3.2 Nackte und renormierte Green-Funktionen

Fangen wir mit einem Beispiel an: wir betrachten den Propagator (Seite 41).

\[\langle \phi(x) \phi(y) \rangle_0 = \Delta(x-y), \quad \Delta(x) = \int \frac{dp}{(2\pi)^d} \frac{e^{ipx}}{p^2 + m^2} \]

\[\langle \bar{\phi}(p) \bar{\phi}(q) \rangle_0 = \delta(p+q) \Delta(p), \quad \Delta(p) = \frac{1}{p^2 + m^2} \]

Wir schreiben den vollen Propagator jetzt als

\[\langle \bar{\phi}(p) \phi(q) \rangle = \delta(p+q) \frac{1}{\Delta^2(p) + \Pi(p)} \]

\[= \delta(p+q) \left\{ \begin{array}{l} \Delta(p) - \Delta(p) \Pi(p) \Delta(p) + \Delta(p) \Pi(p) \Delta(p) \Pi(p) \Delta(p) + \ldots \end{array} \right. \]

Seite 41:

\[\Pi(p) = \frac{\lambda}{2} \int \frac{dp}{(2\pi)^d} \frac{1}{p^2 + m^2 + \Theta(\lambda)} \]

Aufgabe 6.4:
Für \(d = 4 - 2\epsilon \),

\[\Pi(p) = \frac{\lambda}{2} \left[-\frac{m^2}{16\pi^2} \left(\frac{1}{\epsilon} + \Theta(\lambda) \right) \right] \]

Das heißt,

\[\langle \bar{\phi}(p) \phi(q) \rangle = \delta(p+q) \frac{1}{p^2 + m^2 + \Delta(p) \Pi(p) \Delta(p) + \ldots} \]

Wir nennen den Betrag der Polstelle in komplexer \(p \)-Ebene die physikalische bzw. die Polmasse:

\[m_{\text{pol}}^2 = m^2 - \frac{\Delta(p) \Pi(p) \Delta(p)}{32\pi^2} + \ldots \]

Falls also \(m^2 \) endlich ist, ist \(m_{\text{pol}}^2 \) unendlich für \(\epsilon \to 0 \) —

und umgekehrt!
Eine neue Philosophie:

Die Lagrange-Dichte und ihre Parameter \(\equiv \) die "Maschinensprache", d.h. die elementaren Objekte mit denen die Natur operiert.

Allerdings sind diese Objekte uns, den "Benutzer" bzw. Beobachtern, normalerweise nicht wichtig. Wir kümmern uns nur um eine einfachere "Hochsprache", d.h. messbare Größen.

(Es gibt aber Freiheit in der Wahl der "Hochsprache"!)

Notation:

Wir bezeichnen die Felder und Parameter der Lagrange-Dichte von jetzt an als "nackte" ("bare") Objekte:

\[
\begin{align*}
\phi & \rightarrow \phi_b \\
\lambda & \rightarrow \lambda_b \\
\end{align*}
\]

\[
L_b = \frac{1}{2} m_b \partial_\mu \phi_b \partial^\mu \phi_b + \frac{1}{4!} \lambda_b^4
\]

Auf der anderen Seite gibt es messbare Größen, "renormierte" Objekte.

Nachdem wir eine bestimmte Konvention für die letzteren gewählt haben, sollten sie natürlich eine 1-zu-1-Beziehung zu den nackten Objekten besitzen:

\[
\begin{align*}
\phi_b &= Z^\phi \phi_R \\
\lambda_b &= Z^\lambda \lambda_R \\
\end{align*}
\]

In einer freien Theorie gibt es keine Divergenzen

\[
\Rightarrow Z_i = 1 + \Theta(\lambda_R)
\]

Wir schreiben oft

\[
Z_i = 1 + S Z_i
\]

Renormierbarkeit

Eine Theorie ist renormierbar, falls es eine Wahl der \(Z_i \) gibt, so dass alle (unendlich viele!) renormierte Green-Funktionen (mit \(\phi_R \) definiert; Seite 48) bzw. physikalische Größen endlich bleiben, wenn wir den Limes \(\epsilon \to 0 \) nehmen!

(Potenzreihung auf Seite 48: es könnte in unserer Theorie klappen!)

Kehren wir zu unserem Beispiel zurück. Jetzt also:

\[
\langle \tilde{\phi}_h(p) \tilde{\phi}_h(a) \rangle = \delta(p+a) \cdot \frac{1}{p^2 + m_h^2 - \frac{\lambda_R}{\Theta} \left(\frac{\int 1}{\Theta \pi^2 p^2 + m_h^2} \right)}
\]

\[
\Rightarrow m_{\Phi a}^2 = m_h^2 + S Z_{m^2} \cdot m_h^2 - \frac{\lambda_R}{\Theta} \left(\frac{\int 1}{\Theta \pi^2 p^2 + m_h^2} \right) + O(1/\Theta)
\]

Das Integral:

\[
\int \frac{d^4 p}{(2\pi)^4} \frac{1}{p^2 + m_h^2} = \frac{1}{(m_h^4 \Theta^4)} \int \frac{1}{(m_h^4 \Theta^4)^{1/2}} \Gamma(1 + \epsilon)
\]

\[= \frac{m_h^2}{(2\pi)^2} \cdot (m_h^4 \Theta^4)^{-\epsilon} \Gamma(1 + \epsilon) \]

* Wir schreiben

\[(m_h^4 \Theta^4)^{-\epsilon} = \mu^{-2\epsilon} \left(\frac{\mu^2}{m_h^2} \right)^\epsilon = \mu^{-2\epsilon} \left(1 + \epsilon \ln \frac{\mu^2}{m_h^2} + O(\epsilon) \right) \]

Hier ist μ eine künstliche (nicht-physikalische) neue Massenskala, die allerdings später eine wichtige Rolle spielen wird.

\[
\Rightarrow m_{\Phi a}^2 = m_h^2 + S Z_{m^2} \cdot m_h^2 + \frac{\lambda_R \mu^{-2\epsilon} \cdot m_h^2}{2 \pi^2} \left(\frac{1}{\epsilon} + 1 - \frac{\epsilon}{2} + \frac{\ln \frac{\mu^2}{m_h^2} + \ln \mu^2 \Theta^{1/2}}{m_h^2} \right)
\]

* Mit $S Z_{m^2} = -\frac{\lambda_R \mu^{-2\epsilon}}{2 \pi^2} \frac{1}{\epsilon} + O(1)$ wird $m_{\Phi a}^2$ endlich!

"Minimale Subtraktion" (MS): $S Z_{m^2} \equiv -\frac{\lambda_R \mu^{-2\epsilon}}{2 \pi^2} \frac{1}{\epsilon} + O(\lambda_R^2)$.

* In der Literatur nennt man oft die Kombination $\lambda_R \mu^{-2\epsilon}$ "λ_ϵ".

\[
-\frac{\mu^2}{\epsilon e^2} + \ln \mu^2 + \ln \mu^2 = \ln \mu^2 \frac{1}{e^2} \equiv \ln \mu^2
\]
Fazit:

Renormierter Green-Funktionen

"Natürliche" Definitionen:

\[G_{B,C}^{(n)}(x_1, \ldots, x_n) = \langle \phi_1(x_1) \ldots \phi_n(x_n) \rangle_c \]

\[G_{B,C}^{(n)}(x_1, \ldots, x_n) = \langle \phi_1(x_1) \ldots \phi_n(x_n) \rangle_c \]

\[= \tilde{G}_{B,C}^{(n)}(x_1, \ldots, x_n) = Z_f^{-n/2} G_{R,C}^{(n)}(x_1, \ldots, x_n) \]

Die gleiche Beziehung bleibt gültig nach den Fourier-Transformationen.

Insbesondere: (Seite 29)

\[\tilde{A}_{B,C}^{(n)} = [\tilde{G}_{B,C}^{(n)}(p, \ldots, p)]^{-1} \ldots [\tilde{G}_{B,C}^{(n)}(p, \ldots, p)]^{-1} G_{B,C}^{(n)} = Z_f^{-n/2} \tilde{A}_{B,C}^{(n)} \]

Die LSe-Reduktion (Seite 29) enthält \(Z_f^{-n/2} \tilde{A}_{B,C}^{(n)} \)

und produziert damit ein endliches Ergebnis,

wie es für eine physikalische Amplitude sein muß!