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Elements of fluid dynamics

for the modeling of heavy-ion collisions

Three lectures:

@ Overview on the dynamics of relativistic perfect fluids

@ Application of perfect relativistic fluid dynamics to the description

of high-energy nucleus—nucleus collisions

-
\phenomenology & experimen’rj

@ fluid dynamical modeling of the fireball created in the col

@ vyields a surprisingly good rendering of some measuremen:

@ ... at the cost of introducing elements that are not within
hydrodynamics

@ Beyond perfect relativistic fluid dynamics

Isions

'S

perfect
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Elements of fluid dynamics
for the modeling of heavy-ion collisions

Three lectures:

@ Overview on the dynamics of relativistic perfect fluids

@ Application of perfect relativistic fluid dynamics to the description
of high-energy nucleus—nucleus collisions

@ Beyond perfect relativistic fluid dynamics

[ theoretical approaches ]

@ many ideas: dissipative fluid dynamics / including hydrodynamical
fluctuations / or “non-hydro modes”... m out-of-equilibrium physics

@ ... coming from the underlying "microscopic” physics (transport) or
invoking strong-coupling scenarios
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Elements of fluid dynamics
for the modeling of heavy-ion collisions

Lecture I:

@ Overview on the dynamics of relativistic perfect fluids

[phenomenological approachj

@ reminder(?) on non-relativistic fluid dynamics (“hydrodynamics”)
@ fundamental equations of perfect relativistic fluid dynamics

@ an example of solution (possibly in lecture II)
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Elements of fluid dynamics...

General references:

o A few fextbooks aimed at physicists:
@ Landau & Lifshitz, vol.6: "“Fluid Mechanics”
(L&L-style..., a short chapter on relativistic hydro)
@ Guyon, Hulin, Petit, Mitescu: "Physical Hydrodynamics”
(more phenomenological, only non-relativistic fluid dynamics)

® Rezzola & Zanotti, "Relativistic Hydrodynamics”
(by astrophysicists with an interest in numerical fluid dynamics)

® General Relativity / Cosmology textbooks often contain a chapter

on relativistic fluid dynamics
Weinberg, "Gravitation and Cosmology”
Misner, Thorne, Wheeler, “Gravitation”
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Elements of fluid dynamics...

@ Review articles

@ Andersson & Comer, "Relativistic fluid dynamics: Physics for many

scales” arXiv:gr-qc/0605010
@ Romatschke, "New developments in relativistic viscous hydrodyna-
mics” arXiv:0902.3663

@ Ollitrault, "Relativistic hydrodynamics for heavy ion collisions”

arXiv:0708.2443

@ ... and many others

@ Online lecture notes

@ a few chapters in Blandford & Thorne, "Applications of Classical
Physics” (will soon become a book; use your favorite search engine...)

@ N.B. @ http://www.physik.uni-bielefeld.de/~borghini/Teaching/Hydrodynamics

(sorry for the lack of modesty)
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Elements of fluid dynamics
for the modeling of heavy-ion collisions

@ Overview on the dynamics of relativistic perfect fluids

[phenomenological approachj

@ reminder(?) on non-relativistic fluid dynamics (“hydrodynamics”)
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Non-relativistic fluid dynamics

Classical definition:

A “fluid” is a continuous medium that keeps on deforming as long as
it is subject to tangential forces (“shear stresses” # normal stresses):

gas, liquid, plasma...

e # deformable solid (elastic / plastic), which will reach an equilibrium
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Non-relativistic fluid dynamics

Classical definition:

A “fluid” is a(con’rinuous medium)fha’r keeps on deforming as long as
it is subject to tangential forces (“shear stresses” # normal stresses):

gas, liquid, plasma...

e # deformable solid (elastic / plastic), which will reach an equilibrium

Continuous medium?

e for the mathematician, this makes life easier
w differentiable medium” is even better

o for the physicist, this is a model, thus open to discussion if need be

m atoms exist, dont they?
Well, so do fields, so who knows...
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Non-relativistic fluid dynamics

Classical definition:

A “fluid” is a continuous medium that keeps on deforming as long as
it is subject to tangential forces (“shear stresses” # normal stresses):

Idea: decompose the contact force — exerted by the neighboring fluid
element(s) or by a wall / obstacle — per unit surface into a normal
and a tangential part:
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Non-relativistic fluid dynamics

Classical definition:

A “fluid” is a continuous medium that keeps on deforming as long as
it is subject to tangential forces (“shear stresses” # normal stresses):

12 In a fluid at rest, the contact forces are normal!
(hydrostatic) pressure forces

One introduce a pressure field P(t,7) at each point of the fluid

w will quickly be continuous, differentiable... at least by parts
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Non-relativistic fluid dynamics

The "degrees of freedom” = dynamical variables

A "fluid” is a continuous medium characterized by its
® mass density p(t,7)

® pressure P(¢,7)

® local flow velocity v(t,7)

® energy density e(t,7)

o ... further dynamical fields?

at each time and position.

w- all of them are assumed to behave smoothly, at least by parts

12~ These "mesoscopic” quantities deserve a better definition, in terms
of more microscopic ones... Will come later!
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(

\_

Throughout these lectures, I consider a single, simple fluid:

a single “component”: one mass density / particle number
and one velocity field only

1=
no mixture!

a simple: electrically neutral, non-magnetfic...




Non-relativistic fluid dynamics

The "degrees of freedom” = dynamical variables

A "fluid” is a continuous medium characterized by its
® mass density p(t,7)

® pressure P(¢,7)

® local flow velocity v(t,7)

® energy density e(t,7)

o ... further dynamical fields?

at each time and position.

w- all of them are assumed ’ro(behave smoo’rhly) at least by parts
?
I These E‘mesoscopic")quanﬁfies deserve a better definition, in terms
of more microscopic ones... Will come later!
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Model of a continuous medium

.. the hidden physical assumptions

System (of particles / fields) can be divided in thought in cells that
fulfill two contradictory conditions:

® they must be large enough that quantities defined as averages over
their content (e.g.: mass density, average particle velocity...) have
small fluctuations

1Z- cell size » mean free path /¢,

® they must be small enough to remain statistically homogeneous, i.e.
the system “"mesoscopic” properties do not vary too much over the
cell

b¥ cell size « scale L of macroscopic gradients
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Model of a continuous medium

an important dimensionless number
Two length scales:

® mean free path” /.y,

o size L over which macroscopic fields vary (~ 1/]07|)

1= The description as a continuous medium is meaningful iff

-
[Knudsen number Kn = pr < 1]

necessary consistency check (easily written... non-trivial!)

“strictly speaking, is well defined only for “dilute” systems
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Non-relativistic fluid dynamics

The "degrees of freedom” = dynamical variables

A "fluid” is a continuous medium characterized by its
® mass density p(t,7)

® pressure P(t,7)

® local flow velocity v(t,7)

® energy density e(t,7)

o ... further dynamical fields?

at each time and position.

12 We now need equations for these various fields!

Complicated-looking(?) equations, yet with a clear physical meaning
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Non-relativistic fluid dynamics

The dynamical equations of motion

Invoke the most basic laws of physics: conservation equations!
® mass / particle number conservation
® momentum conservation (or more generally, Newton’s 2nd law)

® energy conservation
each of which are expressed locally.
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Non-relativistic fluid dynamics

The dynamical equations of motion

Invoke the most basic laws of physics: conservation equations!
® mass / particle number conservation (equivalent since p = nm )

"Continuity equation”:

D) L9 [p(e.7)utr.7)] =0
ML) - [n(e.7)5(t.7)] = 0

(Remember charge conservation in electrodynamics!)
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Non-relativistic fluid dynamics

The dynamical equations of motion

Invoke the most basic laws of physics: conservation equations!
® mass / particle number conservation (equivalent since p = nm )

"Continuity equation”:
Oep(t,7) + 0; | p(t, ) V' (¢, 7)] =0

O (t,7) + 0; [ n(t, ) V' (t,7)] = 0

with a sum over repeated indices (here i=1,2,3)

Rem.: in non-Cartesian coordinates, replace partial by covariant derivatives
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Non-relativistic fluid dynamics

The dynamical equations of motion

Invoke the most basic laws of physics: conservation equations!

® momentum conservation (or more generally, Newton’s 2nd law)

Euler equation:

o(t, 7) {&ﬁ(t,?) + [V(t, 7) - ﬁ}V(tj)} — —VP(t,7)+ f,(t,7)
N SN )
local fluid acceleration

pressure volume
forces  forces (gravity...)
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Non-relativistic fluid dynamics

The dynamical equations of motion

Invoke the most basic laws of physics: conservation equations!

® momentum conservation (or more generally, Newton’s 2nd law)

Euler equation:
p(t,F) |0 (1,7) + [V(t,7) - V]U(L,F)| = —VP(LT) + [ (t,7)
component-wise:

p(t,7) |0 (1,F) + V7 (L, F)O' (1, 7)| = —0" (L 7) + (£,)'(1,7)
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Non-relativistic fluid dynamics

The dynamical equations of motion

Invoke the most basic laws of physics: conservation equations!

® momentum conservation (or more generally, Newton’s 2nd law)

Euler equation:
p(t,F) |0 (1,7) + [V(t,7) - V]U(L,F)| = —VP(LT) + [ (t,7)

or Navier-Stokes equation:

p(t,7) |0 (8,7) + [V(t,7) - V]V(E,7)| = =VPET) + e (67) + £ (1,7)
with  fle (67) = 09%5(67) + (¢4 )99 9067
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Non-relativistic fluid dynamics

The dynamical equations of motion

Invoke the most basic laws of physics: conservation equations!

® momentum conservation (or more generally, Newton’s 2nd law)

Euler equation:

p(t,7) |0 (£,7) + [V )+ f(47)
or Navier-Stokes equa’rlon
o(t, )[atvw & = —VPt,7) + fuise.(t, ) + f.(¢,7)

with Foise. (2 ?ﬂ V2(t,T) + ( 3>VW V(t, 7))
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Non-relativistic fluid dynamics

The dynamical equations of motion

® Momentum conservation (or more generally, Newton’s 2nd law)
IS expressed locally by...
® the Euler equation

—

p(t,7) |0 (8,7) + [(t,7) - V]V(t,7) | = =Vt ) + [ (1,7)
b= if the fluid is “perfect” (or “ideal”)
® the Navier-Stokes equation
p(t,7) |0 (4,7) + [V(t,7) - V]V(E,7) | = =VPEF) + foise (17) + F(2,7)
be- if the fluid is "Newtonian®

® the Burnett / super-Burnett equation... ... if the fluid is...
not Kidding!
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(Simple) fluid models

may be seen as properties of specific flows (more later)

* Perfect/ideal fluids:
.. are such that there are no dissipative effects in them:

w neither shear stresses (friction) nor heat conduction

p= dry water”
(Feynman, Lectures on Physics vol.II, chap.40)
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(Simple) fluid models

may be seen as properties of specific flows (more later)

* Perfect/ideal fluids:
.. are such that there are no dissipative effects in them:

w neither shear stresses (friction) nor heat conduction
=

At each point in the fluid, the properties as seen by an observer at
rest w.r.t. the fluid—i.e. comoving with it—are (locally) isotropic.

In particular, the momentum flux-density tensor T"(t,7) is isotropic:

w- amount of i-th component of momentum transported in direction j

Conversely, "anisotropic fluids” are not perfect. (So what?)
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(Simple) fluid models

may be seen as properties of specific flows (more later)

o Perfect/ideal fluids:
.. have a locally isotropic momentum flux-density tensor:
(amount of i-th component of momentum transported in direction j)

TH(t,7) = P(t,7)0% + p(t, )V (¢, )V (L, 7)

N _J/ _/

Ve ~\”

thermal convective transport
transport

bz only normal surface forces (no tangential stresses): pressure

Rems.:
- TY(t,7) is symmetric.

- In non-Cartesian coordinates, replace §” by the inverse metric tensor g"(t,7).
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(Simple) fluid models

may be seen as properties of specific flows (more later)

® Dissipative fluids:
... have a possibly anisotropic momentum flux-density tensor:

w because they admit dissipative currents

T (t, 1) = P(t,7)6% + p(t, F)V' (£, 7)V (t,7) + 7 (L, 7)

\ J J

thermal convective diffusive
transport transport transport

What is the form of the viscous stress tensor 7% ?
= models (many!)
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(Simple) fluid models

may be seen as properties of specific flows (more later)

@ Newtonian fluids:

. have an anisotropic momentum flux-density tensor T including a
viscous stress tensor 7'/ depending linearly on the lst-order spatial
derivatives of the flow velocity:

TY(t,7) = P(t, )0V + p(t, )V (&, )V (t,7) + 7 (¢, 7)
with 7 (t,7) = — n(t,7) [aﬂ'v@'(t 7) + OV (8, 7) — 269V - (L, 7]
— ((t,7)07V -V(t,T)

—_—

x 6% |

symmeftric, traceless

where shear viscosity # & bulk viscosity { are independent of v.
-_—
transport coefficients

Topical Lectures, NIKHEF, June 15-17, 2015 N.Borghini — I-20/58 h Universitit Bielefeld



(Simple) fluid models

may be seen as properties of specific flows (more later)

® Newtonian fluids:
... have a shear viscosity 7 and a bulk viscosity (.

1= modify the surface forces:
® Normal force: with an “effective pressure”

T(ta ?) o [C(ta?) o %77(757 ?)}ﬁ ) V(t, ?)
H/_/
local expansion rate

of the fluid
® Tangential force: friction

“wet water” (Feynman, Lectures on Physics vol.1I, chap.41)

.. on a surface in the zy-plane, with the velocity along z, and a
velocity gradient along the z direction:

F,xnd,vy
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(Simple) fluid models

may be seen as properties of specific flows (more later)

@ Newtonian fluids:

.. have an anisotropic momentum flux-density tensor 7" including a
viscous stress tensor 7'/ depending linearly on the lst-order spatial
derivatives of the flow velocity v:

1=~ define “first-order dissipative hydrodynamics”

® Dissipative fluids:
.. with @ momentum flux-density tensor with a viscous stress tensor
depending linearly on the 2nd-order spatial derivatives of v

iz define “second-order dissipative hydrodynamics”

® and so on... You can also devise other models (see e.g. Lecture III)
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Ideal, first-, second-, third-order hydro...
@ increasing complication (= precision of the description?)
a including higher and higher gradients
When are “low order” description appropriate?
w the gradients must be small!
=

size L over which macroscopic fields vary (~ 1/|07|) is large

..as was already argued above!

(+ looks like an expansion: is there any convergence?)
\ J




Non-relativistic fluid dynamics

The dynamical equations of motion

® Momentum conservation (or more generally, Newton’s 2nd law)
IS expressed locally by...
® the Euler equation i perfect/ideal hydro

ot,7) [059(1,7) + [9(4.7) - V]9(7)| = ~V8(LF) + £ (1.7)
for perfect/ideal fluids

® the Navier-Stokes equation 15~ 1st order dissipative hydro
p(t,7) |0 (4,7) + [V(t,7) - V]V(E,7) | = =VPEF) + foise (17) + F(2,7)
for Newtonian fluids

® the Burnett / super-Burnett equation... 1= 2nd / 3rd order hydro
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Non-relativistic fluid dynamics

The dynamical equations of motion

® Momentum conservation (or more generally, Newton’s 2nd law):
® the Euler equation (perfect/ideal hydro)
p(t,7) {atV(t,?) + [V(t,7) - ﬁ}\*i(t,?)} — —VP(t,7) + f(t,7)
® the Navier-Stokes equation (1st order dissipative hydro)

p(t,7) |0 (2, 7) + [V(E ) - VIV(ET) | = =VPEF) + foise. (8,7) + £ (1,7)

Fuise. (£, 7) = nV2(1, 7)) + (C + g)ﬁ[ﬁ V(7))

® the Burnett / super-Burnett equations.. (2nd / 3rd order hydro)
are reformulations of [0, [p(t, P)Vi(t, 7)] + 0, T(t, 7) = ( f,,,)i(t,?)J

-~

momentum density momer:’rrum flux density
with constant transport coefficients in the dissipative case
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Model of a continuous medium

a second important dimensionless number

Write down the Navier-Stokes equation in the simpler case V-v=0 &
in the absence of volume forces:

p(t,7) |03 (1,7) + [V(1,7) - V]U(L,7) | = =VP(L,7) + yV(L, 7)

“incompressible Navier-Stokes equation”

”
Solve it... become rich! ($) ( )

(Millenium Clay problem...) | v
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Model of a continuous medium

a second important dimensionless number

Write down the Navier-Stokes equation in the simpler case V-v=0 &
in the absence of volume forces:

—

p(t,7) |03 (1,7) + [V(1,7) - V]U(L,7) | = =VP(L,7) + yV(L, 7)

Divide lengths, flow velocity & pressure by typical values (depend on
the fluid and flow under consideration!)

w yields dimensionless equation

Op V(7 )+ [V (%, 7)- V|V (¢, 7)

|

<
[\

l

*
~

N
*x
=
*
~—
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Model of a continuous medium

a second important dimensionless number

Write down the Navier-Stokes equation in the simpler case V-v=0 &
in the absence of volume forces:

o(t, 7) [8&(@?) + [V(t,7) - ﬁ}V(t,?)} — —VP(t,7) + nVH(t,7)

Divide lengths, flow velocity & pressure by typical values (depend on
the fluid and flow under consideration!)

w yields dimensionless equation

—

— Q) —
O+ (7 9) =~ + L%
: . pVe L,
involving the Reynolds number Re = ,
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Model of a continuous medium

a second important dimensionless number

CLC
The [Reynolds number Re = pvn ]

measures the importance of viscous effects in the flow:

o for Re « 1: viscous flow

o for Re » 1: inviscid (“ideal”) flow...

w You may probably describe the fluid as perfect (not everywhere...)
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Non-relativistic fluid dynamics

The dynamical equations of motion

Invoke the most basic laws of physics: conservation equations!

® energy conservation

for a perfect fluid (I omit the variables and drop the volume forces...):

at(e+ %,0\72) +V- [(6+T+ %,0\72)\7} =0
H/_/ 7

h

energy density  energy FT& density

component-wise:
Oy (6 — %pVQ) + 0; [(6 + P+ %p\_/a)vi] =0
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Non-relativistic fluid dynamics

The dynamical equations of motion

Invoke the most basic laws of physics: conservation equations!

® energy conservation

for a Newtonian fluid (I omit the variables and drop the volume forces...):

8t(e+2,0v )+ﬁ{

energy flux density:

Topical Lectures, NIKHEF, June 15-17, 2015
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(6+T+2pv )V — KVT

{ %ﬂ(ﬁvw

_n{(w)vm(_)l

—2
V

2

~

b=o
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Non-relativistic fluid dynamics

The dynamical equations of motion

Invoke the most basic laws of physics: conservation equations!

® energy conservation

for a Newtonian fluid (I omit the variables and drop the volume forces...):

. - tt t
8t(e+2pv )+V~{(6+T+2pv )V_hea ranspor |

kx heat conductivity

(
2 -
- { = —”}(v- V) v
diffusive energy transport < 3
by the viscous forces
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Non-relativistic fluid dynamics

dynamical variables and equations

A fluid is characterized at each time and position by its

® mass density p(t,7) / particle number n(t,7) (equivalent!)
® pressure P(¢,7)

® local flow velocity v(t,7)

® energy density e(t,7)

and possibly transport coefficients (7, ¢, «x...): material properties!

1= 6 dynamical fields

These are governed by local expressions of conservation equations
® mass / particle number conservation
® momentum conservation

® energy conservation
1= 5 equations only /”\
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Non-relativistic fluid dynamics

dynamical variables and equations

6 dynamical fields — p(t,7)or n(t,7), v(t,7), P(t,7), and e(t,7) — yet
only 5 coupled (conservation) equations relating them to each other.

15 one more equation needed!

® One possible easy way out:
only investigate fluid motions with a given kinematic constraint
m steady flows (0;=0), incompressible flows (V -V =0), irrotational /
potential flows (V x V=0: no vorticity)...
Nature is not always that nice!

® More general, yet not innocent:

There exists a relation between infernal energy density, pressure,
and particle number, “the” equation of state (EoS).

[= a combination of the thermal & mechanical EoS e(rn,1) & P(n,T)]
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Non-relativistic fluid dynamics

dynamical variables and equations

An equation of state is indeed a relation between ¢, P & n or p.

Yet its use presupposes that the fluid is at thermodynamic equilibrium
(or more precisely, at local thermodynamic equilibrium at each point &
instant).

15 strong assumption!

Actually already hidden in the transport coefficients (7, ¢, «...):
e material properties—like the equation(s) of state;

e that quantify dissipative currents describing the linear response of
the system to (small) departures from thermodynamic equilibrium.

w- are well-defined close to thermodynamic equilibrium.

But now, we may use the whole bunch of thermodynamic relations.
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Thermodynamics

Differential of internal energy U:
dU = -PdV+TdS + udN

P pressure, 7 volume, T temperature, S entropy, 4 chemical potential;
N is the number of particles.

w this number is not conserved in a relativistic system: should be
replaced by a conserved quantum number (e.g., baryon number).

w- In a relativistic system, U also includes the mass energy of the
constituents.

Internal energy: U=-PV+TS+uN (1)

Gibbs-Duhem relation: VdP=5dT + Ndu
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Thermodynamics

In fluid dynamics, the useful quantities are rather the densities:
e internal energy density e= U/,

e entropy density s= S/v,

e (baryon) number density n = N/ .

1g- Eq.(1) gives e=-P+ Ts+un

Gibbs-Duhem becomes dP = sdT + ndu

leading to: de = Tds +udn
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Thermodynamics and fluid dynamics

Using the local Gibbs-Duhem relation d? = sdT + ndu, one can study
the behavior of entropy in moving fluids:

® in perfect fluids, the continuity equation, Euler equation, & energy
conservation equation automatically lead to entropy conservation

Ops(t,7) + V - [s(t,7)V(t,7)] = 0

® in turn, in Newtonian fluids, the continuity, Navier-Stokes, & energy
conservation equations lead, if the transport coefficients 7, {, x are
taken to be positive, to the production of entropy

Ors(t,7) + V - [s(t,7)V(t,7)] >0

which makes sense, since these coefficients characterize dissipative
currents.

Topical Lectures, NIKHEF, June 15-17, 2015 N.Borghini — I-34/58 h Universitit Bielefeld



Non-relativistic fluid dynamics

.. describes the motion of continuous media in local thermodynamic
equilibrium at each ¢ & 7, using a set of 6 equations:

® 5 dynamical relations, expressing the local conservations of mass (or
particle number), momentum, & energy

w take different forms in perfect / Ist-order / 2nd-order hydro

® and an equation of state.

These equations govern the coupled evolutions of

® mass density o (or equivalently particle number density n),
® internal energy density e,
® pressure P,

o flow velocity v.

Besides its equation of state, the fluid is characterized by fransport
coefficients (1, {, «...).
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Elements of fluid dynamics
for the modeling of heavy-ion collisions

@ Overview on the dynamics of relativistic perfect fluids

[phenomenological approachj

@ fundamental equations of perfect relativistic fluid dynamics
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Non-Relativistic fluid dynamics

.. describes the motion of continuous media in local thermodynamic

equilibrium at each ¢ & 7, using a set of -6-equations: 5 + Ny equations

o '\\.j'; dynam'Ca\l,f.elft'fnfxpressing the local conservations of mass—{or

quan’rum numbers) momentum, & energy

w take different forms in perfect / Ist-order / 2nd-order hydro

® and an equation of state.

These equations govern the coupled evolutions of

® mass—densityp{or-equivalentlyma=ticla number deneiti )

quantum densities n,
® internal energy density e,

® pressure P,

o flow velocity v. "repackaged” within a 4-velocity

Besides its equation of state, the fluid is characterized by fransport
coefficients (1, {, «...).
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Relativistic fluid dynamics

dynamical variables and equations

A relativistic fluid is a continuous medium characterized by currents:

® a quantum number 4-current N,(x), with components N¥(x), for each
conserved quantum number a, such that (in Minkowski coordinates)

° NJ(x) is the local density of quantum number a, and

® the N.(x) are the components of the local flux density of «;

® an energy-momentum tensor T(x), with components 7""(x), such that

° TY%(x) is the local energy density;

° TY(x) is the density of the j* component of momentum;
° the T"(x) are the components of the energy flux density;

® the 7"(x) are the components of the momentum flux-density.
Greek resp. Latin indices run from O resp. 1 to 3.
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Relativistic fluid dynamics

dynamical variables and equations

A relativistic fluid is a continuous medium characterized by currents:

® a quantum number 4-current N,(x), with components N¥(x), for each
conserved quantum number a, whose conservation equation reads

(6’MNa“(x) — o]

® an energy-momentum tensor T(x), with components T""(x),

whose conservation equation reads

(0,7 (x) = 0)

w take different forms in perfect / 1st-order / 2nd-order hydro

Rem.: in non-Minkowski coordinates, replace partial by covariant derivatives: ¢, — du
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Relativistic perfect fluid dynamics

In perfect/ideal fluids:

.. one can at each point x find a reference frame LR(x), such that
an observer at rest in LR(x) sees the instantaneous local properties
of the fluid as isotropic, i.e. (in Minkowski coordinates)

® the spatial components of every quantum number 4-current N,(x)
vanish in LR(x):
N/ ()] e
a X — —

® in the energy-momentum tensor T(x), all 7"°(x) and 7%(x) vanish in
LR(x), while 7%(x) is diagonal:

/e(x) 0 0 0 \
» 0 Pkx) 0 0
Ml = o Px) 0

\ 0 0 0 P(x))
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Relativistic perfect fluid dynamics

In perfect/ideal fluids:

.. one can at each point x find a reference frame LR(x), such that
an observer at rest in LR(x) sees the instantaneous local properties
of the fluid as isofropic.

The 4-velocity u(x) of that observer with respect to an observer at
rest in another reference frame ® defines the flow 4-velocity of
the fluid w.r.t. ®.

That is, the flow 4-velocity u(x) — which is timelike and normalized
to -1, i.e. [u(x)]? = -1 — has in the “local rest frame” LR(x) at x the
Minkowski components

1
uf(x) }LR(X) ~ (6)

As is now clear, the metric with signature (-,+,+,+) will be used.
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Relativistic perfect fluid dynamics

In perfect/ideal fluids:

.. one can at each point x find a reference frame LR(x), such that
an observer at rest in LR(x) sees the instantaneous local properties
of the fluid as isofropic.

The 4-velocity u(x) of that observer with respect to an observer at
rest in another reference frame ® defines the flow 4-velocity of
the fluid w.r.t. ®.

Denoting by V(x) the corresponding 3-velocity w.r.t. ® and by y(x)
the associated Lorentz factor, the components of the 4-velocity in
R read

) (3 | B 1
0 = (wx)wx)) with 109 =
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Relativistic perfect fluid dynamics

In the local frame LR(x) the quantum number 4-current N,(x) and
energy-momentum tensor T(x), have the simple expressions

Ma(X)
NaM(XMLR(x) - ( 0

|

T

(%) |LR(X) -

fe(x)
0

0
\ 0

0
P(x)
0
0

0
0
P(x)
0

P(x))

involving local densities 7,(x) for quantum number a & €(x) for energy,

and pressure ?(x).

In an arbitrary reference frame and system of coordinates, they are

given by

Ny (x) = fta(x)ut(x)

TH(x) = [e(x) + P(x) Ju"()u”(x) + P(x)g"(x)

(identities between two 4-vectors / tensors valid in one reference frame, thus in any.)
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Relativistic perfect fluid dynamics

The components of the quantum number 4-current N,(x) and energy-
momentum tensor T(x) of a perfect fluid are given by

Ny (x) = fta(x)ut(x)

TH(x) = |e(x) + P(x) |u*(x)u”(x) + P(x)g""(x)
in terms of the flow 4-velocity u(x).

Introducing the ftensor A*¥(x) = g"”(x) + u*(x)u”(x), which projects on
the 3-space orthogonal to the 4-velocity [check!], the latter may be
recast as

TH(x) = e()u”(x)u”(x) + P(x) A" (x)
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Relativistic perfect fluid dynamics

The components of the quantum number 4-current N,(x) and energy-
momentum tensor T(x) of a perfect fluid are given by

NG (x) = ng(x)ut(x)
T""(x) = e(x)ur(x)u"(x) + P(x) A*(x)
in terms of the flow 4-velocity u(x) and the projector orthogonal to it.

One easily checks [exercise!] the identities

N ()up(x) e(x) = u,(X)TH""(x)u,(x x:1 X)TH"(x
) = (T ), P = 3 AT ()

valid in reference frame and system of coordinates.

Ma(X) =
These relations show that 7,(x), €(x), P(x) are scalar fields.
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Relativistic perfect fluid dynamics

dynamical variables and equations

In a perfect relativistic fluid the conserved currents are:

® Nf quantum number 4-currents N,(x), with components N/(x), whose
conservation equation read

(aMNaM (x) = o] with NH(x) = f1a(x)ut(x)

a

® the energy-momentum tfensor T(x), with components 7*" (x), whose
conservation equation reads

(0T () =0)  with T"(x) = e(x)u(x)u"(x) + P(x) A"(x)

5 (= €(x), P(x), only 3 components of u(x)) + N fields, 4 + N equations
w equation of state to close the system of equations!
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Relativistic perfect fluid dynamics

a quick example

Consider a flow with small velocity.
To first order in the latter:

/ € (e +P)vl (e+P)v? (e+ T)v?’\
(e + P)vi P 0 0
TH =
(€ + P)v? 0 P 0
\ (e + P)v3 0 0 P )
so that the energy-momentum conservation equation reads
0, T"° =0 Ore +V - [(e + P)V] =0 (2)
0, T" =0 O [(e + P)V] + VP =0 (3)
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Relativistic perfect fluid dynamics

a quick example

Consider small adiabatic perturbation (sound wave!) of a uniform and

steady flow: e(x) = €g + de(x)
{ P(x) =Py + 0P (x)
Linearizing the equations of motion (2,3) yields:
o from (2): 8,(0€) + (e + Py)V -V = 0 (4)
e from (3): (€0 + Po)OeV + VP =0 (5)

Defining ¢ = (%—f) , egs. (4) & (5) lead to
H

02(8¢) — 2V?(8e) = 0
wave equation, ¢, speed of sound.

w equation of state P(¢)!
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Relativistic perfect fluid dynamics

“equation of state”

Since the speed of sound c; is given by the relation

0P
2: -
T <8€ )é

the equation of state when there are no relevant conserved quantum
number is precisely the relation between pressure and energy density.

Simple examples (for analytical calculations) are

® for massless particles (living in 1+3 dimensions): € = 37
® massive particles (in cosmology): ? = O (“dust”)

® “vacuum” (in cosmology): P = -¢€

For heavy-ion collisions, compact astrophysical objects (7 #0), precision
cosmology: more complicated forms!

Topical Lectures, NIKHEF, June 15-17, 2015 N.Borghini — I-49/58 h Universitit Bielefeld



Elements of fluid dynamics
for the modeling of heavy-ion collisions

@ Overview on the dynamics of relativistic perfect fluids

[phenomenological approachj

@ an example of solution
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Relativistic perfect fluid dynamics

an example of solution

The dynamical equations of perfect relativistic fluid read

® Nt times (OMNCL“ (x) =0 with NH(x) = t1a(x)ul(x)

a

e and [, T"(x)=0] with  T"(x) = e(x)u"(x)u"(x) + P()A"(x)

Projecting the energy-momentum conservation equation parallel and
perpendicular to the 4-velocity yields:

u(x)0,e(x) + e(x) + P(x)]| 9 u(x) =0
e(x) + P(x) | ut(x)9,u”(x) + A*(x)9,P(x) = 0
Convenient notation: VY = A" (x)0,

Rem.: in non-Minkowski coordinates, replace partial by covariant derivatives: ¢, — du
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Relativistic perfect fluid dynamics

an example of solution

The dynamical equations of perfect relativistic fluid read

® Nt times (OMNCL“ (x) =0 with NH(x) = t1a(x)ul(x)

a

e and [, T"(x)=0] with  T"(x) = e(x)u"(x)u"(x) + P()A"(x)

Projecting the energy-momentum conservation equation parallel and
perpendicular to the 4-velocity yields:

u(x)0,e(x) + e(x) + P(x)]| 9 u(x) =0
e(x) + P(x) | ut(x)0,u"(x) + VY P(x) =0
Convenient notation: VY = A" (x)0,

Rem.: in non-Minkowski coordinates, replace partial by covariant derivatives: ¢, — du
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An example of relativistic flow:
“Bjorken flow”

Quantum-number-free perfect fluid, w 7,(x) =0
&
in one-dimensional motion along the z-axis with the 3-velocity v* = 7

for z<et and t>1to.

famous
First(?) discussed by R.Hwa (1974); made pepular by J.D.Bjorken (1983)
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Highly relativistic nucleus-nucleus collisions: The central rapidity region
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Fermi National Accelerator Laboratory,* P.O. Box 500, Batavia, Illinois 60510

7. Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity Region
J.D. Bjorken (Fermilab). Jul 1982. 50 pp.
Published in Phys.Rev. D27 (1983) 140-151
FERMILAB-PUB-82-044-THY, FERMILAB-PUB-82-044-T
DOI: 10.1103/PhysRevD.27.140

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
KEK scanned document ; ADS Abstract Service; Fermilab Library Server (fulltext available); Phys. Rev. D Server; Link to Fulltext

Detailed record 4 Cited by 2316 records as OF June 7, 2015

Topical Lectures, NIKHEF, June 15-17, 2015 N.Borghini — I-52/58 h Universitit Bielefeld



Bjorken flow

One-dimensional flow along the z-axis with the 3-velocity v* = % for

z<ct and t>1y.

1
V1= vA(x)?

t
\/t2 _ 2

v(x)
v (x)v(x)

i 4-velocity” ut(x) = ( ) with  7(x) =

“only the non-trivial components are shown
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Bjorken flow

One-dimensional flow along the z-axis with the 3-velocity v* = % for

()
IF 4-velocity” ut(x) = L . o

\\/t2 - 22/

z<ct and t>1y.

“only the non-trivial components are shown
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Bjorken flow

One-dimensional flow along the z-axis with the 3-velocity v* = % for

z<ct and t>1y.

e |
cosnl ¢
IF 4-velocity” ut(x) = V2 - 2| = ( | )

sinh ¢
\\/t2 - 22/
— /12 _ .2
| | T=Vt2 -z (t = 7 cosh ¢
Milne coordinates 1 t+ 2 & < .
gzglogt \z:Tsmhg
— 2z

“only the non-trivial components are shown
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Bjorken flow

One-dimensional flow along the z-axis with the 3-velocity v* = % for

z<ct and t>1y.

e |
COSIl §
IF 4-velocity” ut(x) = V2 - 2| = ( | )

sinh ¢
\\/t2 - 22/
— /12 5
| | T=Vt2 -z (t = 7 cosh ¢
Milne coordinates 1 t+ 2 & < .
gz§logt \z:Tsmhg
— 2z

Two possibilities: |
e work directly in Milne coordinates (% ,2') = (1,¢) m u"(x) = ( )

e stay with Minkowski coordinates m simple derivatives

“only the non-trivial components are shown
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Bjorken flow

— /12 2
T=Vi -z t = 7 coshc¢
1 t+ z = .
s = —log 2 = Tsinhg
2 t — z

One easily shows [check!] that the equation of motion “along u(x)”
ut(x)0,€(x) + [e(x) + P(x)|d,ut(x) =0

becomes
9e(x) - e(x) + P(x) 4

T

or equivalently 0-|Te(x)| = —P(x)

which simply relates the change in the energy in a comoving volume
(proportional to t) to the work of pressure forces...
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Bjorken flow

— /12 2
T=VET -2 t = T coshg
1 t+ 2 = .
s = — log 2z = 7sinhg
2 t— 2z

In turn, the equation of motion “perpendicular to u(x)”
(%) + P(x)]u(x)D,u(x) + VY P(x) = 0
vields [check!]
. P(x) = 0

l.e. pressure — and, invoking the equation of state, energy density — is
independent of space-time rapidity.

1% boost invariance!
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Bjorken flow

P
Coming back to 0, €(X) - ) + P(x) —0

inserting the equation of state P(x) = cy(x)%¢(x) yields
O-€(x) + |1+ cs(x)?] —= =0

If the speed of sound is constant, this leads to

! P(x) o —

7—1-|-C§ 7-1-|-C§

€(x) o
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Bjorken flow

In turn, the entropy conservation equation 9,|s(x)u"(x)| =0 becomes

0r5(x) A it =0

-
leading at once to 1
s(X) o< —
-
. 1 1 .
Using now €(x) T P(x) -z and the relation ¢+ P="Ts,
S T s
one arrives at
1
T(x) x —
T s
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Bjorken flow

1 1 1

We have found €(x) “Tro P(x) e $(X) .
1
and indirectly T'(x) o

For an ultrarelativistic gas ¢ < T* (Stefan-Boltzmann!), P o T*

5o 1

socT? (remember ¢+ P =Ts)and c 5 - Everything is OK!

s —
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