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High-energy heavy-ion collisions.
Selected phenomenological aspects

 Lecture I.  Introduction - First steps

 Lecture II.  “Collective flow”

 Anisotropic particle-emission pattern

 A genuinely collective effect:
characterization with the help of “Lee–Yang zeroes”

 What can we learn from the magnitude of anisotropic flow?

 Lecture III.  “Hard probes”: high-pT particles



General remarks
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 Throughout this lecture, I shall consider collisions between identical 
(A-A), spherical nuclei: 

197Au-197Au, 208Pb-208Pb...  but not 238U-238U (deformed nucleus)

 For simplicity, I shall forget about the longitudinal coordinate along 
the beam (rapidity), and only focus on transverse aspects. 

     transverse momentum pT

(more drastically, I shall most often sit at mid-rapidity)



b

b

Heavy-ion collisions: geometry

 or the collision might be almost head-on (small  
impact parameter, “central” collision)

 the nuclei might barely graze each other (large 
impact parameter, “peripheral” collision)

Heavy nuclei have a finite radius!
    In a collision the impact parameter plays a role:

The (almond-shaped) overlap regions of the nuclei are different in 
either case (size, eccentricity…).
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 overlap region in a “central” collision:

 overlap region in a “peripheral” collision:
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Now consider an “elementary” nucleon-nucleon collision...
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 overlap region in a “peripheral” collision:

Heavy-ion collisions: geometry

N.Borghini — II-4/24Joint B-D-NL graduate school, Texel, September 2008

Now consider an “elementary” nucleon-nucleon collision...
A priori (no polarization!), it results in average locally in an isotropic 
particle emission in the transverse plane: the N-N system has no 
knowledge of the A-A impact parameter.



Transverse emission of particles
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Each N-N collision leads locally to an emission of 
particles that is isotropic in the transverse plane:

If the particles thus produced do NOT subsequently 
interact with each other (no “final-state interaction”),
the resulting emission pattern is just an incoherent 
sum, and it is isotropic as well:

no collectivity

What if there are final state interactions?



Transverse emission of particles
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Idea: the more “final-state” collisions a particle undergoes, the more 
its final direction (given by pT) deviates from its initial one.             
(This should be quantified! pQCD / hadronic cross-sections...)

 overlap region in a “peripheral” collision:



Transverse emission of particles
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Idea: the more “final-state” collisions a particle undergoes, the more 
its final direction (given by pT) deviates from its initial one.             
(This should be quantified! pQCD / hadronic cross-sections...)

 overlap region in a “peripheral” collision:

The particles emitted, in an “initial” N-N collision, along the direction 
of the nucleus-nucleus impact parameter (= here horizontally) undergo in 
average less collisions than those emitted perpendicular to it.



Transverse emission of particles
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Idea: the more “final-state” collisions a particle undergoes, the more 
its final direction (given by pT) deviates from its initial one.             
(This should be quantified! pQCD / hadronic cross-sections...)

 overlap region in a “peripheral” collision:

The particles emitted, in an “initial” N-N collision, along the direction 
of the nucleus-nucleus impact parameter (= here horizontally) undergo in 
average less collisions than those emitted perpendicular to it.

In the end, one expects more particles with pT along the A-A impact 
parameter (“in the reaction plane”, “in-plane”) than perpendicular to it 
(“out-of-plane”):

anisotropic emission, with a preferred axis
Highly non-trivial!!! Collective behavior at play!



Transverse emission of particles
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In peripheral nucleus-nucleus collisions, the transverse-momentum 
distribution of outgoing particles       is anisotropic.dN

dpT

In a perfectly central* (b = 0) nucleus-nucleus collision of spherical 
nuclei, there is azimuthal symmetry: the pT distribution of outgoing 
particles is isotropic in the transverse plane.

* inaccessible experimentally... yet the reasoning remains valid.

≠

⇒ The amount of anisotropy must depend on the collision centrality!



vn = 〈cos n(ϕ − ΦR)〉

Transverse emission of particles
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In peripheral nucleus-nucleus collisions, the transverse-momentum 
distribution of outgoing particles       is anisotropic.

How can we quantify this anisotropy?

Preferred axis: orientation of the reaction plane ΦR.
    Fourier expansion (we have a 2  -periodic function!)

with                         .

dN

dpT

dN

dpT

=
dN

2πpT dpT
[1 + 2v1 cos(ϕ− ΦR) + 2v2 cos 2(ϕ− ΦR) + · · · ]

average over particles

π



vn = 〈cos n(ϕ − ΦR)〉
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N.Borghini — II-8/24Joint B-D-NL graduate school, Texel, September 2008

In peripheral nucleus-nucleus collisions, the transverse-momentum 
distribution of outgoing particles       is anisotropic.

How can we quantify this anisotropy?

Preferred axis: orientation of the reaction plane ΦR.
    Fourier expansion (we have a 2  -periodic function!)

with                         .

dN

dpT

dN

dpT

=
dN

2πpT dpT
[1 + 2v1 cos(ϕ− ΦR) + 2v2 cos 2(ϕ− ΦR) + · · · ]

average over particles

Why no sin term in the expansion? Because there is symmetry with 
respect to the reaction plane:              is even. dN

d(ϕ− ΦR)

π



Anisotropic (collective) flow
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vn = 〈cos n(ϕ − ΦR)〉

dN

dpT

=
dN

2πpT dpT
[1 + 2v1 cos(ϕ− ΦR) + 2v2 cos 2(ϕ− ΦR) + · · · ]

 The anisotropic emission of particles in the final state is referred to 
as anisotropic (collective) flow,

(bad denomination: “flow” ⇒ expansion of a fluid)

 and the Fourier coefficients are called “flow coefficients”:

 (   : “directed flow”. In collisions of identical nuclei, it vanishes at 
mid-rapidity for symmetry reasons.)

    : “elliptic flow”. The largest component at ultra-relativistic 
energies.

v1

v2
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v1

v2

                        : more particles emitted along the reaction 
plane (          = 0 or 180°) than perpendicular to it          > 0.
v2 = 〈cos 2(ϕ − ΦR)〉

ϕ− ΦR v2



Anisotropic (collective) flow

Consider a non-central collision:
anisotropy (in position space) of the 
source  (in the plane transverse to 
the beam)

⇒ anisotropic pressure gradients 
(larger along the impact parameter)

Alternate, macroscopic picture
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Anisotropic (collective) flow

Consider a non-central collision:
anisotropy (in position space) of the 
source  (in the plane transverse to 
the beam)

⇒ anisotropic pressure gradients 
(larger along the impact parameter)

⇒ anisotropic fluid velocities,
anisotropic emission of particles
(in momentum space):

“anisotropic collective flow”

Alternate, macroscopic picture
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Anisotropic (collective) flow
Remarks

 In the above pictures, I have implicitly assumed that the remnants 
of the colliding nuclei have left the interaction (overlap) region, and 
thus do not block the emission of particles along the reaction plane. 
This is true at ultra-relativistic energies, not at lower energies... 
where    is negative because of this blocking!
(this is a rare instance where one “sees” the effect of the Lorentz 
contraction: the longitudinal size of the nuclei is 2R/γ)

 All the arguments presented are pT-dependent... and so are the 
Fourier flow coefficients:     (pT)...

 ... not to mention the dependence on the particle type!
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v2

v2



Physical assumption (A): 
For a fixed orientation of the reaction plane ΦR and a fixed value of 
the impact parameter b, each particle in the system is correlated only 
to a small number of particles. 
Moreover, this number does not vary strongly with nuclear size and 
impact parameter.

Reasonable assumption (emission of “clusters” = resonances, jets...).

Except in the vicinity of a second-order phase-transition!
[I.e., keep the existence of this assumption in a corner of your mind 
when studying anisotropic flow at FAIR... or at “low” SPS energies(?)]

Anisotropic flow is a collective effect
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Under assumption (A), define a “generating function”:

where the product runs over all (detected) particles.

Angular brackets denote an average over an infinite number of events 
with the same centrality. 
In the following, such averages will be more conveniently performed 
in two successive steps: 
 I shall first average over events with the same impact parameter 

orientation; the corresponding averages will be denoted by           . 
 Then I average over the reaction-plane orientation, assuming that 

the distribution of is     isotropic. 

Anisotropic flow is a collective effect
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G(x) ≡
〈

M∏

j=1

(1 + x cos ϕj)

〉

〈· · · |ΦR〉

ΦR



Anisotropic flow is a collective effect
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Consider first events with a fixed orientation of the impact 
parameter.
According to hypothesis (A) above, each event can be split into N 
independent subsystems. One may then write

where I have factorized the product in the left-hand side into the 
product of the contributions of each subsystem.

The fixed-     average is then straightforward:

M∏

j=1

(1 + x cos ϕj) =
N∏

k=1

∏

jk

(1 + x cos ϕjk) ,

〈
M∏

j=1

(1 + x cos φj) |ΦR

〉
=

N∏

k=1

〈
∏

jk

(1 + x cos φjk) |ΦR

〉
ΦR



Anisotropic flow is a collective effect
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Taking the logarithm: 

where I have used the fact that the number N of independent 
subsystems scales like the total multiplicity M. 

Thanks to hypothesis (A) the coefficients a, b, … in this expansion are 
independent of the system size.

ln

〈
M∏

j=1

(1 + x cos φj) |ΦR

〉
= M

(
ax + bx2 + cx3 + · · ·

)



Anisotropic flow is a collective effect
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Cumulants are generally defined as the coefficients in the expansion 
in power series of the logarithm of the generating function. 

Accordingly, let me define the cumulants corresponding to the 
generating function introduced above:  

where c{k} denotes the cumulant to order k.

Cumulants scale differently with the multiplicity according to whether 
(collective) anisotropic flow is present in a system or not!

cumulants

lnG(x) ≡
+∞∑

k=1

xk

k!
c{k}



Anisotropic flow is a collective effect
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Assume first that there is no anisotropic flow in the system. That is, 
outgoing particles are not correlated to the reaction plane: fixed-      
averages are in fact independent of     , so that 

that is

so that the cumulants c{k} scales linearly with the multiplicity M for 
any order k.

cumulants

ΦR

ΦR

ln

〈
M∏

j=1

(1 + x cos φj) |ΦR

〉
= ln G(x)

+∞∑

k=1

xk

k!
c{k} = M

(
ax + bx2 + cx3 + · · ·

)



Anisotropic flow is a collective effect
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Consider now collisions with anisotropic flow. 
Assuming x ≪ 1, 

so that

which can easily be averaged over      to yield

from where one can extract the successive cumulants: c{k} scales M 
k.

cumulants

ln

〈
M∏

j=1

(1 + x cos φj) |ΦR

〉
!

〈
M∑

j=1

cos φj |ΦR

〉
x = Mv1 cos ΦR x

〈
M∏

j=1

(1 + x cos φj) |ΦR

〉
= eMv1 cos ΦR x

ΦR

G(x) =
∫ 2π

0

dΦR

2π

〈
M∏

j=1

(1 + x cos φj) |ΦR

〉
= I0(Mv1x)



Anisotropic flow is a collective effect
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When there is no anisotropic flow in the system, one can readily 
average over     : the generating function factorizes into the product 
of generating functions for (independent) subsystems. 
This means than the positions of the zeroes of G(x) do not depend on 
the multiplicity M.

Lee-Yang zeroes

ΦR

In the presence anisotropic flow, the generating function is given by 

    the positions of the zeroes of G(x) now obviously depend on the 
multiplicity M !

G(x) = I0(Mv1x)



Anisotropic flow is a collective effect
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Quark Matter, Oakland, January 15, 2004

Analogy: Lee-Yang zeroes

Phys. Rev. 87 (1952) 404: a theory of phase transitions

Grand partition function ( , fixed):

Take a reference value , define

Let :

probability to have particles at

generating function

Let the volume (= the system size) increase

if no phase transition, the zeroes are unchanged

if phase transition at , the zeroes of come closer to 0

long-range correlations, collective behavior

Anisotropic flow

N. BORGHINI, Anisotropic flow from Lee–Yang zeroes – p.9/10



Anisotropic flow requires final-state interactions to develop...

v4v2An exact computation of the dependence of    ,    on the number Kn-1 
of collisions undergone by particles requires a microscopic transport 
model, yet one can guess the general tendency.

Anisotropic (collective) flow
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Anisotropic flow requires final-state interactions to develop...

v4v2An exact computation of the dependence of    ,    on the number Kn-1 
of collisions undergone by particles requires a microscopic transport 
model, yet one can guess the general tendency.

 In the absence of rescatterings (“gas”), no flow develops.

 The more collisions, the larger the flow.

v2

 For a given number of collisions, the system thermalizes: further 
collisions no longer increase   .

“ideal-liquid” regime

Anisotropic (collective) flow

v2

Kn-1
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Anisotropic (collective) flow
Possible experimental control knobs for the mean number of collisions 
per particle Kn-1: 

 centrality of the collisions

 size of the colliding nuclei

 center-of-mass energy of the collisions

 transverse momentum / rapidity of the emitted particles
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 The combination of the initial anisotropy in position space of the 
particle-emitting source and of final-state interactions between 
emitted particles leads to an anisotropic emission of particles: 
anisotropic collective flow, quantified in terms of coefficients   ,   ...

 It is a genuinely collective phenomenon: all particles are correlated 
to the reaction plane.

    reflected in the behavior of well-chosen generating functions: 
scaling of the cumulants / position of the zeroes with multiplicity.

 Measurements of anisotropic flow yield information on

 at the microscopic level: in-medium cross-sections;

 at the macroscopic level: equation of state of the created matter.
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Anisotropic (collective) flow

v1 v2
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Anisotropic (collective) flow
RHIC phenomenology (abridged!)

Based on measurements of elliptic flow   , the creation of a “perfect 
liquid” was claimed.   

(still a disputed issue!)

Idea: measured strength of     is consistent with computations within 
ideal fluid dynamics (i.e., no viscosity) with an equation of state close 
to the expected one. 

v2

v2


