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Colloidal suspensions of ferromagnetic nano-particles, so-called ferrofluids, are shown to be ideal systems to demonstrate and investigate thermal
ratchet behavior: By rectifying thermal fluctuations, angular momentum is transferred to a resting ferrofluid from an oscillating magnetic field without
net rotating component. Via viscous coupling the noise driven rotation of the microscopic ferromagnetic grains is transmitted to the carrier liquid to
yield a macroscopic torque.

System

Ferrofluid: colloidal suspensions of ferromag-
netic grains of ∼ 10nm size.
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(a) side view, (b) top view of the setup: The main
ingredient is a torsion balance similar to those
used in string galvanometers. A hollow plastic
sphere (1) is filled with ferrofluid and suspended
on a thin Kevlar fiber. A static magnetic field Hx

acts along the x-direction. A time dependent
magnetic field Hy(t) in y-direction is generated
with a pair of Helmholtz coils (2) via a computer
generated signal of the form

Hy(t) = h [cos(ωt) + a sin(2 ωt + β)] . (1)

An alternative time dependence is

Hy(t) = h [cos(ωt) + a sin(3 ωt + β)] . (2)

In either case, the resulting total magnetic field
is rocking back and forth in the horizontal plane
without a net rotating component.

Experiment

A hollow plastic sphere (inner diameter 16 mm)
is filled with a ferrofluid (APG 933 (Ferro-Tec),
density ρ = 1, 100 kg/m3, susceptibility χ = 1.09,
saturation magnetization Ms = 18 kA/m, dy-
namic viscosity η = 0.1 Pas). Kevlar fiber:
length 20 cm, diameter 10 µm. Magnetic fields:
h ' 4 kA/m, Hx ' 1.2 kA/m. Parameters in Eq.
(1): ν = ω/(2π) = 200 Hz, a = 1.
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Symbols: Magnetic torque transferred to the fer-
rofluid as function of the phase angle β in Eq.
(1). Solid line: fit to the analytical approxima-
tion (3), Lz = A(ω cos β + 2 sin β) with the am-
plitude A and the frequency ω as fit parameters.
The obtained value ω ' 4.41 in dimensionless
units translates into a fit for the Brownian relax-
ation time of τB ' 1.8 ms.

No rotation is observes without static field
(Hx = 0), or for a purely sinusoidal driving (a =

0), or if the driving (1) is replaced by (2).
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Theory

Model: non-interacting, identical spherical
dipoles of volume V and magnetic moment m.
Potential energy U = −m · H governs orienta-
tion e = m/m = (sin θ cos φ, sin θ sin φ, cos θ). A
reorientation of the magnetic moment requires
a rotation of the particle against the viscosity η

of the carrier liquid characterized by the Brown-
ian relaxation time τB = 3ηV/kBT .
Dimensionless units: magnetic field αx,y :=

mHx,y/kBT , rescaled time:= t/2τB.
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Space-time contour plot of the potential U(θ =

π/2, φ, t) for αx = 0.3, αy = 1, a = 1, β = 0. In
the long-time limit, the deterministic dynamics
(no thermal noise) approaches θ(t) = π/2 and a
periodic φ(t), represented by either of the full
black lines. In the presence of thermal noise,
transitions (”2π-phase slips”) between these de-
terministic solutions become possible schemat-
ically indicated by the dashed lines. The spa-
tial asymmetry and temporal anharmonicity of
the potential results in slightly different rates for
noise induced increments and decrements of φ

respectively. As a result a noise driven rotation
of the particles arises. Noise assisted transfer of
angular momentum from the magnetic field to
the ferrofluid manifests itself in a rotation of the
sphere. Analytical approximation for the angular
momentum [1]:

Lz =
µ0M
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for driving (1), Lz = 0 for driving (2).


