Monte Carlo Methods - Fall 2013/14
 Goethe Universität, Frankfurt am Main

Lecture/Tutorial: Wolfgang Unger Office: 02.105 unger@th.physik.uni-frankfurt.de

Exercise Nr. 12

Discussion on February 5, after the lecture

34) Hopping Parameter Expansion I

In the lecture you have learned about the hopping parameter expansion, i.e. the high temperature expansion in $\kappa \ll 1$. The partition function is expanded as follows

$$
\begin{aligned}
\mathcal{Z} & =\int \prod_{x}\left\{d \phi(z) e^{-u(\phi(z))}\right\} \prod_{\langle x, y\rangle} e^{2 \kappa \phi(x) \phi(y)} \\
\prod_{\langle x, y\rangle} e^{2 \kappa \phi(x) \phi(y)} & =\prod_{\langle x, y\rangle}\left\{1+2 \kappa \phi(x) \phi(y)+\frac{1}{2!}(2 \kappa)^{2}(\phi(x) \phi(y))^{2}+\ldots\right\} \\
& =\sum_{\mathcal{G}}(2 \kappa)^{L(\mathcal{G})} c(\mathcal{G}) \prod_{b \in \mathcal{G}}\left[\phi\left(x_{b}\right) \phi\left(y_{b}\right)\right]
\end{aligned}
$$

where the last expression sums over all graphs \mathcal{G} of order $(2 \kappa)^{L(\mathcal{G})}$, characterized by the number of bonds $L(\mathcal{G})$, and the vertices x_{b}, y_{b} that touch the bond $b \in \mathcal{G}$. Show that the above expansion only admits closed loops, which can visit sites several times. Show also that the coefficients $c(\mathcal{G})$ are given by $c(\mathcal{G})=\prod_{\langle x, y\rangle} \frac{1}{m(x, y)!}$ with $m(x, y)$ the multiplicity of the bonds.

In the partition function, for given potential $u(\phi)=\phi^{2}+\lambda\left(\phi^{2}-1\right)^{2}-\lambda$, the integrals $\int d \phi(z) \phi^{k} e^{-u(\phi(z))}$ have to be carried out at each site z. They also show up in the one-point expectation values

$$
\gamma_{k} \equiv\left\langle\phi^{k}\right\rangle_{1}=\frac{1}{Z_{0}} \int d \phi \phi^{k} e^{-u(\phi)},
$$

where $Z_{0}=\int d \phi e^{-u(\phi)}$ is the one-point partition function at $\kappa=0$ (notice that the full partition function at $\kappa=0$ is given by $\mathcal{Z}_{0}=Z_{0}^{V}$, with V the number of lattice sites). Explain why $\gamma_{2 n+1}=0$.

Show that the partition function can be rewritten as

$$
\mathcal{Z}=\mathcal{Z}_{0} \sum_{\mathcal{G}}(2 \kappa)^{L(\mathcal{G})} c(\mathcal{G}) \prod_{z \in \mathcal{G}} \gamma_{N(z)},
$$

with $N(z)$ the number of bonds in \mathcal{G} touching site z. Calculate the explicit expansion of \mathcal{Z} in a finite lattice volume V in d dimensions, up to order κ^{4}, in terms of the coefficients γ_{k}, i.e. consider each of the five graphs given in the lecture. Take care when counting the available bonds on the lattice for each graph, they are not proportional to $V d$ for extended graphs! Note also that there is a disconnected graph at order κ^{4}.

35) Hopping Parameter Expansion II

The hopping parameter expansion for the ϕ^{4} theory will depend on the λ-dependent coefficients $z_{2 n}(\lambda):$

$$
\mathcal{Z}(\lambda)=\mathcal{Z}_{0}(\lambda)\left\{1+z_{2}(\lambda) \kappa^{2}+z_{4}(\lambda) \kappa^{4} \ldots\right\} .
$$

Similarly, the negative free energy density defined by

$$
-f=\Omega(\kappa, \lambda) \equiv \frac{1}{V} \log \mathcal{Z}(\kappa, \lambda)-\log \mathcal{Z}_{0}(\lambda)
$$

can be expressed by the coefficients $c_{2 n}$:

$$
\Omega(\kappa, \lambda)=\sum_{n=0}^{n_{\max }} c_{2 n}(\lambda) \kappa^{2 n} .
$$

Now consider the potential $u(\phi)$ for the free case $\lambda=0$ and in the Ising limit $\lambda=\infty$. Calculate Z_{1} and $\gamma_{2 k}$ for both cases. Also calculate the coefficients $c_{2}(\lambda=0)$ and $c_{4}(\lambda=0)$ for the free case.

In general, the critical point can be estimated from the radius of convergence (if all coefficients are positive):

$$
\kappa_{c}(\lambda)=\lim _{n \rightarrow \infty} \sqrt{\frac{c_{2 n}(\lambda)}{c_{2 n+2}(\lambda)}}
$$

Check whether it is a good idea to esimate the value of $\kappa_{c}(0)$, which we know is $1 / 2 d$, from the lowest coefficients $c_{2}(0)$ and $c_{4}(0)$.

36) Monte Carlo for ϕ^{4}

Simulate the one-component ϕ^{4} model via the Metropolis algorithm (similar to the one for the anharmonic oscillator) and approach the limit $\lambda \rightarrow \infty$. Check that you find κ_{c} in accordance with the Ising model value, by measuring the susceptibility of the modulus: $\chi=\left\langle\phi^{2}\right\rangle-\langle | \phi| \rangle^{2}$.

