&=\sum_{K}\left\{(D-1) \frac{K_{0}^{b}}{\left(K^{2}\right)^{a}}-2 a \frac{\left(K^{2}-K_{0}^{2}\right) K_{0}^{b}}{\left(K^{2}\right)^{a+1}}\right\} \\
&=I(a, b)(D-1-2 a)+2 a I(a+1, b+2) \\
& \bullet \Rightarrow I(a+1, b+2)=-\frac{D-1-2 a}{2 a} I(a, b), \text { for } a \geq 1 .
\end{aligned}
$$

Zero-temperature sunset propagator

- Example 3: $I_{a, b, c, d, e} \equiv \int_{p, q} \frac{1}{\left(p^{2}\right)^{a}\left((p-k)^{2}\right)^{b}\left(q^{2}\right)^{c}\left((q-k)^{2}\right)^{d}\left((p-q)^{2}\right)^{e}}$
- 6 possible IBP relations: $\partial_{p} p, \partial_{p} q, \partial_{p} k, \partial_{q} p, \partial_{q} q, \partial_{q} k$
- Question: How do we combine the IBP relations to get a suitable reduction? In general not known \rightarrow introduce unique ordering (Laporta algorithm)
- In this case we just take $\partial_{p} p-\partial_{p} q$:

$$
0+0=\int_{p, q} \partial_{p}(p-q) \frac{1}{p^{2}(p-k)^{2} q^{2}(q-k)^{2}(p-q)^{2}}
$$

- ... after two pages of algebra we find:

$$
\frac{1}{2}(4-D) I_{1,1,1,1,1}=I_{1,1,2,1,0}-I_{1,1,2,0,1}
$$

Laporta algorithm

- As mentioned before, in general it can be quite involved to find the correct combinations of IBP relations: brute force algorithm (1981-2000)
- "Solution" Laporta algorithm [S. Laporta, hep-ph/0102033]
- Key idea: Introduce lexicographic ordering: prescription in order to decide what is the most complicated integral out of a set of integrals.
- Example: Let us consider once again the sunset propagator:

$$
I_{a, b, c, d, e} \equiv \int_{p, q} \frac{1}{\left(p^{2}\right)^{a}\left((p-k)^{2}\right)^{b}\left(q^{2}\right)^{c}\left((q-k)^{2}\right)^{d}\left((p-q)^{2}\right)^{e}}
$$

- Obviously, $I_{1,1,1,1,1}$ is more difficult than $I_{1,1,2,0,1}$ or $I_{1,1,2,1,0}$.
- So, the first "rule" could be:
- 1. Count positiv power of propagators $\sum_{a-e} \theta(\#)$, choose highest, if equal go to 2 .

Lexicographic ordering

- 2. Compute abs. sum of powers of propagators $\sum_{a-e}|\#|$, choose highest, if equal go to 3 .
- 3. Count zero propagators $\sum_{a-e} \delta(\#)$, choose lowest, if equal go to 4 .
- 4. Choose integral with highest power on propagator e,d,c,b,a
- Example:

Rule	$I_{1,1,1,1,1}$	$I_{1,1,2,0,1}$	$I_{1,1,1,-1,1}$	$I_{1,1,1,2,1}$	$I_{2,1,1,1,1}$
1	5	4	4	5	5
2	5	5	5	6	6
3	0	1	0	0	0
4	-	-	-	$d \sqrt{ }$	a

Schematic of simple Laporta implementation

