Übungen zur Theoretischen Physik II Sommersemester 2015 Blatt 7

Aufgabe 17: Dirac Notation (2 Punkte)

Der Hamiltonoperator eines Systems habe nur zwei verschiedene Eigenwerte:

$$\hat{H} = E_1 \sum_{n=1}^{N} |\phi_n\rangle \langle \phi_n| + E_2 \sum_{n=N+1}^{\infty} |\phi_n\rangle \langle \phi_n| ,$$

d.h. die ersten N Eigenzustände $|\phi_n\rangle$ von \hat{H} haben alle dieselbe Energie E_1 , alle anderen die Energie $E_2 \neq E_1$. Gegeben sei der hermitesche Operator

$$\hat{A} = a \left(|\phi_N\rangle \langle \phi_{N+1}| + |\phi_{N+1}\rangle \langle \phi_N| \right) \quad (a > 0, \text{reell}).$$

Der Anfangszustand des Systems zur Zeit t=0 sei

$$|\psi\rangle = \frac{1}{\sqrt{2}} (|\phi_N\rangle + |\phi_{N+1}\rangle) .$$

Berechnen Sie die Erwartungswerte $\langle \psi(t) | \hat{A} | \psi(t) \rangle$ und $\langle \psi(t) | \hat{A}^2 | \psi(t) \rangle$ von \hat{A} für Zeiten t > 0.

Aufgabe 18: Eigenschaften der Energieeigenfunktionen (3 Punkte)

Der Hamiltonoperator \hat{H} ist ein hermitescher Operator. Betrachten Sie das Eigenwertproblem

$$\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle$$

und zeigen Sie:

- a) Die Eigenwerte E_n von \hat{H} sind reell. (1 P.)
- b) Eigenfunktionen $|\psi_{n_1}\rangle$ und $|\psi_{n_2}\rangle$ zu verschiedenen Eigenwerten E_{n_1} und E_{n_2} sind orthogonal. (1 P.)
- c) Sei $\{|\psi_n\rangle\}$ ein vollständiges Orthonormalsystem von \hat{H} . Dann gilt die Operatorgleichung

$$\sum_{n=0}^{\infty} |\psi_n\rangle\langle\psi_n| = \hat{1}$$
(1 P.)

Aufgabe 19: Messprozess (9 Punkte)

Der dreidimensionale Zustandsraum eines quantenmechanischen Systems werde von der orthonormierten Basis $\{|u_1\rangle, |u_2\rangle, |u_3\rangle\}$ aufgespannt. Der Hamiltonoperator \hat{H} und die beiden Observablen \hat{A} und \hat{B} lauten in dieser Basis:

$$\hat{H} = \hbar\omega_0 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \hat{A} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \hat{B} = b \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

wobei ω_0 , a und b reelle, positive Konstanten sind. Zur Zeit t=0 befinde sich das System in dem Zustand

$$|\psi(0)\rangle = \frac{1}{\sqrt{2}}|u_1\rangle + \frac{1}{2}|u_2\rangle + \frac{1}{2}|u_3\rangle.$$

- a) Zum Zeitpunkt t=0 werde die Energie des Systems gemessen. Welche Werte können sich mit welchen Wahrscheinlichkeiten als Meßergebnisse ergeben? Berechnen Sie für den Fall, dass sich das System im Zustand $|\psi(0)\rangle$ befindet, den Erwartungswert $\langle \hat{H} \rangle$ und die Standardabweichung ΔH .
- b) Statt \hat{H} werde zum Anfangszeitpunkt die Observable \hat{A} gemessen. Welche Messergebnisse wird man mit welchen Wahrscheinlichkeiten erhalten? In welchem Zustand befindet sich das System unmittelbar nach der Messung von \hat{A} ? (2 P.)
- c) Berechnen Sie den Zustandsvektor $|\psi(t)\rangle$ zur Zeit t. (1 P.)
- d) Berechnen Sie die Erwartungswerte $\langle \hat{A} \rangle (t)$ und $\langle \hat{B} \rangle (t)$. Was fällt Ihnen auf? (1 P.)
- e) Welche Meßergebnisse erhält man mit welchen Wahrscheinlichkeiten, wenn man zur Zeit t die Observable \hat{A} bzw. \hat{B} misst ? (2 P.)
- f) Gibt es ein gemeinsames System von Eigenfunktionen der Operatoren \hat{H} und \hat{A} ? Gibt es ein solches System für die Operatoren \hat{H} und \hat{B} ? Falls ja, wie sieht es aus? (1 P.)

Besprechung am 05.06.2015.