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Goal

Reduce many Feynman integrals to a small set of so-called
master integrals:

Use integration by parts relations (IBP) [K. G. Chetyrkin and
F. V. Tkachov, Nucl. Phys. B 192 (1981) 159]

and a systematic way to combine them:

The Laporta algorithm [S. Laporta, hep-ph/0102033]
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Reduce Feynman integrals

Why do we want to reduce Feynman integrals?

Usually we are faced with many Feynman integrals in a state
of the art perturbative computation

number of integrals 6= number of diagrams
1 Feynman diagram can result in thousands of Feynman
integrals.

Typically millions of Fintegrals to compute → impossible
without computer algebra
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Reminder: Perturbative Expansion

Any perturbative calculation consist of a combinatoric,
algebraic and analytic part.

combinatoric: Wick contractions
algebraic: Feynman rules, gamma algebra, expansions,
projections, tensor decompositions, etc. + reduction

The former ones are well suited problems for automatization.

BUT: in order to calculate master integrals human
intervention unavoidable.

Ideal starting point: small set of master integrals.
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Integration by parts relations I

n-loop Feynman integral with m external momenta:

F (p1, . . . , pm) ≡
∫

k1,...,kn

ddk1 . . . ddkn

∏

i

(p · k)bi

i

(q2
i + m2

i )
ai

Integration by parts relations are generated by

∫

k1,...,kn

ddk1 . . . ddkn

∂

∂k
µ

j

(

k
µ

l

∏

i

(p · k)bi

i

(q2
i + m2

i )
ai

)

= 0
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Zero-temperature massiv tadpole

Example 1: I (a) ≡
∫

ddk 1
(k2+m2)a , 0pt 1-loop fct. → 1 IBP

IBP relation ∂kk:

0 =

∫

ddk∂kk
1

(k2 + m2)a

=

∫

ddk

{

D
1

(k2 + m2)a
− 2a

k2 + m2 − m2

(k2 + m2)a+1

}

= I (a)(D − 2a) + 2am2I (a + 1)

⇒ I (a + 1) = −D−2a
2am2 I (a), for a ≥ 1.
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Finite-temperature tadpole

Example 2: I (a, b) ≡∑∞

n=−∞

∫

dD−1k
Kb

0

(K 2)a ,K 2 = ω2
n + k2

IBP relation ∂kk:

0 =
∑

∫

K

∂kk
Kb

0

(K 2)a

=
∑

∫

K

{

(D − 1)
Kb

0

(K 2)a
− 2a

(

K 2 − K 2
0

)

Kb
0

(K 2)a+1

}

= I (a, b)(D − 1 − 2a) + 2a I (a + 1, b + 2)

⇒ I (a + 1, b + 2) = −D−1−2a
2a I (a, b), for a ≥ 1.
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Zero-temperature sunset propagator

Example 3: Ia,b,c,d,e ≡
∫

p,q
1

(p2)a((p−k)2)b(q2)c ((q−k)2)d ((p−q)2)e

6 possible IBP relations: ∂pp, ∂pq, ∂pk, ∂qp, ∂qq, ∂qk

Question: How do we combine the IBP relations to get a
suitable reduction? In general not known → introduce unique
ordering (Laporta algorithm)

In this case we just take ∂pp − ∂pq:

0 + 0 =

∫

p,q

∂p (p − q)
1

p2(p − k)2q2(q − k)2(p − q)2

... after two pages of algebra we find:

1

2
(4 − D)I1,1,1,1,1 = I1,1,2,1,0 − I1,1,2,0,1
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Laporta algorithm

As mentioned before, in general it can be quite involved to
find the correct combinations of IBP relations: brute force
algorithm (1981 - 2000)

“Solution” Laporta algorithm [S. Laporta, hep-ph/0102033]

Key idea: Introduce lexicographic ordering: prescription in
order to decide what is the most complicated integral out of a
set of integrals.

Example: Let us consider once again the sunset propagator:

Ia,b,c,d,e ≡
∫

p,q
1

(p2)a((p−k)2)b(q2)c ((q−k)2)d ((p−q)2)e

Obviously, I1,1,1,1,1 is more difficult than I1,1,2,0,1 or I1,1,2,1,0.

So, the first “rule” could be:

1. Count positiv power of propagators
∑

a−e θ(#), choose
highest, if equal go to 2.
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Lexicographic ordering

2. Compute abs. sum of powers of propagators
∑

a−e |#|,
choose highest, if equal go to 3.

3. Count zero propagators
∑

a−e δ(#), choose lowest, if equal
go to 4.

4. Choose integral with highest power on propagator e,d,c,b,a

Example:

Rule I1,1,1,1,1 I1,1,2,0,1 I1,1,1,−1,1 I1,1,1,2,1 I2,1,1,1,1

1 5 4 4 5 5
2 5 5 5 6 6
3 0 1 0 0 0
4 - - - d

√
a
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Schematic of simple Laporta implementation
Initialisation:

→ 0 = (
∑

m Imam)
k+1

Substitute relation 1,...,k in rel. k + 1:

i = i + 1
i = 1

j = j + 1

yes

integral I ′m′ ∈ {I | I ∈ I ′m ∀m} accord.

Im′ = −
∑

m 6=m′ I ′mcm , cm = bm

bm′

existing relations 1,...,k and set
Substitute relation k + 1 in already

k = k + 1

to a given order and compute new rel.

Apply (IBP+SYM)i to suggestion j:

Decide what is the most complicated

END

yes

if rhs 6= 0
no

no

yes

no

→ 0 = (
∑

m I ′mbm)
k+1 if i < imax

jmax=#Suggestions
i=j=1,k=0,imax=#IBP/S

if j = jmax
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