Thermal Field Theory

Time: Wed 14-16, Fri 10-12, starting 21.04.2004.
Place: D6-135.
Background: Quantum field theory / statistical physics.
Literature: * J.Kapusta, Finite-Temperature Field Theory.
* M. Le Bellac, Thermal Field Theory.
Schedule: Contents.
21.04.: Quantum mechanics. Partition function Z. Path integral for Z. (p.1-4)
23.04.: Evaluation of Z for harmonic oscillator. (p.5-8)   Exercise 1 & solution. (p.9-11)
28.04.: Scalar field theory. Fourier representation for Z. (p.12-14)
30.04.: Evaluation of thermal sums. (p.15-18)   Exercise 2 & solution. (p.19-21)
05.05.: Small-T expansion. Dimensional regularization. (p.22-25)
07.05.: Large-T expansion. Gamma and zeta functions. (p.26-29)   Exercise 3 & solution. (p.30-32)
12.05.: Interactions. Weak coupling expansion. Wick's theorem. (p.33-35)
14.05.: Propagator. Z naively to order lambda & lambda**2. (p.36-39)   Exercise 4 & solution. (p.40-42)
19.05.: UV renormalisation. Z properly to order lambda. (p.43-46)
21.05.: IR resummation. Z properly to order lambda**3/2. (p.47-49)   Exercise 5 & solution. (p.50-52)
26.05.: Path integral for Z of fermionic harmonic oscillator. (p.53-56)
28.05.: The Dirac field at finite T. Fermionic sums. (p.57-60)   Exercise 6 & solution. (p.61-63)
02.06.: Gauge fields; QCD, QED. Path integral for Z. (p.64-67)
04.06.: Gauge fixing, ghosts. Feynman rules. (p.68-70)   Exercise 7 & solution. (p.71-73)
09.06.: Thermal masses, electric vs magnetic. (p.74-77)
11.06.: Z to order g**3. (p.78-81)   Exercise 8 & solution. (p.82-84)
16.06.: No lecture.
18.06.: No lecture.
23.06.: The IR problem at finite T. Low-energy effective field theories. (p.85-89)
25.06.: Dimensional reduction of QCD. (p.90-92)   Exercise 9 & solution. (p.93-95)
30.06.: Finite density. Complex scalar field. (p.96-98)
02.07.: Effective potential; BEC. Dirac fermion at finite density. (p.99-102)   Exercise 10 & solution. (p.103-104)
07.07.: Real-time observables. (p.105-108)   Appendix: basic relations for fermions.
09.07.: A sample computation. (p.109-112)   Exercise 11 & solution. (p.113-114)
14.07.: Hard Thermal Loops. (p.115-119)
16.07.: Applications. Cosmological background. (p.122-125)   Exercise 12 & solution. (p.120-121)
21.07.: Thermal phase transitions. (p.126-129)
23.07.: Bubble nucleation rate. (p.130-133)   Exercise 13 & solution. (p.134-135)
28.07.: Particle production rates. (p.136-139)
30.07.: No lecture.
Update: New version.