Methods for measuring
 collective anisotropic flow in heavy-ion collisions

Nicolas BORGHINI

Universitä† Bielefeld

Methods for measuring collective anisotropic flow

- The "standard" event-plane based method
- intuitive... but plagued by unwanted correlations
- Multiparticle-cumulant method
- remedies the problem faced by the standard approach, at the price of larger statistical uncertainties
- "Lee-Yang zeroes" method
- even less intuitive than the cumulants, yet faster and with similar performance

Not mentioned here (among others):

- How to measure the fluctuations of anisotropic flow
- Acceptance issues: my detector covers 2π in azimuth!

Anisotropic (collective) flow

Consider a non-central collision:

anisotropy of the source (in the plane transverse to the beam)
\Rightarrow anisotropic pressure gradients (larger along the impact parameter) push
\Rightarrow anisotropic fluid velocities
anisotropic emission of particles:
"anisotropic collective flow"

$$
E \frac{\mathrm{~d} N}{\mathrm{~d}^{3} \mathbf{p}} \propto \frac{\mathrm{~d} N}{p_{T} \mathrm{~d} p_{T} \mathrm{~d} y}\left[1+2 v_{1} \cos \left(\varphi-\Phi_{R}\right)+2 v_{2} \cos 2\left(\varphi-\Phi_{R}\right)+\cdots\right]
$$

More particles along the impact parameter ($\varphi-\Phi_{R}=0$ or 180°) than perpendicular to it 䠗 "elliptic flow" $v_{2} \equiv\left\langle\cos 2\left(\varphi-\Phi_{R}\right)\right\rangle$.
average over particles

Anisotropic (collective) flow

$$
E \frac{\mathrm{~d} N}{\mathrm{~d}^{3} \mathrm{p}} \propto \frac{\mathrm{~d} N}{p_{T} \mathrm{~d} p_{T} \mathrm{~d} y}\left[1+2 v_{1} \cos \left(\varphi-\Phi_{R}\right)+2 v_{2} \cos 2\left(\varphi-\Phi_{R}\right)+\cdots\right]
$$

"Flow", v_{n} do not imply fluid dynamics...
(Transverse) anisotropy of the source in a non-central collision
\Rightarrow the amount of matter seen by a high- p_{T} particle traversing the medium is anisotropic (shorter path along the impact parameter)
\Rightarrow anisotropic jet quenching ("with respect to the reaction plane"): anisotropic distribution of high $-p_{T}$ particles
which is best characterized in terms of Fourier harmonics v_{n} (detector independent; more robust in Monte-Carlo computations)

Measuring anisotropic flow

At first sight, a straightforward procedure:
(1) Determine the reaction plane (= plane spanned by the beam axis and the impact parameter): azimuth Φ_{R} in the lab. frame;
(2) Compute the Fourier coefficients $v_{n} \equiv\left\langle\cos n\left(\varphi-\Phi_{R}\right)\right\rangle$, using the particle azimuths.

Note: if parity is conserved, symmetry with respect to the reaction plane \Rightarrow sin terms in the Fourier expansion vanish: $v_{n}=\left\langle\mathrm{e}^{\mathrm{i} n\left(\varphi-\Phi_{R}\right)}\right\rangle$.

BUT!!!

The impact parameter is NOT measured (neither its size, nor its direction).

Even worse (?), Φ_{R} varies from event to event.
瞋 need to estimate the reaction plane: "event plane"

Event-plane method

Principle:

(1) Estimate the event plane: azimuth Ψ_{R} in the lab. frame;
(2) Compute Fourier coefficients $v_{n}^{\mathrm{obs} .} \equiv\left\langle\cos n\left(\varphi-\Psi_{R}\right)\right\rangle$ from the particle azimuths and the event plane;

$$
v_{n}^{\text {obs. }} \equiv\left\langle\cos n\left(\varphi-\Psi_{R}\right)\right\rangle \neq v_{n} \equiv\left\langle\cos n\left(\varphi-\Phi_{R}\right)\right\rangle
$$

(3) Correct the "observed" coefficients $v_{n}^{\text {obs. }}$ to account for the difference between event plane and reaction plane.

Event-plane method

(1) Estimate the event plane: azimuth Ψ_{R} in the lab. frame.

Only way to do it: use the azimuths of the particles! (idea: the impact parameter selects a preferred direction in the transverse plane - it breaks the isotropy; if the transverse momenta of the particles seem to favour some direction, then this direction has some relation to the impact parameter!)

Define the "event flow vector": $\mathrm{Q} \equiv \sum_{j} \mathrm{p}_{\mathrm{T}_{j}} \equiv|\mathrm{Q}| \mathrm{e}^{\mathrm{i} \Psi_{R}}$
sum over all particles $\longrightarrow{ }_{p_{T j}}{ }^{\prime \prime} \mathrm{e}^{\mathrm{i} \phi_{j}}$
P.Danielewicz, G.Odyniec, PLB 157 (1985) 146

Generalize, using "arbitrary" weights: $\mathrm{Q} \equiv \sum_{j} w(j) \mathrm{e}^{\mathrm{i} \varphi} \equiv|\mathrm{Q}| \mathrm{e}^{\mathrm{i} \Psi_{R}}$
In the following, I shall use unit weights $w(j)=1$

Event-plane method

(1) Estimate the event plane: azimuth Ψ_{R} in the lab. frame.

Issue: at ultrarelativistic energies, $\left\langle p_{x}\right\rangle$ is very small around midrapidity, where (most of) the detectors sit: the event flow vector is small.

Generalize even further: $\mathrm{Q}_{n} \equiv \sum_{j} \mathrm{e}^{\mathrm{i} n \varphi_{j}} \equiv\left|\mathrm{Q}_{n}\right| \mathrm{e}^{\mathrm{i} n \Psi_{n}}$
"second-order event-plane": Ψ_{2}

$$
\text { J.-Y.Ollitrault, PRD } 48 \text { (1993) } 1132
$$

- Uncertainty on Ψ_{2} smaller than that on Ψ_{1}
- Ψ_{2} only defined up to π (vs. 2π for Ψ_{1}): information lost
${ }^{1-2}$ can say something about "in-plane" vs. "out-of-plane", but cannot distinguish between + or - directions along the x axis

Event-plane method

(2) Compute Fourier coefficients $v_{n}^{\text {obs. }} \equiv\left\langle\cos n\left(\varphi-\Psi_{n}\right)\right\rangle$ from the

- In each event, extract Ψ_{n} and compute $\cos n\left(\varphi-\Psi_{n}\right)$ for all particles (or, say, for all protons) in the event; average over these particles;
- Do the same thing for the next event... and average over events!
- One complication: the particle whose flow you're after (azimuth φ_{k}) was used in the estimation of the event-plane: $\mathrm{Q}_{n} \equiv \sum \mathrm{e}^{\mathrm{i} n \varphi_{j}}$
\Rightarrow need to avoid the trivial "autocorrelation" of particle φ_{k} with itself:

$$
\mathrm{Q}_{n}^{\prime} \equiv \sum_{j \neq k} \mathrm{e}^{\mathrm{i} n \varphi_{j}} \equiv\left|\mathrm{Q}_{n}^{\prime}\right| \mathrm{e}^{\mathrm{i} n \Psi_{n}^{\prime}}
$$

- A refinement: one can compute $v_{m n}^{\text {obs. }} \equiv\left\langle\cos n\left(m \varphi-\Psi_{n}\right)\right\rangle$, to obtain higher flow harmonics.

Event-plane method

(3) Correct the "observed" coefficients $v_{n}^{\text {obs. to account for the }}$ difference between event plane and reaction plane.
One is after $v_{n} \equiv\left\langle\mathrm{e}^{\mathrm{i} n\left(\varphi-\Phi_{R}\right)}\right\rangle$, yet has measured $v_{n}^{\mathrm{obs}} \equiv\left\langle\mathrm{e}^{\mathrm{i} n\left(\varphi-\Psi_{n}\right)}\right\rangle$

$$
v_{n}^{\text {obs. }}=\left\langle\cos n\left(\varphi-\Phi_{R}+\Phi_{R}-\psi_{N}\right)\right\rangle=\langle\underbrace{\cos n\left(\varphi-\Phi_{R}\right)}_{v_{n}}\rangle\langle\cos \underbrace{n\left(\Phi_{R}-\psi_{N}\right)}_{\equiv \Delta \Phi}\rangle
$$

$\Delta \Phi$ uncertainty in the reaction plane determination: results from the competition between flow (which tends to align Ψ_{n} along Φ_{R}) and statistical fluctuations (whose relative size decreases like $1 / \sqrt{N}$).
酸 can be computed (cf. next slide), to get $v_{n} \equiv \frac{v_{n}^{\text {obs. }}}{(\cos \Delta \Phi\rangle)}$
"event-plane resolution"

Event-plane method

(3) Correct the "observed" coefficients $v_{n}^{\text {obs. to account for the }}$ difference between event plane and reaction plane.
One is after $v_{n} \equiv\left\langle\mathrm{e}^{\mathrm{i} n\left(\varphi-\Phi_{R}\right)}\right\rangle$, yet has measured $v_{n}^{\mathrm{obs}} \equiv\left\langle\mathrm{e}^{\mathrm{i} n\left(\varphi-\Psi_{n}\right)}\right\rangle$
$v_{n}^{\text {obs. }}=\left\langle\cos n\left(\varphi-\Phi_{R}+\Phi_{R}-\psi_{N}\right)\right\rangle{ }_{\uparrow}\langle\underbrace{\cos n\left(\varphi-\Phi_{R}\right)}_{v_{n}}\rangle\langle\cos \underbrace{n\left(\Phi_{R}-\psi_{N}\right)}_{\equiv \Delta \Phi}\rangle$
$\Delta \Phi$ uncertainty in the reaction plane determination: results from the competition between flow (which tehds to align Ψ_{n} along Φ_{R}) and statistical fluctuations (whose relative size decreases like $1 / \sqrt{N}$).
酶 can be computed (cf. next slide) to get $v_{n} \equiv \frac{v_{n}^{\text {obs. }}}{(\cos \Delta \Phi\rangle}$
"event-plane resolution"
BUT there is a huge assumption here, namely that all correlations in the system are due to anisotropic flow.

Event-plane method

$\Delta \Phi$ uncertainty in the reaction plane determination: one can show (central limit theorem... and some work!) that

$$
\begin{equation*}
\langle\cos \Delta \Phi\rangle=\frac{\sqrt{\pi}}{2} \chi_{n} \mathrm{e}^{-\chi_{n}^{2} / 2}\left[I_{0}\left(\frac{\chi_{n}^{2}}{2}\right)+I_{1}\left(\frac{\chi_{n}^{2}}{2}\right)\right], \tag{1}
\end{equation*}
$$

where χ_{n} is the so-called "resolution parameter", which characterizes the relative magnitudes of flow and statistical fluctuations.

$$
\chi_{n} \approx v_{n} \sqrt{N}
$$

J.-Y.Ollitrault, nucl-ex/9711003
χ_{n} can be extracted from the data!

- Split an event into two "subevents" (assumed to be equivalent!), with "subevent flow vectors" $\mathrm{Q}_{\mathbf{a}} \equiv \mathrm{e}^{\mathrm{i} n \Psi_{a}}, \mathrm{Q}_{\mathrm{b}} \equiv \mathrm{e}^{\mathrm{i} n \Psi_{b}}$.
- Measure $\sqrt{\left\langle\cos \left(\Psi_{a}-\Psi_{b}\right)\right\rangle}=\left\langle\cos \Delta \Phi_{\text {sub. } .}\right\rangle$: resolution for the subevents
- Use Eq.(1) to deduce the resolution parameter for the subevent $\chi_{\text {sub }}$.
- Say that χ_{n} for the whole event is $\sqrt{2} \times \chi_{\text {sub }}$.

Event-plane method

$\Delta \Phi$ uncertainty in the reaction plane determination: one can show (central limit theorem... and some work!) that

$$
\begin{equation*}
\langle\cos \Delta \Phi\rangle=\frac{\sqrt{\pi}}{2} \chi_{n} \mathrm{e}^{-\chi_{n}^{2} / 2}\left[I_{0}\left(\frac{\chi_{n}^{2}}{2}\right)+I_{1}\left(\frac{\chi_{n}^{2}}{2}\right)\right], \tag{1}
\end{equation*}
$$

where χ_{n} is the so-called "resolution parameter", which characterizes the relative magnitudes of flow and statistical fluctuations.

$$
\chi_{n} \approx v_{n} \sqrt{N}
$$

J.-Y.Ollitrault, nucl-ex/9711003
χ_{n} can be extracted from the data!

- Split an event into two "subevents" (assumed to be equivalent!), with "subevent flow vectors" $\mathrm{Q}_{\mathbf{a}} \equiv \mathrm{e}^{\mathrm{i} n \Psi_{a}}, \mathrm{Q}_{\mathbf{b}} \equiv \mathrm{e}^{\mathrm{i} n \Psi_{b}}$.
\rightarrow Measure $\sqrt{\left\langle\cos \left(\Psi_{a}-\Psi_{b}\right)\right\rangle}=\left\langle\cos \Delta \Phi_{\text {sub. }}.\right\rangle$ resolution for the subevents - Use Eq.(1) to deduce the resolution parameter for the subevent $\chi_{\text {sub }}$. Say that χ_{n} for the whole event is $\sqrt{2} \times \chi_{\text {sub }}$.
assumes that all correlations are due to flow

Flow from 2-particle correlations

Basically, the event-plane method relies on a study of two-particle correlations.
The core assumption is that these 2-body correlations are only due to flow, i.e., to the correlation of each particle to the reaction plane:

$$
\left\langle\cos n\left(\varphi_{1}-\varphi_{2}\right)\right\rangle=\left\langle\cos n\left(\varphi_{1}-\Phi_{R}\right)\right\rangle\left\langle\cos n\left(\Phi_{R}-\varphi_{2}\right)\right\rangle=v_{n}^{2}
$$

What if the assumption is wrong?

Flow from 2-particle correlations

Basically, the event-plane method relies on a study of two-particle correlations.
The core assumption is that these 2-body correlations are only due to flow, i.e., to the correlation of each particle to the reaction plane:

$$
\left\langle\cos n\left(\varphi_{1}-\varphi_{2}\right)\right\rangle=\left\langle\cos n\left(\varphi_{1}-\Phi_{R}\right)\right\rangle\left\langle\cos n\left(\Phi_{R}-\varphi_{2}\right)\right\rangle=v_{n}^{2}
$$

What if the assumption is wrong?
Toy model: collisions without flow, but with particles emitted by pairs

- $N / 2$ correlated pairs for which $\cos =1$;
- $N(N-1) / 2$ pairs in total

睬 probability $1 /(N-1)$ that an arbitrary pair be correlated:

$$
\left\langle\cos n\left(\varphi_{1}-\varphi_{2}\right)\right\rangle=1 /(N-1) \neq v_{n}^{2}
$$

"Nonflow" correlations

- Quantum-statistics effects
- Resonance decays
- Momentum conservation
- (Mini) jets
- Strong \& Coulomb interaction
- ...
-

correlations due to anisotropic flow, endangering the flow reconstruction.
"Nonflow" effects

One possible way(?) to remedy the problem:
Compute / estimate the effect of the correlations, and subtract it so as to isolate the flow signal.

Nonflow correlations vs.

standard flow mesurements

NA49 pions, mininimum bias, 158A GeV

N.B., P.M.Dinh, J.-Y.Ollitrault, A.M.Poskanzer, S.A.Voloshin, PRC 66 (2002) 014901

Nonflow correlations vs. anisotropic flow mesurements

Correcting the standard method to take into account the possible sources of nonflow correlations is an intuitive approach. But is it safe? NO: you do not know all sources of correlations. Can one do better? YES!

- At the two-particle level: competition between flow effects of order $\left(v_{n}\right)^{2}$ and nonflow correlations of order $1 / N$: the approach is safe if $v_{n} \gg 1 / N^{1 / 2}$
- Imagine we performed a study of four-particle correlations:
- the contribution of flow is of order $\left(v_{n}\right)^{4}$
- for combinatorial reasons, the probability that 4 particles are all correlated together is of order $1 / N^{3}$
路 will allow one to measure flow if $v_{n} \gg 1 / N^{3 / 4}$: improved sensitivity Similarly, the bias from nonflow effects is a priori smaller

Four-particle correlations

OK, since going to four-particle correlations seems to be a good idea, let's do it!
Take 4 arbitrary particles, compute $\left\langle\mathrm{e}^{\mathrm{i} n\left(\varphi_{1}+\varphi_{2}-\varphi_{3}-\varphi_{4}\right)}\right\rangle \ldots$

- Each particle is individually correlated by anisotropic flow to the reaction plane: term $\left(v_{n}\right)^{4}$
- All four particles are correlated together: term $1 / N^{3}$
- Particle 1 is correlated to particle 3, particle 2 to particle 4 (or $1+4$ \& 2+3): term $1 / N \times 1 / N$
... which spoils the interest of the measurement

Four-particle cumulants

Yet there is still hope!
Of course we don't want to compute the two-particle correlations. Yet we have already encountered them... when studying two-particle distributions:

So if both 2- and 4-particle distributions have been measured:

$-2 x(0-0+0)^{2}$

Four-particle cumulants

$$
\begin{aligned}
& \left\langle\mathrm{e}^{\mathrm{i} n\left(\varphi_{1}+\varphi_{2}-\varphi_{3}-\varphi_{4}\right)}\right\rangle \\
& -\left\langle\mathrm{e}^{\mathrm{i} n\left(\varphi_{1}-\varphi_{3}\right)}\right\rangle\left\langle\mathrm{e}^{\mathrm{i} n\left(\varphi_{2}-\varphi_{4}\right)}\right\rangle-\left\langle\mathrm{e}^{\mathrm{in}\left(\varphi_{1}-\varphi_{4}\right)}\right\rangle\left\langle\mathrm{e}^{\mathrm{i} n\left(\varphi_{2}-\varphi_{3}\right)}\right\rangle \\
& =-v_{n}^{4}+\text { genuine 4-particle correlations } \\
& =\text { 4-particle cumulant! }
\end{aligned}
$$

政 new recipe: in a given event, consider all quadruplets of particles, compute the corresponding the cumulant.
Average over the quadruplets in the event; average over events.
The final 4 -particle cumulant $c_{n}\{4\}$ receives contributions:

- from flow: $-v_{n}^{4}$
- from "nonflow" effects: $\mathcal{O}\left(1 / N^{3}\right)$ (obvious for short-range effects, non-trivial for the effect of total momentum conservation)
define flow estimate: $v_{n}\{4\} \equiv\left[-c_{n}\{4\}\right]^{1 / 4}$
N.B., P.M.Dinh, J.-Y.Ollitrault, PRC 63 (2001) 054904, 64 (2001) 054901

Cumulant method of flow analysis

A flow measurement using cumulants proceeds in 2 steps:

- First, one constructs the (4-particle) cumulant by letting particles 1, $2,3 \& 4$ be any of the detected particles.
侮 gives an estimate of v_{n} averaged over the whole phase space: "integrated flow" $v_{n}\{4\} \equiv\left[-c_{n}\{4\}\right]^{1 / 4}$
(equivalent of the event-plane determination; but here, no Ψ_{n})
- In a second step, particles 1 are restricted to being only a given particle type in some corner of phase space (say 400 MeV protons at midrapidity), while particles $2,3 \& 4$ can still be any particle in the event (except particle 1!).
唃 yields a cumulant $d_{n}\{4\}$ from which one deduces an estimate of the proton "differential" flow $d_{n}\{4\} \equiv-v_{n}^{\prime}\{4\} v_{n}\{4\}^{3}$
Actually, one can obtain the proton higher-harmonics $v_{m n}^{\prime}\{3+m\}$.

Cumulant method of flow analysis

"Consider all quadruplets of particles, compute the corresponding the cumulant, average over the quadruplets in the event, then over events." This sounds tedious!

Trick ${ }^{\circ}$:

(1) Introduce the generating function (of a complex variable z)

$$
G_{n}(z)=\prod_{k=1}^{N}\left(1+z^{*} \mathrm{e}^{\mathrm{i} n \varphi_{k}}+z \mathrm{e}^{-\mathrm{i} n \varphi_{k}}\right)
$$

where the product runs over all (detected) particles in the event.
Why?
(2) Average $G_{n}(z)$ over many events:
$\left\langle G_{n}(z)\right\rangle=1+|z|^{2}\left\langle\sum_{j \neq k} \mathrm{e}^{\mathrm{i} n\left(\varphi_{j}-\varphi_{k}\right)}\right\rangle+\frac{|z|^{4}}{4}\left\langle\sum_{j, k, l, m} \mathrm{e}^{\mathrm{i} n\left(\varphi_{j}+\varphi_{k}-\varphi_{l}-\varphi_{m}\right)}\right\rangle+\cdots$
G_{n} generates multiparticle distributions (including all combinations)

Cumulant method of flow analysis

(3) To obtain the cumulants... take the logarithm (check!)

$$
\ln \left\langle G_{n}(z)\right\rangle=N^{2}|z|^{2} c_{n}\{2\}+\frac{N^{4}|z|^{4}}{4} c_{n}\{4\}+\cdots
$$

This generates all cumulants at once!
(4) Take a piece of paper, and compute the contribution of anisotropic flow to the cumulants. modified Bessel function In the presence of flow only $\ln \left\langle G_{n}(z)\right\rangle=\ln I_{0}\left(2 N v_{n}|z|\right)$, which you identify with the measured generating function: each power of $|z|^{2}$ yields an identity, which defines a flow estimate.

$$
\begin{gathered}
v_{n}\{2\}^{2} \equiv c_{n}\{2\}, \quad v_{n}\{4\}^{4} \equiv-c_{n}\{4\}, \quad v_{n}\{6\} \\
\text { Bonus! you get several estimates at once }
\end{gathered}
$$

(5) Post the paper on nucl-ex; gather citations!

Cumulant method of flow analysis

Principle: when going to cumulants of higher and higher order, the relative contribution of flow to the cumulant increases ($\propto v_{n}{ }^{2 k}$) while that of nonflow correlations decreases $\propto 1 / N^{2 k-1}$的 systematic error on flow estimate decreases ($v_{n}\{2 k\} \rightarrow v_{n}$)

On the other hand, the statistical uncertainty increases... (typically, for a resolution parameter $\chi_{n}=1$ the uncertainty on $v_{n}\{4\}$ is twice that on $v_{n}\{2\}$, while those on $v_{n}\{2 k \geq 4\}$ are all similar).

You cannot have everything!

An unsatisfactory issue...
 (at least to a theorist's mind)

Anisotropic flow is a collective effect: (almost) all particles show a correlation to the impact-parameter direction.

Yet we measure it with correlations involving only a small number of particles ($2,4,6,8$) out of several hundreds/thousands.

Aren't we missing something?
Idea: could we do "infinite-order" cumulants?
YES!

An elegant solution!

We are interested in infinite-order cumulants, i.e., in the asymptotic behaviour of the coefficients in the power-series expansion of the cumulant generating function $\ln \left\langle G_{n}(z)\right\rangle$
This behaviour is entirely determined by the "first zero" (the closest to the origin) of $\left\langle G_{n}(z)\right\rangle$ in the complex plane.
(Think of $\ln \left(1-\frac{z}{z_{0}}\right)=\sum_{k=1}^{+\infty} \frac{z^{k}}{k z_{0}{ }^{k}}: z_{0}$ controls large-order coefficients)
First zero? When there is flow $\left\langle G_{n}(z)\right\rangle=I_{0}\left(2 N v_{n}|z|\right)$
The first zero lies at $z_{0}=\frac{2.405 \mathrm{i}}{N v_{n}}$:
measure the generating function, find its first zero, you obtain a flow estimate! (denoted by $v_{n}\{\infty\}$)

That's all, Folks!
R.S.Bhalerao, N.B., J.-Y.Ollitrault, NPA 727 (2003) 373

A nice analogy

When there is flow $\left\langle G_{n}(z)\right\rangle=I_{0}\left(2 N v_{n}|z|\right)$, first zero lies at $z_{0}=\frac{2.405 \mathrm{i}}{N v_{n}}$ The first zero comes closer to 0 as the system size increases.
On the other hand, if there is no flow - only short-range correlations (and momentum conservation) $-\left\langle G_{n}(z)\right\rangle$ factorizes: the position of the first zero does not change when the system size increases.
Does that remind you of something?

A nice analogy

When there is flow $\left\langle G_{n}(z)\right\rangle=I_{0}\left(2 N v_{n}|z|\right)$, first zero lies at $z_{0}=\frac{2.405 \mathrm{i}}{N v_{n}}$ The first zero comes closer to 0 as the system size increases.
On the other hand, if there is no flow - only short-range correlations (and momentum conservation) $-\left\langle G_{n}(z)\right\rangle$ factorizes: the position of the first zero does not change when the system size increases.
C.N.Yang \& T.D.Lee, PR 87 (1952) 404: a theory of phase transitions

- Grand partition function (fixed $T, V) \quad \mathcal{Q}(\mu)=\sum_{N=0} Z_{N} \mathrm{e}^{\mu N / k T}$
- Take a reference value μ_{c}, define $z \equiv\left(\mu-\mu_{c}\right) / k T$
- Let $\mathcal{G}(z) \equiv \frac{\mathcal{Q}(\mu)}{\mathcal{Q}\left(\mu_{c}\right)}=\sum_{N=0}^{+\infty} P_{N} \overparen{\mathrm{e}^{z N}}$ probability to have N particles at $\mu=\mu_{c}$
- Let the system size V increase:
- if no phase transition, the zeroes of \mathcal{G} are unchanged;
- if phase transition at $\mu=\mu_{c}$, the zeroes come closer to the origin.

A nice analogy

When there is flow $\left\langle G_{n}(z)\right\rangle=I_{0}\left(2 N v_{n}|z|\right)$, first zero lies at $z_{0}=\frac{2.405 \mathrm{i}}{N v_{n}}$ The first zero comes closer to 0 as the system size increases.
On the other hand, if there is no flow - only short-range correlations (and momentum conservation) $-\left\langle G_{n}(z)\right\rangle$ factorizes: the position of the first zero does not change when the system size increases.
C.N.Yang \& T.D.Lee, PR 87 (1952) 404: a theory of phase transitions

- Grand partition function (fixed $T, V) \mathcal{Q}(\mu)=\sum_{N=0} Z_{N} \mathrm{e}^{\mu N / k T}$
- Take a reference value μ_{c}, define $z \equiv\left(\mu-\mu_{c}\right) / k T$
- Let $\mathcal{G}(z) \equiv \frac{\mathcal{Q}(\mu)}{\mathcal{Q}\left(\mu_{c}\right)}=\sum_{N=0}^{+\infty} P_{N} \mathrm{e}^{z N}$ probability to have N particles at $\mu=\mu_{c}$
- Let the system size V increase:
- if no phase transition, the zeroes of \mathcal{G} are unchanged;
- if phase transition at $\mu=\mu_{c}$, the zeroes come closer to the origin. long-range correlations, collective behaviour

Methods for measuring collective anisotropic flow

A wealth of methods to measure flow...

- The "standard" event-plane based method: $v_{n}\left\{\mathrm{EP}_{2}\right\},\left(v_{n}\left\{\mathrm{EP}_{1}\right\}\right)$
- Multiparticle-cumulant method: $v_{n}\{4\}, v_{n}\{6\}$, ...
- "Lee-Yang zeroes" method: $v_{n}\{\infty\}$

Two-particle methods can be plagued by nonflow effects.
This problem is solved in the cumulant and Lee-Yang zeroes methods; but at the cost of larger statistical uncertainties. (the same in cumulant and Lee-Yang zeroes, about twice larger than in a two-particle measurement if $\chi_{n} \geq 1$).
The new methods are less intuitive. Yet determining the "integrated flow" gives access to everything you could dream of with a Ψ_{n}.

