High-energy heavy-ion collisions. Selected phenomenological aspects

Nicolas BORGHINI

Universität Bielefeld

Joint B-D-NL graduate school, Texel, September 2008

High-energy heavy-ion collisions. Selected phenomenological aspects

Lecture I. Introduction – First steps

Motivation(s)

Multiplicity distributions: characterizing the collision geometry

Lecture II. "Collective flow"

Joint B-D-NL graduate school, Texel, September 2008

60's: protons & neutrons are made up of coloured quarks (bound together by gluons). Quarks cannot escape a nucleon.

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-2/35

60's: protons & neutrons are made up of coloured quarks (bound together by gluons). Quarks cannot escape a nucleon.

Gross, Politzer, Wilczek (1973): Quantum Chromodynamics possesses asymptotic freedom: at small distances, the coupling becomes small (≠ QED).

60's: protons & neutrons are made up of coloured quarks (bound together by gluons). Quarks cannot escape a nucleon.

Gross, Politzer, Wilczek (1973): Quantum Chromodynamics possesses asymptotic freedom: at small distances, the coupling becomes small (≠ QED). $\beta(g) = \frac{g^3}{16\pi^2} \left(\frac{11}{3}N_c - \frac{4}{3}\frac{N_F}{2}\right)$

Collins, Perry (1975): thus, if you pack nucleons close together (high density in a neutron star), they overlap, and quarks are freed.

60's: protons & neutrons are made up of coloured quarks (bound together by gluons). Quarks cannot escape a nucleon.

Gross, Politzer, Wilczek (1973): Quantum Chromodynamics possesses asymptotic freedom: at small distances, the coupling becomes small (≠ QED). $\beta(g) = \frac{g^3}{16\pi^2} \left(\frac{11}{3}N_c - \frac{4}{3}\frac{N_F}{2}\right)$

Collins, Perry (1975): thus, if you pack nucleons close together (high density in a neutron star), they overlap, and quarks are freed.

Cabibbo, Parisi (1975): if you increase the temperature of matter sufficiently, you also "liberate" quarks...

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini — I-2/35 U

60's: protons & neutrons are made up of coloured quarks (bound together by gluons). Quarks cannot escape a nucleon.

Gross, Politzer, Wilczek (1973): Quantum Chromodynamics possesses asymptotic freedom: at small distances, the coupling becomes small (≠ QED). $\beta(g) = \frac{g^3}{16\pi^2} \left(\frac{11}{3}N_c - \frac{4}{3}\frac{N_F}{2}\right)$

Collins, Perry (1975): thus, if you pack nucleons close together (high density in a neutron star), they overlap, and quarks are freed.

Cabibbo, Parisi (1975): if you increase the temperature of matter sufficiently, you also "liberate" quarks...

Shuryak (1980): ... thereby creating a quark-gluon plasma.

When the *energy* density ε exceeds some typical hadronic value (~1 GeV/fm³), matter no longer consists of separate hadrons (protons, neutrons, etc.), but of their fundamental constituents, quarks and gluons. Because of the apparent analogy with similar phenomena in atomic physics we may call this phase of matter the QCD (or quark-gluon) plasma.

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini — I-2/35

60's: protons & neutrons are made up of coloured quarks (bound together by gluons). Quarks cannot escape a nucleon.

Gross, Politzer, Wilczek (1973): Quantum Chromodynamics possesses asymptotic freedom: at small distances, the coupling becomes small (≠ QED).

Collins, Perry (1975): thus, if you pack nucleons close together (high density in a neutron star), they overlap, and quarks are freed.

Cabibbo, Parisi (1975): if you increase the temperature of matter sufficiently, you also "liberate" quarks...

Shuryak (1980): ... thereby creating a quark-gluon plasma.

When the *energy* density ε exceeds some typical hadronic value (~1 GeV/fm³), matter no longer consists of separate hadrons (protons, neutrons, etc.), but of their fundamental constituents, quarks and gluons. Because of the apparent analogy with similar phenomena in atomic physics we may call this phase of matter the QCD (or quark-gluon) plasma.

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini - I-2/35

→≃3×10¹⁸ kq/m³

 $\beta(g) = -\frac{g^3}{16\pi^2} \left(\frac{11}{3} N_c - \frac{4}{3} \frac{N_F}{2} \right)$

60's: protons & neutrons are made up of coloured quarks (bound together by gluons). Quarks cannot escape a nucleon.

Gross, Politzer, Wilczek (1973): Quantum Chromodynamics possesses asymptotic freedom: at small distances, the coupling becomes small (≠ QED). $\beta(g) = \frac{g^3}{16\pi^2} \left(\frac{11}{3}N_c - \frac{4}{3}\frac{N_F}{2}\right)$

Collins, Perry (1975): thus, if you pack nucleons close together (high density in a neutron star), they overlap, and quarks are freed.

Cabibbo, Parisi (1975): if you increase the temperature of matter sufficiently, you also "liberate" quarks...

Shuryak (1980): ... thereby creating a quark-gluon plasma.

In the other of the other othe

Joint B-D-NL graduate school, Texel, September 2008

Phase diagram of hadronic matter

Volume 59B, number 1

PHYSICS LETTERS

13 October 1975

EXPONENTIAL HADRONIC SPECTRUM AND QUARK LIBERATION

N. CABIBBO

Istituto di Fisica, Universitá di Roma, Istituto Nazionale di Fisica Nucleare, Sezione di Rome, Italy

G. PARISI

Istituto Nazionale di Fisica Nucleare, Frascati, Italy

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-3/35

Just after the Big Bang, the Universe, at a temperature ≈ 1 TeV, was filled with a plasma of quarks and gluons.

About 10 ms after the Big Bang, the temperature is down to about 170 MeV and the quarks and gluons are confined into hadrons.

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-4/35

Just after the Big Bang, the Universe, at a temperature ≈ 1 TeV, was filled with a plasma of quarks and gluons.

About 10 ms after the Big Bang, the temperature is down to about 170 MeV and the quarks and gluons are confined into hadrons.

Witten scenario (1984):

If the transition between the deconfined and hadronic phases is of first order, it proceeds through the nucleation of hadronic "bubbles".

Joint B-D-NL graduate school, Texel, September 2008

Just after the Big Bang, the Universe, at a temperature ≈ 1 TeV, was filled with a plasma of quarks and gluons.

About 10 ms after the Big Bang, the temperature is down to about 170 MeV and the quarks and gluons are confined into hadrons.

Witten scenario (1984):

If the transition between the deconfined and hadronic phases is of first order, it proceeds through the nucleation of hadronic "bubbles". The bubbles then grow, eating the quark-gluon phase.

Joint B-D-NL graduate school, Texel, September 2008

Just after the Big Bang, the Universe, at a temperature ≈ 1 TeV, was filled with a plasma of quarks and gluons.

About 10 ms after the Big Bang, the temperature is down to about 170 MeV and the quarks and gluons are confined into hadrons.

Witten scenario (1984):

If the transition between the deconfined and hadronic phases is of first order, it proceeds through the nucleation of hadronic "bubbles". The bubbles then grow, eating the quark-gluon phase. They coalesce, enclosing remnants of deconfined quarks.

Universität Bielefeld

Just after the Big Bang, the Universe, at a temperature ≈ 1 TeV, was filled with a plasma of quarks and gluons.

About 10 ms after the Big Bang, the temperature is down to about 170 MeV and the quarks and gluons are confined into hadrons.

Witten scenario (1984):

If the transition between the deconfined and hadronic phases is of first order, it proceeds through the nucleation of hadronic "bubbles". The bubbles then grow, eating the quark-gluon phase. They coalesce, enclosing remnants of deconfined quarks. Eventually, the whole Universe is made of hadrons, except for isolated

quark nuggets... or quark stars?

N.Borghini – I-4/35

Quark-Gluon Plasma in the Universe?

Two unexplained seismic quakes with unusual properties (events with a very high propagation speed \approx 400 km.s⁻¹):

Did strangelets traverse the Earth?

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini — I-5/35

Quark stars would be a good candidate for dark matter, especially for the MAssive Compact Halo Objects detected by microlensing.

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-6/35

Have quark stars been observed?

News Release

Marshall Space Flight Center - Huntsville, Ala. 35812 http://www.msfc.nasa.gov/news

For release: 04/10/02 Release #: 02-082

Cosmic X-rays reveal evidence for new form of matter

NASA's Chandra X-ray Observatory has found two stars – one too small, one too cold that reveal cracks in our understanding of the structure of matter. These discoveries open a new window on nuclear physics,

offering a link between the vast cosmos and its tiniest constituents.

Photo: Newly discovered star RXJ 1856 is too small for standard models. (NASA et al.)

Read entire story 🗡

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-7/35

Have quark stars been observed?

News Release

Marshall Space Flight Center - Huntsville, Ala. 35812 http://www.msfc.nasa.gov/news

For release: 04/10/02 Release #: 02-082

Cosmic X-rays reveal evidence for new form of matter

NASA's Chandra X-ray Observatory has found two stars – one too small, one too cold that reveal cracks in our understanding of the structure of matter. These discoveries open a new window on nuclear physics,

offering a link between the vast cosmos and its tiniest constituents.

Photo: Newly discovered star RXJ 1856 is too small for standard models. (NASA et al.)

- Read entire story 🗡

Chandra's observations of RXJ1856.5-3754 and 3C58 suggest that the matter in these stars is even denser than nuclear matter found on Earth. This raises the possibility these stars are composed of pure quarks or contain crystals of sub-nuclear particles that normally have only a fleeting existence following high-energy collisions.

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-7/35

A Bowshock Nebula Near the Neutron Star RX J1856.5-3754 (Detail) (VLT KUEYEN + FORS2)

ESO PR Photo 23b/00 (11 September 2000)

© European Southern Observatory

By combining Chandra and Hubble Space Telescope data, astronomers found that RXJ 1856 radiates like a solid body with a temperature of 1.2 million degrees Fahrenheit (700,000 degrees Celsius) and has a diameter of about 7 miles (11.3 kilometers). This size is too small to reconcile with standard models for neutron stars — until now the most extreme form of matter known.

Joint B-D-NL graduate school, Texel, September 2008

http://www.msfc.nasa.gov/news/ news/releases/2002/02-082.html

one is too small (for its assumed mass)

N.Borghini – I-7/35

A Bowshock Nebula Near the Neutron Star RX J1856.5-3754 (Detail) (VLT KUEYEN + FORS2)

ESO PR Photo 23b/00 (11 September 2000)

© European Southern Observatory

By combining Chandra and Hubble Space Telescope data, astronomers found that RXJ 1856 radiates like a solid body with a temperature of 1.2 million degrees Fahrenheit (700,000 degrees Celsius) and has a diameter of about 7 miles (11.3 kilometers). This size is too small to reconcile with standard models for neutron stars — until now the most extreme form of matter known.

Joint B-D-NL graduate school, Texel, September 2008

http://www.msfc.nasa.gov/news/ news/releases/2002/02-082.html

Observations by Chandra of 3C58 also yielded startling results. A team composed of Patrick Slane and Steven Murray, also of CfA, and David Helfand of Columbia University, New York, failed to detect the expected X-radiation from the hot surface of 3C58, a neutron star believed to have been created in an explosion witnessed by Chinese and Japanese astronomers in 1181 AD. The team concluded that the star has a temperature of less than one million degrees Celsius, which is far below the predicted value.

"Our observations of 3C58 offer the first compelling test of models for how neutron stars cool and, the standard theory fails," said Helfand. "It appears that neutron stars aren't pure neutrons after all — new forms of matter are required."

> the other is too cold (for its conjectured age)

one is too small (for its assumed mass)

N.Borghini – I-7/35

European Space Agency

XMM-Newton finds the leader of the Magnificent Seven in a spin

VLT image of RXJ1856 sky region

9 March 2007

A decade-long mystery has been solved using data from ESA's X-ray observatory XMM-Newton. The brightest member of the so-called 'magnificent seven' has been found to pulsate with a period of seven seconds.

The discovery casts some doubt on the recent interpretation that this object is a highly exotic celestial object known as a quark star.

The magnificent seven is a collection of young neutron stars. Neutron stars are the dead hearts of once massive stars. They contain about 1.4 times

the mass of the Sun but are compressed by gravity into ultra-dense spheres just 10– 15 kilometres in diameter. A one Euro coin made of neutron star material would weigh more than the entire population of Earth. What sets the magnificent seven apart from the 1700 other neutron stars seen as radio pulsars is that they are not detected at radio frequencies but their surfaces are hot enough to emit X-rays.

http://www.esa.int/esaCP/SEM1WRNOLYE_index_0.html

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-8/35

Quark stars would be a good candidate for dark matter, especially for the MAssive Compact Halo Objects detected by microlensing.

On April 10, 2002, NASA announced the observation of two quark stars: "Cosmic X-rays reveal evidence for new form of matter". (But these were probably mis-identified neutron stars.)

According to QCD computations on a lattice (see next slides!), the (de)confinement phase transition is not first order for the values of the baryon density relevant for cosmology — it is rather a crossover which invalidates Witten's idea.

Yet these computations have to be confirmed by experiment

 \Rightarrow ultrarelativistic heavy-ion collisions

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-9/35

(cf. Owe Philipsen's lectures)

Volume 113B, number 5

PHYSICS LETTERS

1 July 1982

THE HIGH-TEMPERATURE BEHAVIOUR OF LATTICE QCD WITH FERMIONS

J. ENGELS, F. KARSCH and H. SATZ Fakultät für Physik, Universität Bielefeld, Bielefeld, Germany

Received 29 March 1982

By Monte Carlo simulation on the lattice, we calculate the high-temperature behaviour of the energy density ϵ in SU(2) and SU(3) QCD with Wilson fermions. From the leading term of the hopping parameter expansion, we find that ϵ converges very rapidly to the Stefan-Boltzmann limit of an asymptotically free quark-gluon gas.

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-10/35

PHYSICAL REVIEW D 77, 014511 (2008)

QCD equation of state with almost physical quark masses

M. Cheng,¹ N. H. Christ,¹ S. Datta,² J. van der Heide,³ C. Jung,⁴ F. Karsch,^{3,4} O. Kaczmarek,³ E. Laermann,³ R. D. Mawhinney,¹ C. Miao,³ P. Petreczky,^{4,5} K. Petrov,⁶ C. Schmidt,⁴ W. Soeldner,⁴ and T. Umeda⁷ ¹Physics Department, Columbia University, New York, New York 10027, USA
²Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India ³Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ⁴Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA ⁵RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973, USA ⁶Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark ⁷Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan (Received 2 October 2007; published 22 January 2008)

We present results on the equation of state in QCD with two light quark flavors and a heavier strange quark. Calculations with improved staggered fermions have been performed on lattices •••

"2+1" flavors, $m_{\pi} \approx 220$ MeV, $m_{K} \approx 500$ MeV

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini — I-11/35

Rapid change of thermodynamic quantities (energy density, pressure, entropy density...) for transition / crossover between two states:

hadron gas vs. Quark-Gluon Plasma

Screening of the heavy-quark potential in the high-temperature phase.

Equation of state, sound velocity... (+ much more, not shown)

Joint B-D-NL graduate school, Texel, September 2008

Rapid change of thermodynamic quantities (energy density, pressure, entropy density...) is transition / crossover between two states:

hadron gas vs. Quark-Gluon Plasma

Screening of the heavy-quark potential in the high-temperature phase.

Equation of state, sound velocity... (+ much more, not shown)

We However lattice simulations of QCD at finite temperature are not (yet) performed with "physical" light-quark masses.

They do not provide any phase diagram,

In nor transport coefficients.

(yet?)

Joint B-D-NL graduate school, Texel, September 2008

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-18/35

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-18/35

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini — I-18/35

Repeatedly heard answers:

"to create a quark-gluon plasma and study its properties"

"to study the phase diagram of nuclear matter"

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-19/35

Repeatedly heard answers:

"to create a quark-gluon plasma and study its properties"

"to study the phase diagram of nuclear matter"

boring?

is studying dark matter / dark energy more sexy?

Joint B-D-NL graduate school, Texel, September 2008

Repeatedly heard answers:

"to create a quark-gluon plasma and study its properties"

"to study the phase diagram of nuclear matter"

boring?

is studying dark matter / dark energy more sexy?

or, better, the "particle of God", which is "responsible for the mass"?

Repeatedly heard answers:

"to create a quark-gluon plasma and study its properties"

"to study the phase diagram of nuclear matter"

A remark: well, actually, do we really understand mass?

U	$I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$ Mass $m = \frac{1.5 \text{ to } 3.3 \text{ MeV}}{1.5 \text{ to } 3.3 \text{ MeV}} \begin{bmatrix} a \end{bmatrix}$ Charge $= \frac{2}{3} e$ $I_{z} = +\frac{1}{2}$ $m_{u}/m_{d} = 0.35 \text{ to } 0.60$	ρ	$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Mass $m = 1.00727646688 \pm 0.0000000013$ u Mass $m = 938.27203 \pm 0.00008$ MeV ^[a]
d	$I(J^{P}) = \frac{1}{2}(\frac{1}{2}^{+})$ Mass $m = 3.5 \text{ to } 6.0 \text{ MeV} [a]$ Charge $= -\frac{1}{3} e$ $I_{z} = -\frac{1}{2}$ $m_{s}/m_{d} = 17 \text{ to } 22$ $\overline{m} = (m_{s} + m_{s})/2 = 2.5 \text{ to } 5.0 \text{ MeV}$	n	$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Mass $m = 1.0086649156 \pm 0.000000006$ u Mass $m = 939.56536 \pm 0.00008$ MeV ^[a]

(Review of Particle Properties 2008)

or do I miss 99% of my own mass?

study deconfinement to understand confinement, as well as, perhaps, the mass (and spin?) of the nucleon!

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-19/35

A remark for purists...

Actually, there are two transitions:

(de)confinement transition:

the Z(3) center symmetry is manifest in the QCD vacuum (recreation of free quarks requires an infinite energy), spontaneously broken in the high-temperature phase, Order parameter: Polyakov loop

chiral transition:

chiral symmetry is broken in the low-temperature phase, (partially) restored in the high-temperature one.

Order parameter: chiral condensate

In present-day lattice QCD computations, these "transitions" seem to occur at the same critical temperature (according to most groups; according to one group, they occur at two relatively close yet different temperatures).

Joint B-D-NL graduate school, Texel, September 2008

Heavy ion experiments

Joint B-D-NL graduate school, Texel, September 2008

Heavy ion experiments

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-21/35 Universität

Relativistic Heavy Ion Collider

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-22/35

Relativistic Heavy Ion Collider

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini — I-22/35

Relativistic Heavy Ion Collider

A 4 km-long dedicated machine, operating since 2000: Au-Au & Cu-Cu collisions at $\sqrt{s_{NN}}$ = 19.6 (one week), 22.4, 62.4, 130 & 200 GeV (+ proton-proton & d-Au collisions)

4 experiments (BRAHMS, PHENIX, PHOBOS, STAR)

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini — I-22/35

Heavy ion experiments THE result

(first seen at SPS, at RHIC? in the end, it doesn't matter)

In heavy-ion collisions at ultra-relativistic energies, something "new" is created, namely a "mesoscopic" region (size \approx several fm, much larger than that of a hadron) in which the acting degrees of freedom carry a color charge.

Joint B-D-NL graduate school, Texel, September 2008

Heavy ion experiments THE result

(first seen at SPS, at RHIC? in the end, it doesn't matter)

In heavy-ion collisions at ultra-relativistic energies, something "new" is created, namely a "mesoscopic" region (size \approx several fm, much larger than that of a hadron) in which the acting degrees of freedom carry a color charge.

Should it be called a quark-gluon plasma?

(issues about thermal equilibrium...)

In any case, what is formed has to be characterized quantitatively.

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-23/35

Phenomenology of heavy-ion collisions

How can one characterize what is created in a heavy-ion collision?

Focus on "collective phenomena" present in nucleus-nucleus collisions, but absent in pp collisions ("condensed matter physics of QCD")

- Establish a reference, in which collective effects are absent.
- Quantify the deviation from these benchmarks in nucleus-nucleus collisions.
- Analyze the origin of these deviations.

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-25/35

First measurement: multiplicity

Heavy-ion collisions: geometry

Heavy nuclei have a finite radius!

In a collision the impact parameter plays a role:

The nuclei might barely graze each other (large impact parameter, "peripheral" collision)

or the collision might be almost head-on (small impact parameter, "central" collision)

The (almond-shaped) overlap regions of the nuclei are different in either case (size, eccentricity...).

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini — I-27/35

Multiplicity vs. geometry

The multiplicity distribution $\frac{dN_{evts}}{dn_{ch}}$ in heavy-ion collisions is largely determined by geometry, i.e., by the value of the impact parameter $|\mathbf{b}|$ of the nucleus-nucleus (A-B) collision

To relate geometry and multiplicity, one needs a counting rule:

• b determines some "equivalent number" of nucleon-nucleon (N-N) collisions, whose superposition would constitute the nucleus-nucleus collision: N_{coll}^{A-B} ;

• with the help of the inelastic N-N cross-section $\sigma_{N-N}^{\text{inel}}$ one can relate N_{coll}^{A-B} to the multiplicity.

For instance, Glauber theory.

Joint B-D-NL graduate school, Texel, September 2008

Glauber theory: N-A collisions

Nuclear profile function
$$T_A(\mathbf{b}) = \int_{-\infty}^{\infty} dz \underbrace{\rho_A(\mathbf{b}, z)}_{\text{nuclear probability density}}$$

Average number of N-N collisions in a nucleon-nucleus collision N-A at impact parameter b:

 $\bar{N}_{\text{coll}}^{N-A}(\mathbf{b}) = A T_A(\mathbf{b}) \sigma_{N-N}^{\text{inel}}$

Average number of participant nucleons in a nucleon-nucleus collision N-A at impact parameter b:

$$\bar{N}_{\text{part}}^{N-A}(\mathbf{b}) = 1 + \bar{N}_{\text{coll}}^{N-A}(\mathbf{b}) = A T_A(\mathbf{b}) \sigma_{N-N}^{\text{inel}}$$

Inelastic nucleon-nucleus N-A cross-section: $\sigma_{N-A}^{\text{inel}} = \int d\mathbf{b} \, \sigma_A(\mathbf{b})$ $\sigma_A(\mathbf{b}) \equiv 1 - \left[T_A(\mathbf{b})\sigma_{N-N}^{\text{inel}}\right]^A \simeq 1 - \exp\left[AT_A(\mathbf{b})\sigma_{N-N}^{\text{inel}}\right]$

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini — I-29/35

Glauber theory: A-B collisions

Nuclear overlap function
$$T_{A-B}(\mathbf{b}) \equiv \int d\mathbf{r} \ T_B(\mathbf{r}) \ T_A(\mathbf{b} - \mathbf{r})$$

Inelastic nucleus-nucleus A-B cross-section: $\sigma_{A-B}^{\text{inel}} = \int d\mathbf{b} \, \sigma_{A-B}(\mathbf{b})$ $\sigma_{A-B}(\mathbf{b}) \equiv 1 - \left[T_{A-B}(\mathbf{b}) \, \sigma_{N-N}^{\text{inel}}\right]^{AB} \simeq 1 - \exp\left[AB \, T_{A-B}(\mathbf{b}) \, \sigma_{N-N}^{\text{inel}}\right]$

Average number of participant nucleons in a nucleus-nucleus collision A-B at impact parameter **b**:

$$\bar{N}_{\text{part}}^{A-B}(\mathbf{b}) = \frac{B \,\sigma_A(\mathbf{b})}{\sigma_{A-B}(\mathbf{b})} + \frac{A \,\sigma_B(\mathbf{b})}{\sigma_{A-B}(\mathbf{b})}$$

in particular $\bar{N}_{\rm part}^{A\text{-}A}(\mathbf{b}) \propto A$

Average number of N-N collisions in a nucleus-nucleus collision A-A at impact parameter b: $\bar{N}_{coll}^{A-A}(\mathbf{b}) \propto A^{4/3}$

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-30/35

Multiplicity

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-31/35

Multiplicity distribution

Vary the equivalent number of nucleon-nucleon collisions between $\bar{N}_{part}^{A-B}(\mathbf{b})$ and $\bar{N}_{coll}^{A-B}(\mathbf{b})$:

$$\bar{n}_{A-B}(\mathbf{b}) = \left(\frac{1-x}{2}\bar{N}_{\text{part}}^{A-B}(\mathbf{b}) + x\bar{N}_{\text{coll}}^{A-B}(\mathbf{b})\right)\bar{n}_{N-N}$$

Probability $P(n,\mathbf{b})$ to find a multiplicity n in a particular A-B collision at impact parameter \mathbf{b} is Gaussian around $\bar{n}_{A-B}(\mathbf{b})$, with some (model-dependent) dispersion.

met-multiplicity distribution:

$$\frac{\mathrm{d}N_{\mathrm{evts}}}{\mathrm{d}n} = \int \mathrm{d}\mathbf{b} P(n, \mathbf{b}) \left[1 - \left(1 - \sigma_{N-N}^{\mathrm{inel}} T_{A-B}(\mathbf{b})\right)^{AB} \right]$$

probability that an inelastic process occur

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini — I-32/35

N.Borghini – I-33/35 Universitä

Multiplicity vs. geometry

Joint B-D-NL graduate school, Texel, September 2008

N.Borghini – I-34/35

Multiplicity vs. geometry

N.Borghini – I-35/35