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Methods for measuring
collective anisotropic flow

@ The "standard” event-plane based method
a intuitive... but plagued by unwanted correlations
a Multiparticle-cumulant method

a remedies the problem faced by the standard approach, at the
price of larger statistical uncertainties

@ 'Lee-Yang zeroes” method

a even less intuitive than the cumulants, yet faster and with similar
performance

Not mentioned here (among others):
a How to measure the fluctuations of anisotropic flow
a Acceptance issues: my detector covers 21 in azimuth!
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Anisotropic (collective) flow

Consider a non-central collision:
anisotropy of the source (in the
4 Q plane transverse to the beam)
= anisotropic pressure gradients

(larger along the impact parameter)

push

é(f_q)R = anisotropic fluid velocities
anisotropic emission of particles:

“anisotropic collective flow”

d/N dN
E— 1+ 2 — P 2 200 — P e
Ep = ordprdy 1+ 2v; cos(p — Pr) + 205 cos 2(p — Pr) + -]

More particles along the impact parameter (¢ - & =0 or 180°) than
perpendicular to it pe “elliptic flow” vy, = (cos2(p — PR)).

/
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Anisotropic (collective) flow

dN dN
E—— 1+ 2 — 2 2(p0 — P
T X o (L4201 cos(ip = 1) + 20 008 2( = B) £ -+

A "Flow”, v,, do not imply fluid dynamics...

(Transverse) anisotropy of the in a non-central collision

= the amount of seen by a high-pr particle fraversing the
is anisotropic (shorter path along the impact parameter)

= anisotropic (“with respect to the reaction plane”):
anisotropic distribution of high-pr particles

which is best characterized in terms of Fourier harmonics v,, (detector
independent; more robust in Monte-Carlo computations)
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Measuring anisotropic flow

At first sight, a straightforward procedure:

(D Determine the reaction plane (= plane spanned by the beam axis
and the impact parameter): azimuth @ in the lab. frame;

@ Compute the Fourier coefficients v,, = (cosn(¢p — Pr)), using the
particle azimuths.

Note: if parity is conserved, symmetry with respect to the reaction
plane = sin terms in the Fourier expansion vanish: v,, = <em(*"_q’R)>.

BUT!!!

The impact parameter is NOT measured (neither its size, nor its
direction).

Even worse (?), ® varies from event to event.

1¥ need to estimate the reaction plane: “event plane”

High-pT physics at LHC, Jyvaskyla, March 24, 2007 N.Borghini — 4/25 h Universitit Bielefeld



Event-plane method

Principle:
(D Estimate the event plane: azimuth Uy in the lab. frame;

obs. _—

(@ Compute Fourier coefficients v."" = (cosn(p — ¥Rr)) from the
particle azimuths and the event plane;

obs.

v = (cosn(p —VR)) £ v, = {(cosn(p — Dgr))

@ Correct the “observed” coefficients v°" to account for the
difference between event plane and reaction plane.
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Event-plane method

(D Estimate the event plane: azimuth U in the lab. frame.

Only way to do it: use the azimuths of the particles!

(idea: the impact parameter selects a preferred direction in the
transverse plane — it breaks the isotropy; if the fransverse momenta
of the particles seem to favour some direction, then this direction has
some relation to the impact parameter!)

Define the “event flow vector”: () = Zij = |Qle' "

g
sum over all particles — pr ;€ &
P.Danielewicz, G.Odyniec, PLB 157 (1985) 146

Generalize, using “arbitrary” weights: Q = » w(j)e'” = |Qle!""

J
In the following, I shall use unit weights w(j) =1
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Event-plane method

(D Estimate the event plane: azimuth U in the lab. frame.

Issue: at ultrarelativistic energies, (p.) is very small around
midrapidity, where (most of) the detectors sit: the event flow vector
is small.

Generalize even further: () = Zei”‘f’j = ]Qnyei”‘l’n

J
“second-order event-plane”: U,

J.-Y.Ollitrault, PRD 48 (1993) 1132

@ Uncertainty on Vs smaller than that on V; @)
a W5 only defined up to 1 (vs. 2m for W,): information lost

1g can say something about “in-plane” vs. “out-of-plane”, but cannot
distinguish between + or - directions along the = axis
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Event-plane method

obs. _<

(@ Compute Fourier coefficients v)) cosn(p —¥,))  from the

@ In each event, extract ¥, and compute cosn(y — V,,) for all
particles (or, say, for all protons) in the event; average over these
parfticles;

@ Do the same thing for the next event.. and average over events!

@ One complication: the particle whose flow youre after (azimuth o)

was used in the estimation of the evenf-plane: ), = Zeiwﬂ'

all
= need to avoid the trivial “autocorrelation” of particle Zpk with itself:

_ _ v
Q, =3 " =|Q e
j#k
@ A refinement: one can compute v,,
higher flow harmonics.

ObS = (cosn(my — V,,)), to obtain
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Event-plane method

@ Correct the “observed” coefficients 1°"% to account for the
difference between event plane and reaction plane.

One is after v,, = <ei”(9"_q’R)>, vet has measured v2"% = <ei”(9"_qj”)>

v,ﬁbs‘ = (cosn(p — Pr+ DPr —Yn)) = (cosn(p — Pr))(cosn(Pr — Yn))
N —— N ——’
Un EEZXq>

A® uncertainty in the reaction plane deftermination: results from the
competition between flow (which tends to align V,, along 5 ) and
statistical fluctuations (whose relative size decreases like 1/\/N ).

Uobs.

COSTLACIDD

1g- can be computed (cf. next slide), to get v, :/(<

W o /4
event-plane resolution
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Event-plane method

@ Correct the “observed” coefficients 1°"% to account for the
difference between event plane and reaction plane.

One is after v,, = <ei”(9"_q’R)>, vet has measured v2"% = <ei”(9"_qj”)>

v,ﬁbs‘ = (cosn(p — Pr+ Pr —Yn)) S (cosn(p — Pr))(cosn(Pr — Pn))
N —— N ——’

Un = Ad
A® uncertainty in the reaction plarle determination: results from the
competition between flow (which tepds to align V,, along ) and
statistical fluctuations (whose relative size decreases like 1/\/N ).

Uobs.

n& . ' o= =
can be computed (cf. next slide)| to get v /@COS D)

W o /4
event-plane resolution

BUT there is a huge assumption here, namely that all correlations in
the system are due to anisofropic flow.
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Event-plane method

A® uncertainty in the reaction plane determination:
one can show (central limit theorem... and some work!) that

(cos AD) — %Xn 2/ {10@1 ) +11(X2” ﬂ | (1)

where Y, is the so-called “resolution parameter”, which characterizes
the relative magnitudes of flow and statistical fluctuations.

Xn & U,V N

J.-Y.Ollitrault, nucl-ex/9711003

Xn can be extracted from the data!
- Split an event into two “subevents” (assumed to be equivalent!), with
“subevent flow vectors” Q, = eV, Q) = V.

- Measure+/ (cos(U, — U})) = (cos AD.,p, ) resolution for the subevents
- Use Eq.(1) to deduce the resolution parameter for the subevent Xsub.
- Say that y,, for the whole event is V2 X Y.up,
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Event-plane method

A® uncertainty in the reaction plane determination:
one can show (central limit theorem... and some work!) that

fcos A®) = YTy, o772 {IO(X; ) s (X; )} | ()

where Y, is the so-called “resolution parameter”, which characterizes
the relative magnitudes of flow and statistical fluctuations.

Xn ~ Un\/N

J.-Y.Ollitrault, nucl-ex/9711003

Xn can be extracted from the data!
- Split an event into two “subevents” (assumed to be equivalent!), with
“subevent flow vectors” Q, = eV, Q) = V.

> Measure/(cos(V, — ¥})) = (cos A, ) resolution for the subevents
- Use Eq.(1) to deduce the resolution parameter for the subevent Xsub.
> Say that v\, for the whole event is V2 X Youb,

assumes that all correlations are due to flow
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Flow from 2-particle correlations

Basically, the event-plane method relies on a study of two-particle

correlations.

The core assumption is that these 2-body correlations are only due to

flow, i.e., to the correlation of each particle to the reaction plane:
(cosn(p1 — 2)) = (cosn(pr — Pg))(cosn(Pr — wa)) = v

What if the assumption is wrong?
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Flow from 2-particle correlations

Basically, the event-plane method relies on a study of two-particle
correlations.

The core assumption is that these 2-body correlations are only due to
flow, i.e., to the correlation of each particle to the reaction plane:

2

(cosn(p1 — p2)) = {cosn(p1 — Pr))(cosn(Pr — 2)) = vy,
What if the assumption is wrong?
Toy model: collisions without flow, but with particles emitted by pairs

@ NV/2 correlated pairs for which cos = 1;

@ N(V-1)/2 pairs in total

iz~ probability 1/(N-1) that an arbitrary pair
be correlated:

(cosn(pr —2)) = 1/(N = 1) # v,?
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“Nonflow” correlations

a Quantum-statistics effects

e Resonance decays Can possibly be mistaken as

a Momentum conservation correlations due to anisotropic
o flow, endangering the flow

@ (Mini)jets reconstruction.

a Strong & Coulomb inferaction "Nonflow” effects

& ...

One possible way(?) to remedy the problem:
Compute / estimate the effect of the correlations, and subtract it so
as to isolate the flow signal.
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Nonflow correlations vs.
standard flow mesurements

NA49 pions, mininimum bias, 158A GeV

4,value obtained
< sf without
s 2f ] correcting for
o 1f 1 pr conservation

of ]

2

'3; p, <2 GeV/c

A TN M

1 1.5 2 3.5 4 4.5 5

rapidity
value including the correction for momentum conservation

N.B., P.M.Dinh, J.-Y.Ollitrault, A.M.Poskanzer, S.A.Voloshin, PRC 66 (2002) 014901
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Nonflow correlations vs.
anisotropic flow mesurements

Correcting the standard method fo take into account the possible
sources of nonflow correlations is an intuitive approach.

But is it safe? NO: you do not know all sources of correlations.
Can one do better? YES!

a At the two-particle level: competition between flow effects of
order (v,)* and nonflow correlations of order 1/N :
the approach is safe if v, > 1/N'/2

@ Imagine we performed a study of four-particle correlations:

a the contribution of flow is of order (vn)4

@ for combinatorial reasons, the probability that 4 particles are all
correlated together is of order 1/N*

e will allow one to measure flow if v, > 1/N3/4; improved sensitivity
Similarly, the bias from nonflow effects is a priori smaller
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Four-particle correlations

OK, since going to four-particle correlations seems to be a good idea,
let'’s do it!

Take 4 arbitrary particles, compute <ei”(¢1+902_903_904>>...

@ Each particle is individually correlated by anisotropic flow to the
reaction plane: term (v,,)*

a All four particles are correlated together: term 1/N*

@ Particle 1 is correlated to particle 3, particle 2 to particle 4 (or 1+4
& 2+3): term 1/N x 1/N
.. which spoils the interest of the measurement ()

e o T atet &S

these terms are a nulsance!
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Four-particle cumulants

Yet there is still hope!

Of course we dont want to compute the two-particle correlations.
Yet we have already encountered them... when studying two-particle

distributions: oo - 90 + (0 ®

So if both 2- and 4-particle distributions have been measured:
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Four-particle cumulants

<ein(901+902—903—904)>

_<ein(901—903)> <ein(902—904)> _ <ein(901—904)> <ein(902—903)>

= —v,;+ genuine 4-particle correlations

= 4-particle cumulant!

1%~ new recipe: in a given event, consider all quadruplets of particles,
compute the corresponding the cumulant.
Average over the quadruplefs in the event; average over evenfs.

The final 4-particle cumulant ¢, {4} receives contributions:

4
& from flow: —v,

a from “nonflow” effects: O(1/N”) (obvious for short-range effects,
non-trivial for the effect of total momentum conservation)

define flow estimate: v, {4} = [—¢, {4}]*/4

N.B., P.M.Dinh, J.-Y.Ollitrault, PRC 63 (2001) 054904, 64 (2001) 054901
High-p_physics at LHC, Jyviskyld, March 24, 2007 N.Borghini — 17/25 h Universitit Bielefeld



Cumulant method of flow analysis

A flow measurement using cumulants proceeds in 2 steps:

@ First, one constructs the (4-particle) cumulant by letting particles 1,
2, 3 & 4 be any of the detected particles.

pz gives an estimate of v, averaged over the whole phase space:
“integrated flow” v,{4} = —c, {41]1/4

(equivalent of the event-plane determination; but here, no V)

@ In a second step, particles 1 are restricted to being only a given
particle type in some corner of phase space (say 400 MeV protons at
midrapidity), while particles 2, 3 & 4 can still be any particle in the
event (except particle 1!).

1% VYields a cumulant d,,{4} from which one deduces an estimate of
the proton “differential” flow d,, {4} = —v] {4} v, {4}"

Actually, one can obtain the proton higher-harmonics v/, {3 + m}.
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Cumulant method of flow analysis

"Consider all quadruplets of particles, compute the corresponding the
cumulant, average over the quadruplets in the event, then over events.”

This sounds tedious!

Trick @:

(D Introduce the generating function (of a complex variable z)
N

Gn(z) = H (1 Z¥ ¥k ze_imp’“)

k=1
where the product runs over all (detected) particles in the event.

Why?
(@ Average G, (z) over many events:

4
<GTL(Z)> — 1 _I_ Z2<Zein(gpj9@k)> H |Z4| < Z ein(gpj+g0kgolgpm)> _I_ o

j#k 3,k Lm
(', generates multiparticle distributions (including all combinations)
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Cumulant method of flow analysis

@ To obtain the cumulants... take the logarithm (check!)

In(Gy(2)) = N*|2|*cn {2} A

This generates all cumulants at once!

4 Take a piece of paper, and compute the contribution of anisotropic
flow to the cumulants. modified Bessel function

Y
In the presence of flow only In(G,(z)) =1nly(2Nwv,|z|), which you
identify with the measured generating function: each power of |z|°
vields an identity, which defines a flow estimate.

Un{2}2 — Cn{2}7 U?”L{4}4 — _Cn{4}7 Un{6}6 = Cn;{l6}’ Un{8}8 = Cn3{38}

Bonus! you get several estimates at once q

B Post the paper on nucl-ex; gather citations!
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Cumulant method of flow analysis

Principle: when going to cumulants of higher and higher order, the
relative contribution of flow to the cumulant increases (x v,2*) while
that of nonflow correlations decreases o 1/N%+~1

1% systematic error on flow estimate decreases (v, {2k} — v,,)

On the other hand, the statistical uncertainty increases...
(typically, for a resolution parameter y,, = 1 the uncertainty on v, {4}
is twice that on v,{2}, while those on v,,{2k > 4} are all similar).

You cannot have everything!

High-p_physics at LHC, Jyvaskyla, March 24, 2007 N.Borghini — 21/25 h Universitat Bielefeld



An unsatisfactory issue...

(at least to a theorist’s mind)

Anisotropic flow is a collective effect: (almost) all particles show a
correlation to the impact-parameter direction.

Yet we measure it with correlations involving only a small number of
particles (2, 4, 6, 8) out of several hundreds/thousands.

Arent we missing something?
Idea: could we do “infinite-order” cumulants?

YES!
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An elegant solution!

We are interested in infinite-order cumulants, i.e., in the asymptotic
behaviour of the coefficients in the power-series expansion of the
cumulant generating function In{(G,(z))

This behaviour is entirely determined by the " " (the closest
to the origin) of (G.(2))in the complex plane.

k k

+00 L
(Think of ln(l — i) = Z © : 2o controls large-order coefficients)
k=1

? When there is flow (G,(z)) = Ip(2Nv,|2|)

- i ap L _ 2405
e les a — Nou. .

measure the generating function, find its first zero, you obtain a flow
estimate! (denoted by v,,{cc0})

Thats all, Folks!
R.S.Bhalerao, N.B., J.-Y.Ollitrault, NPA 727 (2003) 373
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A nice analogy

When there is flow (G,(2)) = I(2Nwv,|z]), lies at - =
The comes closer to O as the system size increases.

2.4051
Nu,

On the other hand, if there is no flow — only short-range correlations
(and momentum conservation) — (Gn(2)) factorizes: the position of the
does not change when the system size increases.

Does that remind you of something?
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A nice analogy

When there is flow (G,(2)) = I(2Nwv,|z]), lies at - =
The comes closer to O as the system size increases.

2.4051
Nuv,

On the other hand, if there is no flow — only short-range correlations
(and momentum conservation) — (Gn(2)) factorizes: the position of the
does not change when the system size increases.

C.N.Yang & T.D.Lee, PR 87 (1952) 404: a ’rheory oF phase transitions
@ Grand partition function (fixed T, V) Q(u Z 7 el N/ KT

a Take a reFerence value i, define z = (u — uc)/kT
fo°  ———probability to have N particles at i = p.

a Let g( Z PNeZN
a Let the sys’rem size V mcrease
@ if no phase transition, the of G are unchanged;
@ if phase fransition at 1 = p., the come closer to the origin.
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A nice analogy

When there is flow (G,(2)) = I(2Nwv,|z]), lies at - =
The comes closer to O as the system size increases.

2.4051
Nuv,

On the other hand, if there is no flow — only short-range correlations
(and momentum conservation) — (Gn(2)) factorizes: the position of the
does not change when the system size increases.

C.N.Yang & T.D.Lee, PR 87 (1952) 404: a ’rheory oF phase transitions
@ Grand partition function (fixed T, V) Q(u Z 7 el N/ KT

a Take a reFerence value i, define z = (u — uc)/kT
fo°  ———probability to have N particles at i = p.

a Let g( Z PNeZN
a Let the sys’rem Size V mcrease
@ if no phase transition, the of G are unchanged;
a if(phase ’rran@a‘r uw= ., the come closer to the origin.

long-range correlations, collective behaviour
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Methods for measuring
collective anisotropic flow

A wealth of methods to measure flow...

@ The “standard” event-plane based method: v, {EP5}, (v, {EP})
a Multiparticle-cumulant method: v,,{4}, v,{6}, ..

@ 'Lee-Yang zeroes” method: v,, {00}

Two-particle methods can be plagued by nonflow effects.

This problem is solved in the cumulant and Lee-Yang zeroes methods;
but at the cost of larger statistical uncertainties.

(the same in cumulant and Lee-Yang zeroes, about twice larger than
in a two-particle measurement if \,, > 1).

The new methods are less intuitive. Yet determining the “integrated
flow” gives access to everything you could dream of with a V.,
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