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The following statement is proved: the counterterm for an arbitrary 4-loop Feynman diagram 
in an arbitrary model is calculable within the minimal subtraction scheme in terms of rational 
numbers and the Riemann ~'-function in a finite number of steps via a systematic "algebraic" 
procedure involving neither integration of elementary, special, or any other functions, nor 
expansions in and summation of infinite series of any kind. The number of steps is a rapidly 
increasing function of the complexity of the diagram. To demonstrate further possibilities offered 
by the technique we compute the 5-loop diagram contributing to the anomalous field dimension 
"r2(g) in the q~4 modcl, that defied, heretofore, analytical calculation by other methods. 

1. Introduction 

The efforts directed at the refinement of calculational methods within the per- 
turbative approach in quantum field theory need not be justified. Suffice it to say 
that, firstly, a wide range of important problems for many a theoretician to exercise 
their computational abilities is provided by QCD [1]. Secondly, a better understand- 
ing of the underlying physics and mathematics will, sooner or later, reveal the 
lacking information for incorporating low-order calculations with higher-order 
asymptotic estimates [2] in a (Borel-like) summation technique (for a review see [3]). 
Such a technique will be capable, hopefully, of increasing the quantitative predictive 
power of the perturbation method, which leaves much to be desired yet in QCD. 

The present paper, being a continuation of the previous research [4, 5] and an 
extended exposition of the results outlined in [30], treats of a certain class of 
perturbative calculations. Namely, our aim here is to discuss how and why one can 
analytically calculate the renormalization group (RG) quantities, i.e., fl-functions 
and all sorts of anomalous dimensions which enter the RG equations [6] as 
coefficients, at the 4-loop level in any model within the minimal subtraction (MS) 
scheme [7]. By now it is a well-known fact that the RG functions are relevant to the 
description of the high-energy behaviour of both inclusive and exclusive processes in 
QCD (see e.g., [8]). 
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Since the volume of algebraic manipulations involved is enormous, we have not 
attempted to present any numerical results for gauge theories. This is to be 
postponed until computer programs are written and tested. But the unexpected 
simplicity of our starting idea is in such contrast with the power of the method built 
upon it, that a separate discussion seems justified. 

The paper has the following structure. In sect. 2 we present the preliminary 
information for the reader to understand why we concentrate on the evaluation of 
propagator-type massless integrals in the subsequent sections. In sect. 3 the principal 
idea of this work-integration by parts of dimensionally regularized integrals-is 
explained in simple terms, and in sects. 4 -6  the algorithm of calculations is 
systematically developed and studied in a formal manner. In sect. 7, to exhibit the 
possibilities of the ideas behind the algorithm we calculate the contribution of the 
most intricate 5-loop diagram to the field anomalous dimension 3'2(g) of the ~4 
model. In sect. 8 various aspects of the method are commented upon, and its relation 
to ref. [24] is clarified. Sect. 9 summarizes our results. Appendices A and B describe 
effective methods to calculate primitive integrals defined in sect. 2. Appendix C (to 
which we draw the reader's attention) is devoted to a subject which is not connected 
directly with the main body of the paper but throws new light upon it. 

2. Formulation of the problem 

It is a well-known fact that the RG functions are connected with counterterms of 
the lagrangian, i.e., with divergent parts of diagrams, e.g., 

2 d y = p ,  ~ lnZ .  
gB, mB 

(2.1) 

Here Z is a renormalization constant, ~, the corresponding anomalous dimension, # 
the parameter of the subtraction scheme chosen, and gB and m B are, correspond- 
ingly, the bare coupling constant and mass of the model. 

It is clear, therefore, that an astute choice of regularization and renormalization 
methods can facilitate calculations. At present the method of dimensional regulariza- 
tion [9] is, undoubtedly, the most convenient one to deal with infinities in Feynman 
integrals. As to the renormalization procedure, the MS scheme [7] and its various 
versions allow considerable simplifications in the calculation of counterterms of 
diagrams contributing to the corresponding renormalization constants, as is ex- 
plained below. Moreover, contrary to the common belief that the MS scheme is only 
applicable to the study of high-energy asymptotics because of the independence of 
the corresponding running coupling constants on masses, it has been shown recently 
[10] that the MS scheme can be modified without any loss in its calculational 
convenience so as to become applicable to such problems as the broken symmetry 
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restoration at energies near the mass of the intermediate bosons in grand unified 
theories, where the mass dependence is essential. 

The MS scheme prescribes to subtract pure poles in e = ½(4-  D), D being the 
space-time dimension, through which divergences of Feynman integrals manifest 
themselves. The advantage of this recipe lies in that the dependence of counterterms 
on dimensional parameters of the model becomes polynomial [ l l ]  and, in fact, 
known beforehand. As was shown in [12], this allows one to perform the IR 
rearrangement, i.e., to simplify the infrared structure of a diagram without affecting 
its counterterm which is, essentially, its overall ultraviolet singularity. Various 
versions of the IR rearrangement differing from the original one are given in [4, 5]. 

Referring the reader to those papers for details and examples, we only formulate 
the main result: the problem of calculating the counterterm of an arbi trary/- loop 
diagram with an arbitrary number of masses and external momenta within the MS 
scheme can be reduced through the IR rearrangement to the problem of calculating 
to O(e °) some ( 1 -  1)-loop massless integrals with only one external momentum. We 
denote such massless propagator-type integrals as the p-integrals. A p-integrand can 
have a complicated numerator, which without loss of generality can be taken to be a 
polynomial in scalar products of one external and some internal momenta. The 
corresponding denominator consists of factors like (p  - k)En n = 1,2,3, etc., cf. eq. 
(3.9). Such factors, and not just ( p -  k) 2 as one would expect in the case of usual 
diagrams, can result from differentiation with respect to the masses and external 
momenta at the stage of IR rearrangement [12, 5, 13], and have to be considered in 
the analysis. 

In the earlier paper [5] we have shown how an arbitrary 2-loop and many 3-loop 
p-integrals can be calculated analytically via the Gegenbauer polynomial x-space 
technique (GPXT). In the present paper we combine GPXT with integration by 
parts and prove that an arbitrary 3-loop p-integral of the above described type can 
be calculated analytically to O(e°). In fact, we shall prove in sects. 4 - 6  that a 
p-integral l(k, e), k being the external momentum, can be exactly expressed as, 

I (k ,e )=~,C, (e)Pr , (k ,e )+CL(e)Lo(k ,e )+CN(e)No(k ,e  ). (2.2) 
1 

Here Pr, are "primitive" integrals, i.e., calculable in terms of the Euler F-functions 
by few applications of the one-loop integration formulae of appendix A (see also 
subsect. 4.1), and the sum goes over some finite set of primitive integrals. Lo(k, e) 
and No(k, e) are the two diagrams of the ~3 model shown in fig. 1. Note also that 
various powers of k 2 multiplying each term on the r.h.s, of eq. (2.2) in order to 
preserve the right overall dimension, are omitted. Ci(e ), Ct.(e) and CN(e ) are simple 
rational functions of e with the following properties. If l(k, e) is planar, then C N = 0 
and C L is regular near e = 0. If l(k, e) is non-planar then C L is O(e) and C N regular 
(see, however, remark (iii) of sect. 5). C, can have a singularity at e = 0 not stronger 
than e -  2 
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L.(~) No(~) 
Fig. I. The two diagrams of the scalar q0 3 model, which cannot be evaluated through integration by parts 

only. 

So, in order to guarantee the calculability of any 3-loop p-integral to O(~°), one 
only has to calculate L 0 and N O also to O(e°). This can be easily done by means of 
GPXT [5], once and for all: 

L o ( k , e ) = N o ( k , e ) + O ( e )  - 20~(5) +-O(e). 
(4~r)6k4 

(2.3) 

There exists an instructive explanation of the equality of L 0 and N O to O(e°), which 
is presented in appendix C. 

So, we conclude that once the algorithm of obtaining the representation (2.2) for 
any l(k, e) is given, the problem of calculating 4-loop RG functions no longer exists, 
at least, theoretically. 

We would like to point out that the method we are going to describe also 
considerably simplifies 3-loop RG-calculations. This is because with the result (2.2) 
one can attack 3-loop diagrams in a straightforward manner, without performing the 
full IR rearrangement, though one would still have to put all masses and some of the 
external momenta to zero. 

3. Simple example 

The main idea of our method is very simple and can be best explained with a 
simple example. Consider the 2-loop scalar diagram of fig. 2. Its expression in 
momentum (p)  space is* 

F(k) = f  dOqdOp 1 . (3.1a) 
(2~r) 2n p 2 ( p - k ) 2 q 2 ( q - k ) Z ( p - q ) 2  

The same integral in position (x) space is 

1 , (3.1b) 
--jdDxlf dDx2 (x 3 -- X, )2X(x 3 -- X 2 )2XX~xX22x(x 2 -- x, )2x 

F(x3 ) 

where D is the space-time dimension, and h = ½(D - 2). Factors in the denominators 
of eqs. (3. la) and (3.1b) are in a one-to-one correspondence. 

~' All integrals are defined over euclidean space. 
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X 1 

<.___. 

X2. 

Fig. 2. A simple scalar diagram, which can be evaluated through integration by parts. (a) and (b) 
correspond to eqs. (3. la) and (3. Ib), respectively. 

Now we write the following identity in p-space: 

o=fd°qd°p 0 1 (L-qY'~ 
(21r)20 Op~, p Z ( p _ k ) Z q 2 ( q _ k ) 2  (p_q)Zj. (3.2a) 

This identity becomes obvious in x-space, 

O=fdox,dOx2{(x,-x3)~+(x3-x~)"+(x~-x~)"} (x~-x,)" 
( x , -  x3)2 (x3- x2)2 x?x  ( x2 -x , )  " 

(3.2b) 

Differentiat ing with respect to p in eq. (3.2a) and making use of identities like 

2 ( p - q ) ~ ' ( p - k ) ~ ' = ( p - q ) 2 + ( p - k ) 2 - ( q - k ) 2 ,  (3.3) 

we obtain [here e = ½(4 - D)] 

~ f d~'pd~ 1 
(2~r)2° p 2 ( p _ k ) Z q 2 ( q _ k ) 2 ( p _ q ) 2  

(2~r) 20 q2( p - q )2p2( p - k )4 p2( p -  k )4q2( q -  k ) 2 " 

(3.4) 

Eq. (3.4) is pictured in fig. 3. It is a well-known fact that the integrals on the r.h.s, of 
eq. (3.4) can be expressed in terms of F-functions; all the necessary formulae are 
given in appendix A. 

In short, we have managed to express a non-trivial 2-loop diagram through 
diagrams of much simpler structure, exactly to all orders in e. The result is 
amazing*,  if one considers the simplicity of the trick by which it has been obtained. 

'~ The authors of sophisticated methods of evaluating Feynman diagrams [5, 14, 15, 21] should agree 
that it really is. 
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Fig. 3. A pictorial form of eq. (3.4). A dot on the line means an additional power of p2 in the 
denominator, or, equivalently, the insertion of a ~0 2 vertex. 

But this is only a first example: in subsequent 
developed systematically. 

In deriving eq. (3.4) we have used: 
(i) An identity of the following form*: 

sections the algorithm will be 

D O=fd p - ~ p ~ f ( p  . . . .  ),  (3.5a) 

or, in x-space, 

0 = (X I - X 3 ) ~ +  (X 3 - X 2 ) v ' +  (X 2 - x l )  v. (3.5b) 

This identity can be considered as a consequence of translational invariance of 
dimensionally regularized integrals in p-space, 

f dDpf(P) =f d°pf(p + q). (3.6) 

It can also be viewed as integration by parts in p-space. 
(ii) Momentum conservation, i.e., translational invariance in x-space expressed in 

eq. (3.3) which can be viewed as integration by parts in x-space. 
(iii) Cancellation of squared combinations of momenta in the numerator and 

denominator of the diagram, which is equivalent to shrinking the corresponding line 
to a point: 

I =p2  P---21 ---, [] (x /y )2X ~ 6 t m ( x - Y )  • (3.7) 

(iv) The fact that all divergent expressions we are dealing with at the intermediate 
stages are well-defined, and formal manipulations otherwise incorrect, justified 
within dimensional regularization. 

* To our knowledge, such identities within dimensional regularization were considered with practical 
purposes in ref. [16] in a different context. Similar identities in x-space were used in ref. [21]. 
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It is also worth stressing that the integrals on the r.h.s, of eq. (3.4) are calculable 
owing to the following simple facts: 

(i) A simple power goes over into a simple power under Fourier transformation 
within dimensional regularization, 

1 F ( ½ D -  ~) : d O x  eiq , (3.8) 

(note that eq. (3.8) is incorrect for a = ½D + m or a = - m ,  m non-negative integer, 
but we shall not encounter such cases in the present work). 

(ii) Fourier transform of a convolution is a product of Fourier transforms. 
(iii) The group property of simple powers: x2~.x 2t~= x 2t"+a) and p2~.p2a= 

p2ta+#). 

Summarizing, one may say that the whole procedure consists in using algebraic 
identities like eqs. (3.5b) and (3.3) and Fourier transforming between x- and p-space 
with the help of eq. (3.8) and its parametric derivatives. 

It should be clear, that repeating the same trick several times, one can calculate 
the following integral: 

f dOpd°q 1 
~ p2aq2,n( p __ q)2'( P __ k )2~ (q _ k )2. ,  

(3.9) 

where l, m and n are integers > 0, and (~ and /3 are arbitrary. Further details are 
given in sect. 4. 

4. The algorithm 

Now we proceed to construct a set of recursive relations which will enable one to 
evaluate to O(e °) an arbitrary 2- and 3-loop p-integral with an arbitrary scalar 
numerator and propagators of the form (p2)-m, m integer. 

4.1. ONE-LOOP INTEGRALS, PRIMITIVE INTEGRALS, NOTATIONS 

Consider the expression 

f d°p @ (___p. _k) (4.1) 
(2~-) D p2a(p-k)2B' 

where P( p, k) is a scalar polynomial constructed of p, k, and, perhaps, some other 
vectors. It is convenient to rewrite eq. (4.1) as 

(2~r)2D (2¢r)°8(P'+P2-k) 6~(p"P2).2.,.2.~ 
Y I / - '2  
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2 v._@ 
4 

Fig. 4. The generic graph of one-loop primitive integrals. 

Now we can introduce the condensed notation which will be indispensable in what 
follows, 

eq. (4.2) = P (  P i, P2 )V(a  I, a 2 ). (4.3) 

All information about momentum conservation, topology of the diagram and 
numeration of lines can be visualized via a "generic" graph, as in fig. 4. It will be our 
rule to assign a function name (V, in the present example) to every generic graph, so 
that one will not need to write explicitly expressions like eqs. (4.1) and (4.2), which 
become rather cumbersome at the 3-loop level. Also, we shall often call a line 
integer, positive, etc., if such is the corresponding a t. 

Returning to the one-loop case, we observe that, in general, both P i and P2 are 
present in P,  and first of all one should substitute, say, P2 by k - p l .  If the factor p~ 
appears after such a substitution, it should be absorbed into V: 

p V v (  <,, , ) : v (  - o, ). (4.4) 

So we come to the problem of calculating the following integral: 

oL( p, ) ), (4.5) 

where .~,(Pl) does not contain p~ and 

%(Xp,)  = xO%(p,). (4.6) 

This problem is extensively treated in appendix A, where it is explained how eq. (4.5) 
can be calculated most conveniently in terms of the so-called G-functions, which are 
themselves combinations of the Euler F-functions. Here we only note that eq. (4.5) 
can be calculated for arbitrary complex a, and the result is a sum of the terms like 

P , (k )  (4.7) 
k 2/~, 

(recall that k is the external momentum; fl, depend on a i and e). 
Therefore, we can define an important class of "primitive" integrals*, or recur- 

sively one-loop integrals, as they were called in [5]. This class consists of the 
diagrams amenable to exact evaluation by repeated use of the one-loop integration 

* Each primitive integral is a p-integral but not vice versa. 
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1 
3 1 k , . ~  

"k'/t: ~z: ~ ~1: # 2. 

Fig. 5. The generic graphs of 2-loop primitive integrals. Note that the graph W I is equivalent to W{. 

formulae of appendix A. The 2-loop generic primitive graphs are shown in fig. 5. 
Integration of primitive integrals proceeds as a simple sequence of substitutions. 
Numerators adding no essential complications, we illustrate the idea with a simple 
example without numerator: 

w,  (0/,. 0/=. 0/,, 0/. ) = a( 3, a4 0/2 ) 

= a ( a3, 0/4 ) V( a, , % + a3 + 0/4 - 2 + e ) 

= k 2 ( 4 - 2 ' - a ' - % - ' ~ ' - ' ~ ' ) G  ( a3 ,0 /4 )G(0 / I ,  0/2 + a~3 + °/4 - 2 + g),  

(4.8) 

where G(0/, t ) =  G(a, fl,0,0) is the function defined in eq. (A.2). Basically different 
generic 3-loop primitive graphs are presented in fig. 6. 

As soon as a complete set of rules analogous to eq. (4.8) is formulated, one is left 
with algebraic substitutions which can be implemented, e.g., as a SCHOONSCHIP 
[17] program in a straight-forward manner. 

4.2. TWO-LOOP INTEGRALS, PRELIMINARIES 

There exists one topological class of non-primitive 2-loop p-diagrams, fig. 7a. For 
our purposes we only have to consider numerators which depend on 6 vectors: 
P l . . . . .  P5 and k. Then, recalling that we are always dealing with scalar numerators, 
we expand scalar products of different vectors as 

2p, "P2 =P~ +P~ _p2.  (4.9) 

Such relations follow from momentum conservation and reflect the topology of the 

Y~" ~~>- Y s : - ' C > < > O ' - -  

Fig. 6. All different generic graphs of the primitive 3-loop integrals. 
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k 

Fig. 7. (a) The only non-primitive generic 2-loop graph. (b) and (c) correspond to the same set of 
momentum conservation relations as (a). 

diagram. For example (see fig. 7a), 

P2 + P5 - P4 = k, (4.10) 

whence 

2 2 
P2 +P4 +Pg -- 2p4"P5 -- 2p4"P2 + 2pZ'P5 : k2, (4.11) 

and, finally, 

2 2 2 k2" 2p2"P4 =P~ +P3 -P5  (4.12) 

Our first observation is that a numerator of the type under consideration can 
always be disposed of via such relations as eqs. (4.12) and (4.4). In general, however, 
scalar invariants p2 ... . .  p2 from the denominator of the diagram and the squared 
external momentum k 2 do not form a full basis in which to expand scalar products. 
A simple example is provided by the Wt graph of fig. 5: the product k.P4 can not be 
got rid of. Therefore, in general, one should add some "extra" invariants to the basis. 
The choice of the extra invariants is usually not unique and can be made from the 
viewpoint of calculational convenience. Thus, the invariant 2k-p4 in the case of the 
WI graph of fig. 5 is more convenient than, say, p~ "P4, as can be understood from 
appendix A. We shall always indicate a convenient choice of the extra invariants in 
complicated cases. 

Another observation concerns the intrinsic symmetry of the totality of momentum 
conservation relations. The relations corresponding to fig. 7a can be equivalently 
expressed via figs. 7b and 7c. Using this symmetry, one can, e.g., immediately 
expand 2p5. k by a simple relabelling of vectors in eq. (4.12). In subsequent sections, 
however, the mappings analogous to the mapping of fig. 7a onto fig. 7c will be 
shown to play a more important heuristic role in the study of 3-loop p-integrals. 

Returning to the 2-loop case, consider the integral associated with the graph of fig. 
7a [recall our conventions, eqs. (4.1)-(4.3)], 

f ( ~ l ,  ~2,0(3, ~4,  or5). (4.13) 

If at least one a, is integer <~ 0, then F reduces to the types WI or W z of fig. 5. If, say, 
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both  a~ and a 2 are integers~< 0, then F =  0. For  general a,, to our knowledge, eq. 

(4.13) has not  been calculated in a closed form, though a 2-fold infinite series can be 

obtained if one uses the Slater theorem on integration of  generalized hypergeometric  
functions [18] in the framework of G P X T  [5]*. However,  for our  purposes it is 

sufficient to consider three types of  parameters  a~: 

(1) all a, i n t ege r -  the 2-loop case p r o p e r -  the type F t; 

(2) a~ = n + e, n and a 2 . . . . .  a 5 in teger -  the type F2; 

(3) a 5 = n + e, n and a I . . . . .  cq in teger -  the type F 3. 
The last two cases are needed for 3-loop calculations in sect. 5 (cf. the graphs 

RI - R 4 of  fig. 9), but  it is convenient  to discuss them here. 

4.3. TYPES Ft AND F2: THE RULE OF TRIANGLE 

The main tool of  our  analysis are the recursion relations based on the trick 
discussed in sect. 3. Let us now examine them in a more  formal manner.  

Choose an oriented closed circuit C, e.g., consisting of  lines l, 5 and 4 of  fig. 7a. 
This will be written as 

Write, 

C =  { +pl ,  +ps, +p4}. (4.14) 

0 + 0 0 (4.15) 
Oc = + OPl ~ + ~P--4 " 

The sign before O/Op~ is plus, if p, flows in the direction of C, and minus in the 
opposite case. 

Choose a vector P, 

P = ~, fl, pg + ilk, (4.16) 

where fli and fl are arbitrary scalars; e.g., P = Ps. 
The following identity holds (consult sect. 3, if necessary): 

0 =  (Oc .P)F((c t } ) .  (4.17) 

It  is implied that differentiation goes before integration; it will be always clear f rom 
the context what  is meant  in each case. 

* By way of argument, this observation invalidates the assertions of [15], that p-space has advantages 
over x-space in this class of calculations. Apart from the simplicity which is characteristic of the RG 
calculations in x-space, there are the 5-loop ~0 4 model calculations of ref. [19] and the integral N O of 
fig. I of the present paper, that cannot be performed without reference to x-space. Anyway, after [19, 
5] and the present work the discussion seems unnecessary. 
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Perform differentiation and expand scalar products in the basis {p2, kZ), as in 
eqs. (4.9) and (4.12), and absorb p~ into F as in eq. (4•4). In this way we get 6 
relations, each one being an identity connecting functions F depending on different 
sets of a i [see e.g., eq. (4•22)]. These identities are independent in the sense that the 
corresponding differential operators are independent• Six is the number of indepen- 
dent momenta after momentum conservation is taken into account, e.g., P3, P4, and 
k, multiplied by the number of independent circuits, e.g., C t = {P~,Ps, P4) and 
C2 = { -Ps ,  P2, P3}, cf. [20]. The number of independent circuits is equal to the 
number of independent integration momenta. 

Recall now that one knows the dimensionality d F of F in terms of et, and e 
beforehand, whence three more relations: 

ap t 0p 2 ) F, 
(4.18) 

• 0 0 )p,F, (4.19) 

(D+dF) p2"k )F=( 0-~-+~ a (4.20) 

where 

t~l @i ) d F = 2  D -  .= 
Eqs. (4.18)-(4.20) can be incorporated in the scheme of eq. (4•17) if one chooses 

C = {k, Pl, P2}. 
To summarize, for an/- loop p-integral one can write down ( l +  1) 2 independent 

identities. Note that the identity 

0 = N c F = ( ~ c ' a c ) F =  0 c" ~ P j ~  (4.21) 

follows from eq. (4.17)• Note also that the mapping of one generic graph onto 
another, analogous to fig. 7, induces a one-to-one correspondence between the two 
sets of vectors P and the two sets of circuits C, which leads to a one-to-one 
correspondence between the two sets of identities. 

At present we do not possess a general method of studying recursions of the 
described type. However, the rule of triangle, which we are now going to explain, 
makes life much easier in many cases. Let us write down eq. (4•17) explicitly for 
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P = P5 and C = { p i, Ps, P4 ): 

F(a, . . . . .  a s )  = ( - 2 a  5 - a , - a ` + D ) - '  

171 

X {a,[F(a, + 1 ,  a 2 , 0 t 3 , O ~ a , a  5 - -  1 ) -  F(a, + l , a  2 - l ,a3 ,a , ,as )  ] 

+a,  LF(otl,a2,et3,ct 4+ 1,a  5 -  l ) - F ( a l , o t 2 , a  3 -  1 ,a  4 +  1 , a s ) ] ) ,  

(4.22) 

or in a still more condensed notation*, 

F ( ( a ) )  = ( - 2 c t  5 - a  I -  a 4 + 4 -  2e) -1 

X (oq. 1+ [ 5 - - 2 -  ] + ot4.4 ~-[5 - - 3 -  ] }F. (4.23) 

Let now a 2, a 3 and a 5 be positive integer and a I and a 4 arbitrary complex. It is clear 
that applying the substitution (4.23) as many times as necessary, one can express 

F( (a})  in terms of  integrals with the 5th, 2nd, or 3rd line shrunk to a point, i.e., in 

terms of primitive integrals of  the classes WI and W 2 (see fig. 5), which can 
immediately be turned into products  of  the G-functions according to eq. (4.8). In this 

way any diagram of types F I and F z can be calculated exactly to all orders in e. 
The lesson is that  as soon as the diagram contains a subgraph as shown in fig. 8, 

one can use the analogue of eq. (4.23) to simplify the integral. This recipe will be 

often used below. 

N o w  some remarks are in order. 

(a) Applying eq. (4.23) once, we get, 

O(1 ,1 )  
F ( a , l , l , f l ,  l ) = ( 2 _ 2 e _ a _ f l )  { a [ G ( a + l , f l ) - G ( a + l , f l + e ) ] +  ( a , - , f l ) ) .  

(4.24) 

A 

Fig. 8. The subgraph which makes possible the application of the rule of triangle. The lines AD, AB and 
BC should be integer ~ 0, each of the vertices A and B should have 3 incidental lines, the vertices D and 

C may coincide. C and P in eq. (4.17) should be chosen as ABE and PAn, correspondingly. 

* The reader is advised to invent some sort of pictorial notation to make the understanding of such 
equations easier. This has not been done in the text in order to save space and avoid ambiguities due 
to numerators in subsequent sections. 
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Historically, this was the first exact result in dimensional regularization for a 
non-primitive diagram obtained in [4] by GPXT. This formula was rederived in [21]. 
The latter authors managed to obtain eq. (4.24) via an algebraic procedure, which is 
more sophisticated than ours. They used the results of [22] and the conformal 
invariance properties of massless integrals. It is not clear to us, however, whether 
their method can be applied to 3-loop p-integrals with the same efficiency as 
integration by parts combined with GPXT. 

(b) Combining eq. (4.18) with the following equation obtained from dimensional 
considerations, 

d 2 ( ~ + ~ 12 
dr(dr+O-2)F=dk,dk---~F= ~ ~ F, (4.25) 

one can express F(a, 7, 1, 1, 1) through primitive integrals: 

V ( a , y , l , 1  l ) - -  ( l - - e - - a - - v )  
' e(1 -- ~)e) { a T ( l - - e - a - - y )  ' G ( l , a + l ) G ( l , y + l )  

+[ .G(1 , .  + I)a(l,  + + 0  + 

(4.26) 

As far as we know this result is new; the best that, say, GPXT can offer is to 
represent the 1.h.s. of eq. (4.26) as a twofold series [4, 5]. 

(c) There is considerable ambiguity in the form of representing formulae like eq. 
(4.24). Thus, in [4, 5] and [21] different formulae were given though both equivalent 
to eq. (4.24). Even the representation in terms of the G-functions is not unique. 
Indeed, consider the integral F(5, 1, 1,6,2). It can be reduced to the G-functions by 
eq. (4.23) in two steps. But if one rewrites it as F(1,5,6, 1,2) (recall the left-fight 
symmetry of fig. 7a), one then has to apply eq. (4.23) to it (5 - 1) + (6 - 1) + (2 - 1) 
+ 1 = 11 times. In the case when all a i are integers the choice can be easily made, 
and if, say, a ,  = n + e, n and the rest of a, being integer, then one simply has no 
choice but to exploit eq. (4.23). But at the 3-loop level, we are not sure we have 
found the shortest way of reducing diagrams to the G-functions, although the recipe 
for obtaining the final results in the most compact form would be of great value at 
the stage of computer calculations. 

(d) If a +/3 = 2 + O(e), then e -1 appears as a factor on the r.h.s, of eq. (4.24). One 
can easily see that the following general relation expressed in a symbolic form 

holds*: 

F = O ( e - I ) G ×  G. (4.27) 

* The absence of higher poles in eq. (4.27) can be seen if one uses the recursions similar to eqs. (4.28) 
and (4.29) instead of eq. (4.23). 
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As the analysis of subsect. 5.4 shows, the appearance of such pole factors is a 

regular feature of integration by parts. This forces one to expand the G-functions in 
e to higher order than would be needed otherwise. This fact adds to the problems 
with time and memory at the stage of computer realization of the algorithm, if one 

recalls the volume of calculations. 

4.4. TYPE F 3 

The rule of triangle is not applicable to the 2-loop integrals of the type F 3, i.e., the 
integrals of the form 

F ( a l , a 2 , a 3 , a 4 ,  n + e), 

a~ . . . . .  a 4 being in tegers>0,  and n an arbitrary integer. In fact, we have not 
succeeded in expressing such diagrams in terms of the G-functions only, though any 
such diagram can be reduced to a sum of products of the G-functions and 
F(I ,  1, I, 1, 1 + e) --  F ' ( I  + e). The latter function can be calculated with some labour 
by GPXT to order e 2, which is sufficient for our purposes, but we prefer, for the sake 
of symmetry with the non-planar case (sect. 6), to express it in terms of the integral 
Lo(e ) of fig. 1. This last step is postponed until subsect 5.4. The reduction to the 

G-functions and F'(1 + e) proceeds in two steps. At first a general F 3 type integral is 
reduced to the G-functions and F'(n + e). Then F'(n + e) is expressed via F ' ( I  + e). 

The first step can be done easily* with the recursion obtained from eq. (4.17) by 

choosing C = ( p l, P4, P5 } and P = p i, and then shifting a 4 --, a 4 - 1 : 

( a  4 -  1 ) F ( { a } )  = ( (2a ,  + a 4 + a 5 -  5 + 2e )4 -  

+ ( a  4 -  1 ) 1 - ' + a 5 [ 1 - 4 - 5 + - - 2 - 4  5 + ] } F .  (4.28) 

One should apply it until no more non-primitive terms with a 4 > 1 are present, then 
use the left-fight and up-down symmetries of fig. 7a and apply eq. (4.28) again until 

no more non-primitive terms with a~, a2, or a 3 > 1 are present. 
The second step consists in combining eq. (4.18) applied to F'(a  5) and eq. (4.23) 

applied to F'(ct 5 + 1), whence the following relation: 

0 = ( a  5 + e ) F ' ( a  5 + 1) + ( a s -  1 + 2 e ) F ' ( a s )  

+ 2 ( 1 - 2 a s - 3 e ) G ( l , l + a s ) G ( 1 , 1 + a s + e  ). (4.29) 

A peculiar feature of the derivation is that one always arrives at eq. (4.29) no matter 
how eqs. (4.17)-(4.20) are combined. In other words, one cannot get a relation 

* We are grateful to S.A. Latin for pointing out to us this recursion, which is shorter than the original 
procedure. 
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connecting F ' ( a  5 + 1) and F'(as) ,  which is linearly independent of eq. (4.29), and 
express F ' (a  5) through primitive integrals. 

Another important property can be easily observed in eqs. (4.28) and (4.29). 
Whatever F 3 type diagram different from F'(1 + e) one takes as an input for the 
above described procedure, the output always contains F'(1 + e) multiplied by e and, 
perhaps, a rational function of e regular at e = 0. It is this property, somewhat 
mysterious (which is not unusual with dimensionally regularized Feynman integrals), 
that will enable us to prove that only Lo(e -- 0) is needed in calculating any 3-loop 
p-integral and, consequently, any 4-loop RG function. 

5. Three-loop p-integrals: the planar case 

Before we plunge into the detail, it is worthwhile to have an overview of what we 
are to accomplish. In fig. 9 are shown 9 non-primitive, basically different generic 
graphs for the integrals that can and do occur in calculating arbitrary 4-loop 
counterterms. Any graph of fig. 9 can be considered as a particular case of the 
ladder, Mercedez, and non-planar graphs of level I after some lines are shrunk to a 
point. Recall that the generic graphs show only the topology of integrals. In general, 
the ith line of a generic graph corresponds to (p2)-a , ,  a, being integer and Pi the 
momentum flowing through this line. In addition, the integral can have a scalar 

t _eve (  I : 
2 2 

3",.,1/'6 

2 

S ~ ' ~  

L e ~ e  ~ IlIJl : 

~:  ~,~: 

Fig. 9. The generic graphs of the non-primitive 3-loop p-integrals. On performing the one-loop subin- 
tegration in the integrals of the classes R 1 - R 3 and R 4, one obtains sums of integrals of classes F I -- F 3 

and F I correspondingly, multiplied by the G-functions (see subsect. 5.3 and appendix B). 
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polynomial of p, and of the external momentum k in the numerator.  As in subsect. 

3.1, such numerators can be expanded in a full set of invariants which consists of p2, 
k 2, and the extra invariants specified below for each class of diagrams. After this it 
may happen that either all a, > 0 or, for some i, a~ < 0. For example, on expanding 

the numerator of some integral of the class N it may happen that in some term the 
6th line becomes non-positive, e.g., a 6 = 0. In this case the 6th line shrinks to a point 
and this term goes over into the class Q with a suitable reordering of the indices (cf., 
fig. 10), 

U ( a ,  . . . . .  a s , 0 , a v , a s )  = Q ( a s , a , , a s , a 2 , a v , a 3 , c t 4 ) .  (5.1) 

If ot 6 , ( 0  a n d / o r  there is a power of the extra invariant in the numerator, then 
(p2)~61 and the extra invariant should be re-expanded in a new set of invariants 

corresponding to the class Q. 

If, on the other hand, a, > 0, for all i, then one should apply suitable recursion 
relations as specified in the subsequent sections in order to express this N-class 

integral through integrals of lower levels. In this way all integrals should be reduced 
to a sum of primitive ones, those of the classes R~-R4 ,  and the two integrals of fig. 
1. Table 1 shows which class goes over into which when some line shrinks to a point. 

This is only a general scheme. We have yet to specify how to choose the extra 
invariants in each case, what recursion relations to use when all a, > 0, and what 
additional information besides the G-functions one needs in order to arrive at the 
final analytical result. We also should comment  upon how to handle integrals of the 
classes Ri. All these issues will be covered step by step in what follows. 

5.1. CLASS L 

It is convenient to begin the description of the algorithm with planar diagrams 
and postpone the discussion of the non-planar case till the very end, because the 
reduction of the N-class integrals is much more difficult but adds little to general 
understanding. 

Consider an integral of the class L, fig. 9. A convenient choice of the extra 

invariant is 2pT.p8. So we write the following general expression (all et i integer): 

(2p7 .Ps )ag t (o t l  . . . . .  Ors) ~ t ' ( o t  I . . . . .  ors, or9), (5.2) 

~ l , . . . , 0 t 8  > 0 ,  or9 ~ 0 .  

l 

- Z  

Fig. 10. Shrinking the 6th line of the graph N to a point, one obtains the graph Q with a non-standard 
numeration of lines. 
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TABLE 1 

Class W h i c h  line shrinks N e w  class 

1,6,3,4 R 2 

L 2,5 M 
7,8 R I 

N 2,5,7,8 ,~- 
1,3,4,6 Q 

M 1,3 Q 
2 R~ 
4,5 R 4 
6,7 R 2 

8 ,~ 

Q 1,2,3 primit ive  

4,5 R 2 
6,7 R 4 

1,3 R 2 
2 R.~ 
4,5,6,7 primit ive  

Recalling the rule of triangle of  subsect. 4.3, we write the following identity: 

0 =  (Oc.?)L'((a)), C= (Ps,P,,P3}, P=P8. (5.3) 

In the explicit form it reads 

L ' ( ( a } )  = (4 - 2e + o~ 9 - -  a 3 - -  a 4 - -  2a8) I 

X { 0 : 4 4 *  ( 8 -  - - 5  - ) q- a33' (8 " - 2 -  )}L'. (5.4) 

Using eq. (5.4) several times one can obtain that either as, a 5, or a z = 0, which 
means that the L-class integral is expressed in terms of the classes R t and M. 

However, exploiting magic triangles leads to the accumulation of the factors e - l ,  
as shows the following realistic example: 

L ' ( 1 , 2 , 1 , 1 , 1 , 1 , 2 , 2 , 2 ) .  (5.5) 

In reducing eq. (5.5) with the help of eq. (5.4) one gets e -2 as a coefficient of  some 
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lower level terms. The reason is that  the quanti ty 

A = 4 + a 9 - -  a 3 - -  a 4 - -  2a  s (5.6) 

oscillates a round A = 0 as a recursion (5.4) is being repeatedly applied. Obviously, if 

one could force A to vary monotonously ,  then the dangerous point  would be passed 

over only once. 

This can be achieved in the following way. Consider the identity: 

0 : (Oc -P )L ' ( { ,~} ) ,  

C= { P 2 , - P s , P s , - P 7 } ,  P=P7.  (5.7) 

On  shifting a s --, a s - 1 and a 9 --, a 9 - 1, it can be written explicitly as, 

( a  s -  1 ) L ' ( { a } )  = ( 2 ( a  9 -  1 ) 7 - - 9 - -  (2a  7 + a 2 + a 5 - a  9 -  3 + 2e) 

+ a z 2 + ( l - - 7 - ) + a s S + ( 6 - - 7 - ) } 8 9 - L ' .  (5.8) 

Applying eq. (5.8) to eq. (5.2) one arrives at one of  the two possibilities: either 

a 8 = 1, or a 9 = 0. Now, if one applies eq. (5.4) after the recursion (5.8) has been 

worked out, one will have at worst simple poles in e in the coefficients of  lower level 

terms. Indeed, if a s = 1, then A decreases by 1 with every application of eq. (5.4), 

while the terms with 8 -  in eq. (5.4), which would otherwise cause A to increase, are 

automatical ly out of  play: a s becomes zero in those terms, and they go over into the 

class R 1. If, on the other hand, a 9 = 0, then A < 0  with the exception of  the case 
when A = 0 with positive a,, i.e., a s = a 3 = a 4 -- 1. But now A increases by 1 each 

time eq. (5.4) is applied, except in the terms in which the 8th line shrinks to a point. 

On the other hand, one cannot  get rid of e -j completely as the example 
L'(1 . . . . .  1,0) and eq. (5.5) show. 

The result of  applying eqs. (5.8) and (5.4) to a general integral of the class L can 
be symbolically summarized as, 

L = O ( e - ' ) M + O ( e - ' ) R , .  (5.9) 

5.2. CLASSES M AND M; THE RULE OF MAPPING 

We choose 2p2.k to be the extra invariant for the classes M and M. It is 

convenient  to consider the classes M and M simultaneously by allowing a 8 of  the 
class M to be non-positive, which is equivalent to choosing the second extra 
invariant of  M as ( P 6 - P 7 )  2. 
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Consider the integral 

( 2 p  2 . k  )~'M(a~ . . . . .  a 8 ) ~ Mr(Oil . . . . .  a s ,  ot 9 ) ,  

a I . . . . .  a 7 > 0 ,  a9~>0. (5.10) 

In order to find suitable recursions we avail ourselves of the intrinsic symmetry 
introduced in subsect. 4.2. The underlying observation is that both graphs L and M 
of fig. 9 can be obtained by cutting different lines of the graph of fig. I lb. So, there 
exits a mapping of the momentum structure of the graph L onto that of the graph 
M, such that the extra invariant of the class L corresponds to that of M. (It is better 
to say that the two invariants are chosen to be in such a correspondence.) As 
mentioned in subsect. 4.3 after eq. (4.21), there also exists a one-to-one correspon- 
dence between the recursions of the classes L and M. 

The heuristic "rule of mapping" prescribes to employ for M the recursions which 
correspond to those employed for L. Of course, the rule implies that the absence of 
higher order poles in the coefficients of eq. (5.9) will be carried over to the class M. 
This can be easily understood if one notes that the recursion of the rule of triangle 
affects the subgraph shown in fig. 8 in the same way in M and L, i.e., that the 
number of generated poles in e depends only on the inner structure of this subgraph. 

So, the mapping of fig. 11 transforms the circuit C and the vector P of eq. (5.7) 
into C =  {Pt, P2, P3, k} and P = k. The corresponding identity is 

d M = - 2  a , - a  9 - 6 + 3 e  , 
i 1 

(5.11) 

Fig. 

(a) (b) (c) 

11. The mapping of the momentum structure of the class L(a) onto that of  the class M(c). 
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or, explicitly, after shifting a z --, a 2 - 1 and ot 9 ~ a 9 - -  1 ,  

+2(~9 - 1)9- +~,1 ÷ ( s -  - l) + ~33 "(4- - 1 )}2  9 -  M'. 

(5.12) 

Eq. (5.4) goes over into the following: 

0 = ( o c . e ) w ( ( ~ } ) ,  

C= {P2,P6,PT), P=P2, (5.13) 

or, explicitly, 

M ' ( ( a } ) =  ( 4 + f f 9 - - 2 f f 2 - - f f 6 - - a 7 - - 2 e )  - 1  

X ( a 6 6 + ( 2  ~ - 1 - ) + a 7 7 + ( 2  - - - 3 - ) } M ' .  (5.14) 

Eq. (5.12) should be applied as many times as possible in order to prepare the 
ground for eq. (5.14) to operate without producing excessive poles in e. The result 
can be expressed as 

M =  O ( e - ' ) R  3 + O(e - ' )Q  + O ( e - ' ) R  z, (5.15a) 

i f =  o ( , - '  )g3 + O(~- ' )g2 .  (5.15b) 

5.3. CLASSES Q AND R I - R 4 

Consider now the classes R t, R 2, and R 3 (fig. 9). Their common feature is that 
they have a one-loop subintegration (lines 6 and 7 in each case) that can be 
performed immediately. The two extra invariants in each case can be chosen in the 

following way: 2p6.pl and 2p6-p2 for R I and R z, and 2p6.pl and 2p6.k for R 3. The 
subintegration can be performed with the formula (A.1). Having done this, we 
arrive, correspondingly, at the integrals of the types F I, F 2, and F 3 which have been 
analyzed in subsects. 4.3 and 4.4. The final result can be expressed as 

R,. 2 = O(e°)G X F,. z--  O ( e - ' ) G  X G X G, (5.16) 

and 

R 3-- O(e°)G X F 3. (5.17) 
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As to the class R 4, it is less obvious that such integrals with a numerator consisting 
of powers of two extra invariants, say, 2pt .k and 2p2.k, can be reduced to the F I 
type integrals. This fact being demonstrated in appendix C, we write here only the 
final result: 

R 4 = O(e°)G X F,. (5.18) 

It should be understood that, in principle, the R 4 integrals can be reduced to the 
primitives via the rule of triangle despite the presence of a numerator, but then the 
control over powers of e will be lost, so that eq. (5.18) can not be established. 

The previous remark holds true also for the integrals of the class Q (see fig. 9). 
This time the handle on the poles in e again may be found in the rule of mapping, 
subsect. 5.2. Indeed, the graph Q is connected with the graph M via the mapping 
shown in fig. 12. According to the rule of mapping, one should choose the two extra 
invariants of the class Q in such a way that they correspond to those of the class M, 
then construct two recursions corresponding to eqs. (5.12) and (5.14), and prove by a 
direct analysis that the result is 

Q =  O ( e - ' ) R  2 + O ( e - ' ) Y ,  + O ( e - ' ) R  4. (5.19) 

All the details are left to the reader. 

5.4. SUMMING UP THE PLANAR CASE 

Let us summarize our achievements. Combining the results of sects. 4 and 5, we 
can write the following symbolic expressions for the integrals of the classes Q, M, M 
and L: 

Q = O ( e - 2 ) G X  G ×  G, (5.20) 

M = 3 + x 6 ,  

i f =  + ' ) a  x h ,  

L =  O(e-3)G3 + K ×  G ×  F 3, 

(5.21a) 

(5.21b) 

(5.22) 

Fig. 12. The mapping of the momentum structure of the class M(a) onto that of the class Q(c). 
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where 

K =  O ( e - 2 ) .  

The first remark concerns the properties of the G-functions defined in appendix 
A. For the arguments that can occur in practice, the Laurent expansion of a 
G-function around e = 0 reads 

G-- ~] e"Cc. . ,  (5.23) 
n=--I  

where Co. n contains the Riemann function ~'(k ) with 2 <~ k ~< n, the Euler constant ";¢, 
and ln47r, within the canonical dimensional regularization [9]. By now it is a 
well-known fact that y, ln4rr, and ~'(2) cancel from the RG-functions calculated in 
the MS scheme and its versions (see appendix A). So, ignoring the F 3 terms in eqs. 
(5.21) and (5.22) for the moment, we conclude that only rational numbers, ~'(3), ~'(4), 
and ~'(5) can appear in the 4-loop RG functions in the MS scheme. 

In subsect. 4.4 it has been shown that 

F 3 = CX F ' ( I  + t )  + primitives, (5.24) 

where C = O ( t )  unless F 3 =F ' (1  +e).  On the other hand, using the algorithm 
described in the preceding sections, one obtains the identity shown in fig. 13 (the 
inessential powers of the external momentum are suppressed whence the varying 
dimensionality of different terms). Cast into analytical form, it reads 

1 1 
( )'4~r'2 e G(1,1 ,0 ,0)F ' ( I  + e) - 3(1 - 2e) L°(e) + primitives. (5.25) 

Noticing that the G-function multiplying F 3 in eqs. (5.21) and (5.22) differs from 
G(1, 1,0,0) by a rational function of ~ regular at e = 0 and that G(I, 1,0,0) = O(E-1), 
we can immediately combine eqs. (5.25) and (5.26) with eq. (5.21) to obtain, 

M or _M= O(e -3 )G 3 + O(e°)Lo(e) .  (5.26) 

Fig. 13. An identity resulting from integration by parts. 
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To complete the proof we must show that a similar equation, namely, 

t : O(~ ' -3  )G 3 ..[_ O ( e  0 ) t 0 ( e ) ,  (5.27) 

holds for the class L. At first sight, the coefficient K =  O(e -2) in eq. (5.22) as 
compared with O(e -1) in eq. (5.21) plus the possibility of F 3 = F'(1 + e) in eq. (5.25), 
do not allow this. 

However, the fact is that K can acquire the strongest singularity e - z  only when 
F 3 ~: F'(I + e) and, therefore, C in eq. (5.25) becomes O(e), cancelling the superflu- 
ous singularity and leading to eq. (5.27). The full proof is remarkably unilluminative 
and consists in a lengthy analysis of various inequalities for a,, the parameters of the 
integrals involved. But a precise idea of how the mechanism works can be formed 
through the examination of the way this same cancellation occurs in eq. (5.25). With 
this remark the proof of our theorem of sect. 2 for the case of planar diagrams is 
completed. 

6. The non-planar case 

Let us now consider the non-planar case (fig. 9, the generic graph N). The 
non-planar 3-loop generic graph is characterized by two features: the inapplicability 
of the rule of triangle and a very high symmetry. Indeed, apart from the trivial 
reflexions, N is invariant with respect to the transformation of fig. 14. 

Moreover, if one applies the transformations introduced in subsect. 4.2 to the 
graph N, one always obtains the same graph with a different labelling of the lines. 
This property demonstrates a high intrinsic symmetry of the totality of momentum 
conservation relations, and an immediate guess is that the ideas of the rule of 
mapping (subsect. 5.2) will be particularly useful in this case. We shall see that the 
guess is right. Another practical consequence is that one is given much freedom in 
choosing the extra invariant for the graph N: the dot product of any pair of 
momenta corresponding to non-adjoining lines, e.g., 2p2.p5 or 2 p 2 . k ,  can be 
chosen. We shall use the choice 2 p 2 . p s .  

The strategy will be the following. An arbitrary integral of the form 

(2p2"P5)"9 N( a, . . . . .  a 8 ) = N ' (a ,  . . . . .  as, ~9 ), (6.1) 

with a I . . . . .  a 9 integer > 0, will be expressed in terms of the integral with ot 9 ---- 0 and 

5- g 

Fig. 14. The additional symmetry of the graph N. 
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a~ . . . . .  48 = I, which has been denoted as N0(e ), plus integrals with one of the 

internal lines shrunk to a point. These latter have already been taken care of  in the 

preceding sections, and we shall never mention them in what follows in order to 

avoid repetition of  the phrase "plus integrals...to a point".  Also, we shall not  indicate 

that No(e) can be produced by some recursion, since this diagram is fundamental  in 

our  approach in the sense that it is not  subjected to further treatment by integration 

by parts. In fact, none of  the recursions described below are applicable to it. 
We shall achieve our goal in two steps. First, suitable recursions will be applied to 

eq. (6.1) in order to reduce it to a sum of terms with either 

(a)  4 9 = 0 ,  or (b)  a t . . . . .  as--- 1 , 4 9 > 0 .  

Second, the two cases will be treated separately until the desired result is obtained. 

6.1. THE FIRST STEP 

In principle, all that one needs for the first step is eq. (6.5) plus the recursions 

obtained from it by the rule of mapping  of  sect. 5.2. In this way, however, one would 

have to choose a new extra invariant for each new recursion. This would have forced 

one to re-expand the numerator ,  which in general is a power >/1 of the extra 

invariant, in a new set of  invariants when going over from one recursion to another. 

Looking at the example of  such a re-expansion provided by eq. (6.6), the reader 

familiar with how S C H O O N S C H I P  works will agree readily that this is something to 

be avoided. Another  inconvenience encountered on this way is the generation of  the 

terms with some a i negative, when a power > 1 of  the extra invariant is re-expanded 

according to eqs. (6.3) or  (6.6). A negative a,, as opposed to a, = 0, means a more 

complicated numera tor  with all the after effects caused hereby, e.g., the need for the 

machinery of  appendix A to be applied to some such terms. 

However,  it is possible to construct  a slightly more involved procedure based on 

precisely the same idea, but  which has none of  these drawbacks.  Let us now give the 
list of the recursions needed at the first step, in the order  in which they should be 

applied, with brief explanations of  their effect. 

Consider  the equation 

0 ~- (Oc.P)N'(O~l  . . . . .  o~9), (6.2) 

with P = P z  and C = {P2, P~, P6, -P8} .  Recalling that 

2pz.p6 = 2 p z . p s  + pZ 2 + p~2 _ P3,2 (6.3) 

and shifting a 6 --, ot 6 - 1, o: 9 --, a 9 - l, we get: 

( a  6 -- I ) N ' ( { a } )  = [ ( a  6 - 1 ) (3 -  - 2 -  - 8 -  ) + (3 - 2e + ot 9 - -  a t - ot 8 - 242)6  - 

+ a l l + 6 -  (7 - - 2 - )  + 4 8 8 + 6 -  (3 - - 2 - ) ] 9 -  N ' .  (6.4) 
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Eq. (6.4) is to be applied until 0[9 = 0 or 0[6 = 1. Similar recursions are then used to 

obtain 0[9 = 0, or a I = 0[3 = 0[4 : 0[6 = 1 if a 9 4: 0. 

Consider now eq. (6.2) with P = P 2  and C =  (P2, P 7 , - P s , - P 8 } .  After shifting 

a5 --' 0[s - 1 and 0[9 --' 0[9 - 1 we get, 

(015-- l )N ' ({0[})  = [(20[ 2 + 0[7 + 018- 019- 3 + 2e) + 2(0[ 9 -  1 ) 2 - 9 -  

+ 0 1 7 7 + ( 2 - - 1  - ) +0[88+(2  . - 3  ) ] 5 - 9 - N ' .  (6.5) 

This equauon  should be applied until a 9 = 0 or 0[5 = 1. Then the symmetric trans- 

form of eq. (6.5) with the same C but with P =P5 should be used until 0[9 = 0 or 

0 1 2 =  1. 

At this point  all diagrams with 0[9 ~ 0 have 011 . . . . .  0[e = 1. 

Consider  now eq. (6.2) with P = P 7  and C : (P2, P7, - P s ,  - P s ) -  Noticing that 

z p  p i. p p i  ~ ps  ~ ~ ~.,_7._8=_,~p2._5+_2+p2+_2+p2_p2_p2_ 2 2 - 2  (6.6) P7 - P8 - K , 

we get our next recursion: 

(018- I )N'({0[})  = [(018-  1 ) (1 -  + 3 -  + 4 -  + 6 - - 2 - - 5 - - 7 -  - 1) 

-~- (0[ 9 -  1 ) 8 - 9  ( 1  + 4 - - - 2 - - - 5 - - - 2 " 7  ) 

+ (5 - 2 t  - 0[2 - 0[5 - 0[8 - 20[7 ) 8 -  

+0[22+8 ' ( 1 - 7 - ) + 0 1 5 5 + 8 - ( 4  - 7 - ) ] 9 - N ' .  (6.7) 

In fact, the r.h.s, of  eq. (6.7) can be simplified if one notes that the integrals to which 
this recursion is applied are symmetric with respect to the simultaneous permuta-  

tions in the following pairs of  lines, 

1 ~ 4,2 ,-* 5,3 ,--, 6, 7 and 8 remain invariant. (6.8) 

Recalling that 0[1 . . . . .  0[6 = 1 in these integrals, we rewrite eq. (6.7) as 

( 0 [ 8 - 1 ) N ' ( { 0 [ } ) = [ ( 0 1 8 - 1 ) ( 2 ( 1 - + 3 - - 2 - ) - 7 - - 1 )  

+2(0[  9 -  1 ) 9 - 8 - ( 1 -  - 2 -  - 7 - )  + ( 3 -  2 e -  20[ 7 -  0[8)8- 

+ 2 . 2 + 8 - ( 1 - - 7 - ) ] 9 - N  ' .  (6.9) 

This recursion and its analogue with P = P s  are to be applied until a 9 = 0 or, if 
0[ 9 4: 0, then 0[7 = 0[8 = 1. 



K.G. Chetvrkin, F.V. Tkachov / r-functions in 4 loops 185 

It is clear, however, that eq. (6.9) generates terms with a 2 or a 5 > 1. To such terms 

eq. (6.5) or its symmetric t ransform should immediately be applied, and so on. To 

make sure that this shuttle-like procedure is not  infinite we observe the following 

fact. The terms on the r.h.s, of  eq. (6.9) which violate the equalities a 2 = a 5 = 1, 

either are such that a I or a 4 = 0, which is welcome [recall that eq. (6.9) is only 

applied to the terms with a I = a 3 = Ot 4 = a 6 = 1], or that the quant i ty  o = a 2 + a 5 + 
a 7 + a 8 is reduced by 1 as compared  with the l.h.s, of eq. (6.9). Obviously, sooner or 

later we obtain o = 4, which means that either ct z = a 5 = a 7 = a 8 = 1 or one of the 

lines contr ibut ing to o is shrunk. With this the first step is completed. 

6.2. CASE (a): a 9 ~ 0 BUT a I . . . . .  48 = I 

Taking into account  the symmetries of  the integrals in question and the relation, 

2p2.ps=p~ + p ~ - p 2 v - p 2 -  2P2.k, (6.10) 

we obtain 

N ' ( ( a } )  = [ 2 ( 3 - - 8 - )  - 2(k .p2  ) ] 9 - N ' .  (6.11) 

On dimensional grounds,  

2k~'[ p/;'9 - N ' ]  = 2k~'[ k~ ' (k2) -3-3"+"~Z]  

= k 2 ( a 9 - 1 - 4 e ) - I ~ k ~ [ k ~ ' ( k 2 ) - 3  3~.-~ a~Z] 

= k 2 ( a g _ l _ 4 e )  i d [ p ~ 9 - U ' ] ,  (6.12) 

where Z is a dimensionless auxiliary. 

One can also perform the differentiation before integration: 

d 0 ~ 
d k -  0PL ~- ~ +  " (6.13) aP3 

Finally, we get 

N ' ( { a } ) = [ 2 ( 3 - - 8 - ) + ( a  9 -  1 - 4 e ) - 1 ( 2 ' 3 + 9 - ( 2 - - 8 - ) +  1 +  2 E - - a g ) ] 9 - N '  

(6.14) 

Note  that if a 9 = 1, then the terms on the r.h.s, of eq. (6.14) which could acquire the 
factor e 1 cancel owing to the symmetry  of the integral. With this the discussion of 
case (a) is completed.  
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6.3. CASE (b): a9 = 0 

Now we turn to the case when a 9 = 0 but a, > 1 for some or all i = 1 . . . . .  8. First 

we put P=P2 and C =  (Pz, Pv , -Ps , -Ps }  in 

0 = (ac .e )U(a  , ..... a s ) ,  (6.15) 

and find ourselves in a predicament.  Indeed, the resulting identity contains a term 

with a numerator,  namely, 

as(2p2"ps)5+N({a}),  (6.16) 

and this numerator  can not be got rid of  by expanding 2p2.p5 in p2. On the other 

hand, the initial diagram has no numerator.  Such a situation is typical if one does 

not or can not follow the rule of  triangle. 

As mentioned above, the absence of  triangular subgraphs can partly be com- 

pensated for by the high symmetry of  the graph N. To see this, we employ eq. (6.15) 

once more, setting P - - p ~  and C =  {Pl, P6, P s , - P T } .  The r.h.s, of  the new identity 
contains the term 

a 5 (2p,  "P5 )5 + N ( { a } ) .  (6.17) 

Since 

2 p , . p , =  2 p z ' p , - p ~  +pg + p2 7, (6.18) 

we exclude the term with the numerator  from the two identities to obtain the 

following result: 

(or 6 -  1 ) N ( ( a } )  = [ ( a  5 + a  6 + a s + 2cq + 2c~ 2 + 2a  7 -  9 + 4e)6 

+ (a 6 -  1)1- + a 8 8 + 6 - ( 2 - - 3 )  + asS+6 " ( 7 - - 4 - ) ]  N'. 

(6.19) 

This recursion is applied until a 6 -- i. Analogous recursions are then used to obtain 

0~1 = O t 3 = O t 4  z 1. 

An important  observation consists in that every application of (6.19) reduces the 

quanti ty o = al + • • • + a  s by 1. 
Without  loss of  generality we may now consider the case when a 5 > 1. From 

dimensional considerations one has 

t = l  

(6.20) 
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Performing differentiation before integration, 

d 0 0 0 0 

d k 0k 0p4 0p5 ()PC 
(6.21) 

one gets the following term on the l.h.s, of eq. (6.20): 

as(2k .ps )5+N({a} )=a5  - 7 +  E oe,+4e - ~ ~ " P 5  5+N({° t})  • 
i = 1  

(6.22) 

[This equation has been obtained through counting dimensions as in eq. (6.12).] 
Using eq. (6.21) once more, we arrive at the following relation, after shifting 

or5 ---~ a 5 - -  l :  

( a  5 -  1)(or 4 + a 6+2ot  5 -  4 +  2e)N((a) )  

= [ d ( ( 2 d +  2 -  2e -a4 - -a6 )+a44-~3  - + a 6 6 - 1 - ) 5 -  

+ (a 5 -  1)(a44+7-- + a 6 6 + 8 ) -  ( d +  a 5 -  1)(a44 + +a66 + ) 5 - ] N ,  

(6.23) 

where 

8 

d= ~, a i -  8 + 4e. 
t = l  

Recall that this relation is intended to be applied only to the terms with a~ = a 3 = a 4 

= ~ 6  ~ 1. 
There are two kinds of terms on the r.h.s, of eq. (6.23), apart from those with a 

line shrunk to a point, namely, the terms with o = al + - . . + a  8 reduced by 1 as 
compared with the I.h.s., and those with o unchanged but with o '  = a 2 + a 5 + ot 7 + a 8 
reduced by 1. To the latter terms of eq. (6.19) should immediately be applied, with 
the result of reducing o by 1 in those terms, and so on. It should be clear that the 
process cannot last forever. Case (b) is settled. 

To summarize, in this section we have constructed a set of relations which enables 
one to express an arbitrary non-planar diagram with a scalar numerator in terms of 
No(e) and simpler diagrams with some line shrunk to a point, whose evaluation has 
already been discussed in sects. 4 and 5. With this the proof of our main theorem 
formulated in sect. 2 is completed. 
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7. More complicated example 

The possibilities of the integration by parts method are not exhausted by the 
algorithm constructed in the preceding sections. Thus, there exist rather complicated 
5-loop integrals to which the above described ideas can be applied with great effect, 
though neither the rule of triangle of subsect. 4.4, nor the rule of mapping of subsect. 
4.2, are applicable there. 

Consider the calculation of the 5-loop correction to the field anomalous dimension 
Y2 of the ¢p4 model which has important applications to the calculation of critical 
exponents governing the behaviour of statistical systems like ferromagnets near the 
critical point (for a review see [3]). There are 11 different diagrams contributing to ~'2 
at the 5-loop level. 10 of them were computed analytically in [19]. After application 
of the operator d 2 / d k " d k  ~ the 1 lth diagram shown in fig. 15a transforms into the 
sum of two diagrams (figs. 15b and c). The second one did not yield to analytical 
calculation [ 19]. 

We are interested in the pole part of this diagram, which contributes to Y2. Since 
this diagram is logarithmically divergent and does not contain divergent subgraphs 
we may reattach the external momentum k as shown in fig. 16a without changing the 
divergent part. (This is a simple example of the IR rearrangement, see sect. 2.) So we 
have to find the pole part of the following expression*: 

4G(I,I  + 4e)((2p,  . p2 )S (2 ,2 ,1 ,1 ,1 ,1 ,1 ,1 ,  e) } 

4 
= 5---~{(2p, "P2)S(2,2,1,1 ,1 ,1 ,1 , l ,e=0)} +O(~ °) 

A 
= - - +  O(~°), (V.l) 

where the symbol S({a)) stands for the value of the generic integral pictured in fig. 
16b, with the factor (2Pt.P2) multiplying the corresponding integrand. For the sake 

Fig. 15. (a) The most complicated diagram of the cp 4 model contributing to the anomalous dimension of 
the field )'2(g) at the 5-loop level; (b) and (c) are the diagrams resulting from double differentiation with 

respect to K. 

* In this section all calculations are performed within the G-scheme (see appendix A and refs. [5, 13]). 
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(a) (b~ 
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Fig 16 (a) The result of application of the IR rearrangement to the diagram (c) of fig. 15. (b) The 
generic graph for the diagram of the class S. 

of brevity we shall omit some last a, which are equal to 1, e.g., 

S(2 ,2 ,1 ,1 ,1 ,1 ,1 ,1)  ~ S(2,2) ,  

etc. and suppress, as usual, all inessential powers of the squared external momenta 
k 2" 

A little meditation upon the integral (2p~.p2)S(2,2) reveals that it can not be 
simplified by the rule of triangle, nor can the annoying numerator* be transformed 
away by means of the tricks used in sect. 6 in the case of non-planar diagrams. 
Nevertheless, the O(e °) term of the diagram can be computed via an involved 
procedure using integration by parts. 

To find A let us consider a simple identity resulting from momentum conserva- 
tion: 

(2pl  "P2)S(2,2) = (2p,  "Pz )(2p,  "P3 )S(2,2,2)  

- (2p , ' p z )S (1 ,2 ,2 )  + (2p, .P2)S(2,2 ,2 ,1 ,1 ,O) .  (7.2) 

Now the last term on the r.h.s, of eq. (7.2) is easily computed by the methods of the 
preceding sections with the following result: 

(2p"p2)S (Z 'Z 'Z ' i ' I 'O)=(4~r ) - -8 (  - 6~'(3-----~)+28~'(3)- 9~'(4)+ O ( e ) e  )" (7.3) 

The application of the operator d 2 / d k ~ d k  ~ to the integral (2pl-p2)S(l ,2)  gives 

- 16e(l - 5e)(2pl  .p2)S( l ,2 )  

= 8(1 + e)(2p,  .p2)S(1,2,2)  - 4(2p,  .p2)S(0,2,2,  1,1,2). 

(7.4) 
The last integral on the r.h.s, of eq. (7.4) is computed by straightforward use of eq. 
(4.26): 

_ 4 ( 2 p  .p2)S(0,2 ,2 ,1 ,1 ,2)  - 8 (6~'(3) + 9 ~ ' ( 4 ) - 2 4 ~ ( 3 ) + O ( e ) ) .  (7.5) 
(4,n.) s e 

* Annoying because the same integral without numerator can be dealt with the aid of GPXT of ref. [5]. 
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On the other hand, a simple calculation based on the IR rearrangement and the 
algorithm of sects. 3-6 yields 

(2p,.p2)S(l,2) = (4~r)-s ( 
2~'(3) 

\ 

Combining eqs. (7.4)-(7.6) we get, 

+O(e° ) ) .  (7.6) 

(2pt.p2)S(l,2,2)=(4~r)-8(-~(3) +26~(3)-9~(4)+O(e)}. (7.7) 

It is much more difficult to compute (2pt .p2)(2pl-p3)S(2,2,2) in order to 
complete the evaluation of A. First of all we use the identity pl =P2 +P4 +P7 to get 

(2p, .  P2 )(2p, • P3 )S(2,2,2) 

= (2p,-p,)[2S(2,  1,2) + ((2p2 "P4) + (2Pz "P7))S(2,2,2)] 

~2 
= 0p~ [S(l)  + ((P2 "P,) + (P2 "PT))S(I,2)] - (7.8) 

To proceed, let us consider the following identity: 

Op~ Op, )2S--- ( Op~ ) S' (7.9a) 

or, equivalently, 
0 2 

2 ~ S =  ( [ 3 , -  [ ] , -  [~3)S, 

D i = O~/Op~Op~, (7.9b) 

which is true for any integral S (recall that the chain p~. P3, P4 is closed, see fig. 16b). 
The identity (7.9b) plus some algebra gives the following decomposition for the 

r.h.s, of eq. (7.8): 

(2p, "Pz)(ZP, "P3 )S(2,2,2) 

= -e(2p, "Pz )S(2,2) 

+e(Zp, .p2)[S(1,2, 1,2) - S(1,2,2)] - (2p2.p4)S(l,2, 1,2). 

(7.10) 
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Since the first term on r.h.s, of eq. (7.10) vanishes at e --, 0 one has to compute only 
the remaining three integrals. 

To compute, say, e(2pl-p2)S(1,2, 1,2) we observe that the corresponding integral 
can be written as 

fd°p4-~4f (  P4, k ). 

Now, one can perform integration over P4 immediately by means of the following 
formula: 

l i m e  = _7/.2(~(D) (P)' (7.11) 

provided that the remaining integral f( P4 = 0, k) is finite at e --, 0, which is true in 
our case. So, one gets 

e(2p, "P2 )S(1,2, 1,2) = -~r 2f( P4 = O, k, e) + O(e).  (7.12) 

Note that although we are interested in the value of f ( h  = O, k, e) at e = 0 it is 
convenient to keep e :~ 0 till the end of the calculation (cf. remark (iii) of sect. 8). 

Now one has to compute the 3-loop p-integral f( P4 = 0, k) up to O(e°), which can 
be easily done with the algorithm of the preceding sections. The same treatment is 
applicable to the integral e(2pl .p2)S(1,2,2). The results are 

e(2Pl "P2 )S(1,2, 1,2) = (4~r)-8(-20~'(5) + 4~'(3) + O(e)) ,  (7.13a) 

e(2p, .P2)S(1,2,2) = (4~r ) -8( -  6~(3) + O(e)) .  (7.13b) 

Note that eq. (7.13b) is in agreement with eq. (7.7). 
To compute the last integral on the r.h.s, of eq. (7.10) we first use the identity 

analogous to eq. (7.9): 

1 a 2 
( 2 p 2 " h ) S ( I ' 2 ' l ' 2 ) -  2 Op~p~S(1) 

= - e S ( 1 , 1 , 1 , 1 , 2 ) + e S ( l , 2 ) + e S ( l , l , l , 2 ) .  (7.14) 

Now it is not difficult to see that eq. (7.1 I) can be applied to the r.h.s, of eq. (7.14) 
due to the fact that the IR divergences produced by such a treatment in the last two 
integrals, cancel each other. A simple calculation gives, 

(2p2-h )S(1 ,2 ,  1,2) = (4~r)-8(-  20~'(5) + O(e)). (7.15) 
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Finally, combining eqs. (7.2), (7.3), (7.7), (7.10), (7.13) and (7.15) we come to 

(2p, "Pz ) S ( 2 , 2 ) =  (47r)8(12~'(3) + O(e) ) ,  

whence the long-awaited result: 

A -- ?~'(3) = 11.5392 . . . .  (7.16) 

in agreement with the numerical computation of ref. [19]. 
We hope this example demonstrates clearly enough both the calculational possibil- 

ities hidden in space-time structures of Feynman diagrams and the need for regular 

methods to study them. 

8. Discussion 

There are various points we would like to discuss in connection with the algorithm 
constructed in sects. 4-6.  

(i) This algorithm is not unique. It is quite possible that a shorter set of recursions 
will be found. It would also be extremely useful to solve these recursions explicitly in 
terms of F-functions. This, however, seems to be a difficult task, not only because 
the resulting series of products of F-functions are complicated and unwieldy, but 
also because a direct summation of such series by the formulae given, e.g., in [23] 
seems to be impossible. To support this statement we refer the reader to remark (c) 
after eq. (4.26) where it has been shown how two different representations for the 
same integral can be obtained. We do not know at present how to prove their 
equivalence by a direct resummation, without reference to the original integral. 

It is also interesting to note that the coefficient C L in eq. (2.2) has happened to be 
equal to zero in all examples of non-planar diagrams considered by us so far. The 
fact seems extremely amusing and appealing, but we have no proof of this property 
being always valid. 

All these observations leave the impression of something important having been 
missed in our analysis, that could be very useful for both practical purposes and a 
better understanding of perturbative series, if these two things can be separated. 

(ii) There is another problem which is not solved at present. Even if one is content 
with the algorithm in the form of recursion relations as opposed to a set of explicit 
closed formulae, there exists no recipe to construct recursions for evaluating the 
p-integrals, e.g., at the 4-loop level, which corresponds to the 5-loop RG functions. 
The method of "close examination" employed in this work is of little use in more 
complicated cases. Suffice it to say that it took some months to find the right way of 
computing the 5-loop diagram of fig. 15c (sect. 7) though the actual calculation had 
been performed in several hours. Also, as yet there is no criterion to decide whether 
a given 4-loop p-integral can be reduced to simpler ones via integration by parts, or 
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whether it should be evaluated by means of independent methods, of which at 
present only one seems to be efficient enough- the  Gegenbauer polynomial tech- 
nique in x-space [5]. 

It is also not clear if there is any comprehensible connection between the 
lagrangian structure of diagrams in the input of the algorithm and the numbers in 
the output. It is quite possible that the use of this additional "lagrangian" informa- 
tion might be the clue to constructing less universal but more efficient algorithms. 

(iii) Another observation concerns the method of dimensional regularization. 
There are two points where its role is crucial: the IR rearrangement and integration 
by parts. Indeed, no regularization, to our knowledge, except the dimensional one 
offers a natural definition of a subtraction scheme which gives so much flexibility in 
calculating divergent parts of diagrams as does the MS scheme (sect. 2). On the other 
hand, eq. (3.4) clearly shows how important is the dimensional regularization for the 
algorithm: at e = 0 the 1.h.s. of eq. (3.4) vanishes and its r.h.s, becomes meaningless 
due to the presence of both UV and IR divergences. 

Such a situation is somewhat unusual. In fact, all methods of evaluating Feynman 
diagrams developed so far are but more or less straightforward extrapolations of 
methods designed to deal with convergent unregularized expressions, to the case of 
regularized integrals. Consequently, all orthodox methods, including GPXT, demon- 
strate nothing new when applied to convergent integrals with regularization re- 
moved. 

Our algorithm is very different in this respect: it seems impossible to apply it 
when D = 4, yet the algorithm turns out to be remarkably efficient when D becomes 
a complex parameter, even in the case of convergent integrals, cf. eq. (3.4). In a sense 
the method of dimensional regularization plays the same role in the calculation of 
Feynman integrals as the complex analysis does in the calculation of ordinary 
integrals. 

(iv) Now it is convenient to clarify the relation of the present paper with a work, 
in which integration by parts was used with the purposes similar to ours. We mean 
ref. [24]. 

In fact, the work of Bender et al. provided us with a hint of the idea lying in the 
foundation of the present paper. But before the idea took its final shape, the rule 
had been applied, which proved its fruitfulness in [4, 5]. The rule boils down to the 
following: take a method of calculating Feynman diagrams in momentum space and 
see if it looks more natural in position space, and, if so, enjoy the results. We believe 
the rule is not yet exhausted of its heuristic power, though its application may not be 
easy, as the present work shows. 

The basic difference between our approach and that of [24], consists in that in [24] 
the momentum space relation for the massless propagator 

[] ~22 = --41rz 6~4)( P )' (8.1) 



194 K.G. Chetyrkin, F.V. Tkachov / fl-functions in 4 loops 

which is only valid at D = 4, plus the simple rule of integrating &functions, were 
taken as a starting point of the method, while in our algorithm the relation 

_ D/2 
[] 1 - - - 2 ( D - 2 ~  ~'- ' -  ,S<D}(r~ (8.2) 

(x 2)o/2-, "r(½D)- "-" 

plus the rules of integrating primitive diagrams (appendix A) are used. Eq. (8.1) 
corresponds to deleting a line of the Feynman graph, while eq. (8.2) corresponds to 
shrinking one. 

As a result, our algorithm works naturally in the context of dimensional regulari- 
zation and is therefore capable of dealing with divergent integrals, while the method 
of [24] is not, which imposes a severe restriction on its range of applicability. 

From a technical point of view, the method of [24] leads to a system of linear 
equations (16 equations in the case of 3-loop counterterms), while our recursions 
provide, in a sense, a solution to it. Also, in our method irrationalities like ~'(3) can 
appear in the final results while the method of [24] always leads to rational numbers, 
being, therefore, inapplicable to computing diagrams with irrationalities in the 
result. 

Finally, being much more powerful than 
described here lacks one attractive feature 

the method of [24], the algorithm 
of [24]. In that work, the hidden 

symmetry of two-loop integrals discovered in [25] (see also the discussion in 
appendix C) was put to use in order to considerably reduce the volume of 
calculations. We do not know yet, whether such a symmetry can be incorporated 
into our algorithm, though the idea seems promising. 

(v) In [5] a modification of the MS-scheme was introduced- the G-scheme- which 
was found to be convenient in practical calculations. Referring the reader to 
appendix A for the definition and to refs. [5, 13] for further details, we only point 
out that since primitive integrals are products of the G-functions, eq. (2.2) [see also 
eqs. (5.26) and (5.27)] makes the G-scheme yet more useful and natural in calcula- 
tions. Of course, its usefulness in phenomenology of QCD is another question. 

(vi) Our algorithm is almost useless without fast computer programs. The first 
reason is that there are virtually thousands of different elementary integrals which 
must be calculated in order to obtain, say, the 4-loop QED r-function, not to 
mention QCD, plus the proliferation of terms at the intermediate steps. The second 
reason is that the algorithm consists of uniform primitive but rather numerous 
operations, which makes it unpleasant to a human's taste. But not to computer's 
and, to be sure, not to programmer's. (In fact, it was the modest desire to ease the 
programmer's lot as much as possible that was the initial concern in performing the 
present work- the  results, however, surpassed all expectations). This is why we 
believe the algorithm provides a good basis for writing a set of programs in, say, the 
SCHOONSCHIP language [17], though the memory needed to store intermediate 
results and the time to process them are considerable by standards of the CDC-6500 
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machine. This contrasts strikingly with the fact that the final result even for the most 
complicated diagram never contains more than a dozen rational numbers. 

(vii) There exist different ways to generalize our algorithm; e.g., one could try to 
carry out a similar analysis for the 5-loop RG functions. But as we have indicated 
above, this is a difficult task. Besides, already at the 4-loop level the number of 
different Feynman diagrams contributing to the RG functions is such that the 
evaluation of, say, the 4-loop QCD fl-function is hardly possible at present. That is 
to say, the problem of handling the profusion of diagrams becomes decisive there. 

As to the diagrams with masses or more than one external momentum, nothing 
definite can be said at present except that identities like eq. (3.2a) remain valid, and 
s o m e  simplification is also possible in those cases. But that is another story. 

9. Conclusion 

In this work the algorithm is presented, of analytical evaluation of arbitrary 
dimensionally regularized massless Feynman integrals with one external momentum 
and no more than 3 internal integrations, up to and including the O(e °) terms, 
e = ½(4 - D), D being the space-time dimension. The algorithm is based on recursion 
relations obtained through integration by parts. The effect of the algorithm consists 
in substituting a given integral by a sum of simpler ones, each being calculable by 
the one-loop integration formulae of appendix A, plus the two integrals of fig. 1, 
which have been calculated by the Gegenbauer polynomial x-space technique to 
order e °. The algorithm was conceived to form a convenient basis to write programs 
for computer systems of algebraic manipulations. 

Together with the method of the IR rearrangement (sect. 2) the algorithm 
guarantees that the counterterm of an arbitrary 4-loop diagram can be calculated 
within the MS-scheme, in terms of rational numbers, ~'(3), ~'(4), and ~'(5). This implies 
the analytical calculability of the fl-functions and anomalous dimensions of field and 
composite operators in an arbitrary model at the 4-loop level. 

We are grateful to Profs. V.A. Matveev and A.N. Tavkhelidze for continuing 
support and A.N. Vassiliev for informing us of ref. [21] prior to publication. We also 
wish to express our gratitude to S.G. Gorishny, A.L. Kataev and S.A. Larin for 
innumerable fruitful discussions of the computer implementation of the algorithm. 

Appendix A 

Here we are going to discuss at some length the evaluation of one-loop integrals 
with one external momentum and with arbitrary numerators. Such calculations have 
been performed in the simplest cases by many authors. In our method, however, 
one-loop integrals acquire major importance since any  integral is finally expressed 
through them. Besides, the volume of calculations is such that one is not likely to 
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fight one's way through vector algebra and I,-functions without being properly 
equipped: SCHOONSCHIP alone does not suffice, as the preliminary tests have 
shown. 

The tactics that has already been advocated [5, 13] consist in expressing primitive 
integrals (defined in subsect. 4.1) in terms of the G-functions which themselves are 
aggregates of the familiar I,-functions [eqs. (A.1) and (A.2)]. Each loop gives one 
G-function. Then one transforms every G-function into a rational function of e 
multiplied by a G-function of the standard arguments [eq. (A.3)] according to simple 
rules. At the very last stage of calculations these standard G-functions are expanded 
to a sufficiently high order in e with the formulae that can be prepared in advance. 
Referring the reader to [5, 13] for further details, we concentrate here on what is the 
novel feature of multiloop calculations-the need for efficient programmable meth- 
ods of handling complicated numerators. 

We begin with a well-known (at least for lowest values of n) formula written in a 
new form: 

q~,(P)dnP _ (k2) 2 -~- ' -~  

fp2~(p-k)Z#(21r)n (4~r) 2 

× E G(~,~,,,o)k ~°~! [] ° } 
o~o [ ° ' ( - ~ )  t:~'(p) p=," 

(A.I) 

where Dp = OZ/Op.Op~, and 

G(a,B,n,o)=(4~r) `I'(a+ B - ° -  2 +e) 
r(~)r(~) B ( 2 - e - a + n - o , 2 - e - f l + o ) .  

(A.2) 

62,(p) is an arbitrary polynomial in p such that 6),()~p)=?~,~,(p). It can also 
depend on other vectors, e.g., -@5(P) = pZ( p. k)( p-q)p~. 

The "standard" form of the G-functions is 

I,((m +, ,  + 1)~) 
G(1 +me, 1 + he,0,0) = (4~r)' I'7~, ¥%-g~7i h: ~-~) s ( l ) x ~  - (m+ l ) e , l -  (n+ 1)e). 

(A.3) 

a and fl in eq. (A.1) usually have the form n + me, n and m being integer. A very 
important property of the G-functions is that no G-function can have a singularity in 
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e stronger than e-  ~. The definition of the G-scheme consists in normalizing momen- 
tum integrations in such a way that G(l, 1,0,0) = e - l  which immediately excludes 3,, 
ln4~r, and ~'(2) from all expansions near e = 0 [5]. 

Eq. (A.l) can be obtained through Feynman parameters if one takes 6.p~(p) = 
(p.q)" and then notes that eq. (A.l) is independent of the actual choice of ~n- 

But if one has to perform more than 2 successive one-loop integrations it may be 
often more expedient to expand Pn(p) in harmonic polynomials: 

62,( p ) = c,~(,)(p) + d, p2~(,-2)( p ) + " " ,  (A .4) 

where 

Vq°,?")(p) = 0, ~')t°(Xp) = X'~P(')(p). (A.5) 

9~"~(p) is called the harmonic projection of 62,(p) [26]. Note that if 6?,(p)= 
p"' • • • p~. then its harmonic projection, 

@. ("~(p) =-- p(~" ~'.) =-- p~"...p~'. + c~ p2g~,,,2p~,~...p~,. + . . . ,  (A.6) 

equals zero if any pair of indices is contracted: 

p ( ~ ' 3  ~'.) = 0. (A.7) 

This will be clear from the representation we now proceed to derive. 
As in deriving eq. (A.1) we take 

~, : (2p-q)"  (A.8) 

without loss of generality. (We prefer to work with 2p.q  and ~ [] as single entities in 
order to avoid a tiresome counting of powers of 2, and an unnecessary arithmetic 
during computer calculations). The harmonic projection of ~n(P) is 

.@(")(p)=--(2p'q)('~)=(2p.q)n+clp2q2(2p'q)"-2+ "- ' .  (A.9) 

Imposing the condition (A.5) one finds c,, 

( 2p ' q )  ( ~ =  E ( n + l - e ) _ o ( - )  ° (p2q2)°n! ) . -2° 
o~.0 ° i ~ Z - ~ i !  (2p 'q  

- ~i 7 (2p .q)" ,  

where ( a ) b  ---- F(a + b)/F(a)  is the Pochhammer symbol [23]. 

(A.10) 
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It should be clear from eq. (A.10) that in order to get the harmonic projection 
62(")(p) of an arbitrary polynomial 62,(p), one only has to apply to it the following 
operator: 

H ; =  Y, ( n + l - e ) ( - ) ° P 2 ° ( E 3 )  ° a o--~. 4 -  (A.11) 
o ~ 0  

Now eq. (A.7) follows from the identity: 

n 2 0  H;p ,P~-2(P) =0 .  (A.12) 

Since (2p.q) ~") can be seen to be proportional to the Gegenbauer polynomial 
C~-~( p.q/(p2q2)~/2), one gets a useful equation from the well-known properties of 
Cnl - E~ 

(2p.p)~") =p2~ (2 - 2e). 
(I -e). (A.13) 

To obtain the unknown coefficients in eq. (A.4) we follow the same pattern. Start 
with the equation, 

(2p.q)" = (2p.q)(~) + d, p2q2(2p.q)t"-2) + .. ", (A.14) 

apply E]p to its both sides, then expand its 1.h.s. in harmonic polynomials, and come 
to the result: 

1 (p2q2) °n! 2o) 

(2p 'q )  ~-- E ( n + 2 - e )  g i ( - n C ~ o ) ! ( 2 p ' q ) ( "  
a ;~O - o  

(A.15) 

The generalization of eq. (A.15) to arbitrary 62,(p) reads: 

} 62~(P) ---- a-o ~' ( n + 2  - e)_o p2°H~p~-2°) ~[-]P ~62~(p) " (A.16) 

The usefulness of eq. (A.16) results from the simplicity of eq. (A.1) when the 
numerator of its integrand is harmonic. In that case the sum of the r.h.s, of eq. (A.1) 
reduces to a single term. In many cases this property together with eq. (A.13) can 
prevent the proliferation of terms due to successive use of (A.I) in its crude form, as 
can be seen from the following example, 

(2p5 .k )" Y3 (a, ..... a 5 ), (A. 17) 
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where Y3 corresponds to the generic graph in fig. 6. Another non-trivial application 
of the irreducible polynomials is given in appendix B. 

It is interesting to note that even if Feynman parameters did not exist, one would 
still be able to perform one-loop integrations. Indeed, eq. (A. 1) with @, harmonic can 
be derived very easily [owing to eq. (A.7)] by Fourier transforming to x-space and 
then back to p-space [5]. Therefore, the calculability of the 4-loop counterterms in a 
closed analytical form stems entirely from fundamental space-time properties of 
massless diagrams. 

As a by-product of the above derivation we get the following expansion from eq. 
(A.15): 

(2x)"  1 ( n -  2o + 1 - e )  
n------T - =  E ( 2 - e ) , _ o o !  ( l - e  / C2Z~°(x)" (A.181 

• o~0 

An equivalent to eq. (A.18) can be found, to our knowledge, in [27], formula 
(7.311.2), in a disguised form. On the other hand, eq. (A.18) is extremely helpful in 
obtaining a plethora of expansions in the Gegenbauer polynomials, like those 
derived with much pain in [14a]. 

Appendix B 

We are now going to show how irreducible polynomials of appendix A can be 
used in order to reduce an integral of class R 4 (see fig. 9) with an arbitrary 
numerator to a sum of G-functions multiplied by integrals of class F (fig. 7), by 
performing a one-loop integration• 

Obviously, if the numerator is absent, then the knowledge of the dimension 

(B.1) 

of the 2-loop p-subgraph of the R 4 graph is sufficient for writing the following 
relation (all irrelevant powers of momenta here and in the following are suppressed): 

R4({0¢}) = G (or7, O~ 6 - -  ½d )F( eq . . . . .  a ,  ) .  (B.2) 

The case with an arbitrary numerator can be dealt with in the same manner if one 
notes that the irreducible tensorial structure of an integrand survives all integrations 
over momenta, cf. eq. (A. 1) with P~(p) irreducible. 

Consider now a general R a integral: 

(2pl .  k )"~ (2 p2-k )"2 R 4( a, .... .  a 7 ). (B.3) 
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Applying the expansion (A.16) with p = k  to the numerator of eq. (C.3) and 
absorbing into R 4 the factors p2, p22, and 2pl.p2 =p2 +p2 _pg, which result from 
(¼ [ ~ ) °  in eq. (A.16), we come to a linear combination of the terms like, 

@(n'+n2-2°)(k )Ra (e t l -O l ,C t2 -ox ,a3 , c t4 , c t s -o s , c t6 , c t7 ) ,  (B.4) 

with o I + 0" 2 + 0" 5 = O. 0~ ( ' "  ')(k) is irreducible with respect to k and depends also on 
p~ and P2. Identifying the 2-100p subgraph of R 4 with an F-integral which has P6 as 
the external momentum, one can easily see the validity of the following chain of 
equations: 

1 
e q . ( B . 4 ) = ~ t " ' + " 2 - z ° ) ( k ) p , ~ T p ,  a ~  g F( . . . )  

1 
= 6 ~ ( ' ) (  k )[p,=p2=pe ' _2a7_2a6 X 

F7 /26 

= .@t")(k)[p, =p2=kx'G(a7, a, n, + n 2 - 20,0) 

= {Pt")(k) .F(a,+o,,az+O2,aa,a4,as+os)}G(. . . ) ,  (B.5) 

where a = - 4  + 2e + 26= ,a, - o, and the F-integral in the last line has the external 
momentum k. The result of the whole procedure can be summarized as 

1 ( 6 ) 
e q . ( B . 3 ) =  • (n +n2+2-e)_o G a T ' - 4 + 2 e +  X a i - ° , n t + n z - 2 ° , O  

o ; * 0  I t -  1 

--~ ) (2pt'k)"'(2p2 F(a  I a2,0t3,0t4,as). 

(B.6) 

Appendix C 

The equality of the two diagrams of fig. 1 at D = 4 is somewhat puzzling, since the 
two diagrams have very different topological structures. Nevertheless, there exists an 
instructive explanation of this fact, which is presented here. 

Let us analyze the calculation of, say, the planar diagram through GPXT [5]. 
Though in p-space the diagram seems to be convergent, i.e., the result has the form 

Lo( )(g (C.l) 
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x,~ x 3 x~ X 3 X 3 x,, 
(,~ (I~) (~) 

Fig. 17. (a) and (c) are the x-space diagrams corresponding to the p-space diagrams (a) and (b) of fig. I ; 
(b) is the diagram resulting from "gluing" external vertices of these diagrams. 

with 

Lo(e ) = [20~'(5) + O(e)](47r) -6. 

one can easily see that if considered as a distribution in the sense of Schwartz [28], 
the expression (C.I) becomes singular. Indeed, if one smears eq. (C.1) with a suitable 
smooth function, say, exp( -k2) ,  the result will have a pole in e due to the 
integration over the k = 0 region. In x-space this singularity shows itself as a pole in 
e resulting from integration over large x, (cf., fig. 17a): 

eLo(e) ( 1  x 2 )4,. const. (C.2) 

If one performs Fourier transformation back to p-space, the factor of order e 
emerges and kills the pole to produce a non-singular result (C.1). We conclude that 
to find Lo(e -- 0), one has to extract the x-space IR singularity of the diagram. 

In order to specify the origin of the singularity we employ the Weinberg theorem 
[29]. A simple power counting gives that the pole comes from the region where all 
Ix,]-~ ~ .  So we introduce a cutoff R > Ix] and split the region of integration into 
two parts: (i) the domain where for all ilx, I > R ,  and (ii) its complement. Taking 
e < 0 so as to regularize the IR divergence, the integration over the first region gives, 

X 2 
(c.3) 

times a trivial factor, the same for both planar and non-planar diagrams. The second 
region produces an expression regular at e = 0. 

It is clear now that to evaluate the pole one can set x = 0 after introducing the 
cutoff. The obtained integrand is easily seen to correspond to the diagram of fig. 17b 
which can be said to have resulted from fig. 17a by "gluing" its external vertices. 

The wonderful thing here is that the same procedure applied to the non-planar 
diagram (fig. 17c) leads to exactly the same integral of fig. 17b, whence eq. (2.2) 
follows immediately! 
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X 3 ~,~ 

-t 

Fig. 18. The 3-loop scalar diagram of the qp3 model which can not be calculated by straightforward 
gluing. 

Now a few remarks are in order. 
(i) The proof presented reveals explicitly all the conditions necessary for the gluing 

to be successful. Thus, e.g., it explains why the straightforward gluing fails to 
produce any result in case of the Mercedez diagram of fig. 18. This is because the 
corresponding integral has two IR dangerous regions: all x i ~ 0, and x 2, x 3, x 4 --, oo 
with x 1 fixed. The IR singular subgraph can also be observed through power 
counting in p-space. 

(ii) Essentially, the gluing consists in simplifying the integral by rearranging its 
UV structure, i.e., introducing a lower cutoff and setting the irrelevant parameter x 
to 0, without affecting the IR pole. This is completely analogous to the IR 
rearrangement proposed in [4, 5] for evaluating the UV poles, and consisting in 
introducing an upper cutoff in x-space and setting to zero all irrelevant parameters 
such as masses and external momenta. 

Eq. (2.3), however, can be derived in quite a different way. This second derivation, 
perhaps, less instructive and less rigorous than the previous one, will, nevertheless, 
enable us to incorporate the gluing and the symmetry first observed in [25] into a 
general scheme. 

Consider the diagram of fig. 19a with zero external momenta in four dimensions. 
Introducing lower and upper cutoffs, respectively, ;k and A, one gets the result 
20~'(5X41r) -Sln(A2/~2). As is well-known, the coefficient of In A 2 is independent of 
the choice of the internal momenta because of the absence of divergent subgraphs 
(though the simplicity of the actual calculation depends crucially on this choice; but 
it is only the theoretical possibility to make different choices that counts in what 
follows). So, we choose the internal momenta as in fig. 19b after which the 
corresponding Feynman integral takes the following form 

fx A 2 p 2 d p 2 1 ( p ,  A, ~,) - 20~'(5) ln~-~ +O(1) ,  
2 (4~r)2 (4~r)s 

(C.4) 

Fig. 19. (b) and (c) show the two choices of the internal momenta in the integral defined by diagram (a), 
which lead to eq. (2.3). 
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Fig. 20. The results in D = 4 obtained via gluing without additional calculations. 
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Fig. 21. The generic graph which produces all the symmetries of the 2-loop finite integrals discovered in 
ref. [25]. The symmetries are generated by cutting the internal lines of the graph. 

where l (p ,A, )~)  equals the diagram L 0 of fig. 1 evaluated at D = 4  plus terms 
O(p-2A-2) .  A similar result for the diagram N O of fig. I can be obtained from fig. 
19 whence follows eq. (2.3). Now, following the same pattern one obtains the result 
of fig. 20 at D = 4 from fig. 19 without further calculations. 

The general recipe can be formulated as follows. Choose a logarithmic divergent 
diagram without subdivergences, with a numerator, perhaps, and cut various lines or 
vertices. All the resulting p-diagrams have the same value at D = 4, equal to the 
coefficient before the logarithm of the initial diagram times (47r)2. 

The symmetry discovered in [25] can be obtained in this way from the generic 
graph of fig. 21, if one adds a numerator and modifies the denominator so as to meet 
the conditions stated above. Note that the proof given in [25] is based on the internal 
properties of two-loop diagrams and is difficult to generalize. Correspondingly, our 
proof can be called external in the sense that it does not employ specific properties 
and is applicable to diagrams with an arbitrary loop number. 
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