Nicolas BORGHINI

Dissipative effects in heavy ion collisions

Principle and ideas of the calculations

Results

Christian Lang & N.B., arXiv:1312.???

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

N.Borghini – 1/23

Dissipative effects in heavy ion collisions

Principle and ideas of the calculations

Results

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

When going from ideal fluid dynamics to dissipative fluid dynamics, the corrections (viscosity, (heat conductivity), ...) are twofold:

 $\boldsymbol{\textit{o}}$ modification of the fluid four-velocity $u(\boldsymbol{x})$

r solution of
$$\partial_{\mu}T^{\mu\nu}(\mathbf{x}) = 0$$
 with

$$T^{\mu\nu}(\mathbf{x}) = \epsilon(\mathbf{x})u^{\mu}(\mathbf{x})u^{\nu}(\mathbf{x}) - \mathcal{P}(\mathbf{x})\Delta^{\mu\nu}(\mathbf{x}) + \pi^{\mu\nu}(\mathbf{x})$$

🤪 at freeze-out

within the (naive?) Cooper-Frye prescription

$$E_{\vec{p}} \frac{\mathrm{d}^3 N}{\mathrm{d}^3 \vec{p}} = \frac{g}{(2\pi)^3} \int_{\Sigma} f\left(\frac{\mathbf{p} \cdot \mathbf{u}(\mathbf{x})}{T}\right) \mathbf{p} \cdot \mathrm{d}^3 \sigma(\mathbf{x})$$

freceives corrections $f = f_{id.} + \delta f^{(1)} + \delta f^{(2)} + \cdots$ so that $T^{\mu\nu}$ remain continuous in the transition from a fluid to a collection of particles.

When going from ideal fluid dynamics to dissipative fluid dynamics, the corrections (viscosity, (heat conductivity), ...) are twofold:

 $\boldsymbol{\textit{o}}$ modification of the fluid four-velocity $u(\boldsymbol{x})$

resolution of
$$\partial_{\mu}T^{\mu\nu}(\mathbf{x}) = 0$$
 with

$$T^{\mu\nu}(\mathbf{x}) = \epsilon(\mathbf{x})u^{\mu}(\mathbf{x})u^{\nu}(\mathbf{x}) - \mathcal{P}(\mathbf{x})\Delta^{\mu\nu}(\mathbf{x}) + \pi^{\mu\nu}(\mathbf{x})$$

The dissipative part $\pi^{\mu\nu}$ of the stress tensor involves the various transport coefficients (η , ζ , κ ...).

Here, the temperature dependences of the coefficients over the whole history of the hydrodynamical evolution affect the particle spectra.

r (as yet) unknown functional dependences $\eta(T)$, $\zeta(T)$, $\kappa(T)$...

Dissipative correction at freeze-out: in the Cooper-Frye prescription

$$E_{\vec{p}} \frac{\mathrm{d}^3 N}{\mathrm{d}^3 \vec{p}} = \frac{g}{(2\pi)^3} \int_{\Sigma} f\left(\frac{\mathbf{p} \cdot \mathbf{u}(\mathbf{x})}{T}\right) \mathbf{p} \cdot \mathrm{d}^3 \sigma(\mathbf{x})$$

there come corrections $f = f_{id.} + \delta f^{(1)} + \delta f^{(2)} + \cdots$ to the phase space occupation factor.

The functional form of the corrections has been computed Teaney 2003 (shear); Dusling & Teaney, Denicol et al., Monnai & Hirano 2008- (bulk); Teaney & Yan 2013 (conformal 2nd order terms) mostly assuming freeze-out to a simple-component kinetic gas in the relaxation time approximation.

Dissipative correction at freeze-out: in the Cooper-Frye prescription

$$E_{\vec{p}} \frac{\mathrm{d}^3 N}{\mathrm{d}^3 \vec{p}} = \frac{g}{(2\pi)^3} \int_{\Sigma} f\left(\frac{\mathbf{p} \cdot \mathbf{u}(\mathbf{x})}{T}\right) \mathbf{p} \cdot \mathrm{d}^3 \sigma(\mathbf{x})$$

there come corrections $f = f_{id.} + \delta f^{(1)} + \delta f^{(2)} + \cdots$ to the phase space occupation factor.

The functional form of the corrections has been computed
 Teaney 2003 (shear); Dusling & Teaney, Denicol et al., Monnai & Hirano 2008- (bulk);
 Teaney & Yan 2013 (conformal 2nd order terms)
 mostly assuming freeze-out to a simple-component kinetic gas in
 the relaxation time approximation.

 Teaney known.

Only the values of the transport coefficients at freeze-out matter.

For if freeze-out at some temperature $T_{\text{f.o.}}$, only $\eta(T_{\text{f.o.}})$, $\zeta(T_{\text{f.o.}})$...

Dissipative corrections at freeze-out

If $T_{f.o} < T_c$, the decoupling fluid is to a good approximation conformal:

rackin rackin relation relat

Dissipative effects in heavy ion collisions

Principle and ideas of the calculations

Results

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

Particle emission at freeze-out

Consider the Cooper-Frye formula (T is the freeze-out temperature)

$$E_{\vec{p}} \frac{\mathrm{d}^3 N}{\mathrm{d}^3 \vec{p}} = \frac{g}{(2\pi)^3} \int_{\Sigma} f\left(\frac{\mathbf{p} \cdot \mathbf{u}(\mathbf{x})}{T}\right) \mathbf{p} \cdot \mathrm{d}^3 \sigma(\mathbf{x})$$

The phase space occupation factor f is proportional to $f_{id.}$, which will be approximated by a Maxwell-Boltzmann distribution.

The integral can be computed with the saddle-point approximation, without needing any detail on the freeze-out surface Σ .

(\mathbb{C} the ensuing results are thus to a large extent irrespective of the velocity profile, i.e. of whether u(x) is a solution to ideal or dissipative fluid dynamics)

row one needs to determine the saddle point, which is the minimum of $p \cdot u(x)/T$.

* at least approximately

Universität Bielefeld

N.Borghini – 7/23

Particle emission at freeze-out

Taking the Cooper-Frye formula seriously

$$E_{\vec{p}} \frac{\mathrm{d}^3 N}{\mathrm{d}^3 \vec{p}} = \frac{g}{(2\pi)^3} \int_{\Sigma} f\left(\frac{\mathbf{p} \cdot \mathbf{u}(\mathbf{x})}{T}\right) \mathbf{p} \cdot \mathrm{d}^3 \sigma(\mathbf{x})$$

one may approximate the integral using the steepest-descent method. N.B. & J.-Y.Ollitrault 2005

Two categories of particles:

Some point on Σ .

► at a given rapidity y,
$$|\mathbf{p}_t| < m u_{\max}(y)$$
.
► maximum fluid velocity
in the direction of p^{μ}

The minimum value of $p \cdot u(x)/T$ simply equals m/T, independent of the particle momentum.

Particle emission at freeze-out

Taking the Cooper-Frye formula seriously

$$E_{\vec{p}} \frac{\mathrm{d}^3 N}{\mathrm{d}^3 \vec{p}} = \frac{g}{(2\pi)^3} \int_{\Sigma} f\left(\frac{\mathbf{p} \cdot \mathbf{u}(\mathbf{x})}{T}\right) \mathbf{p} \cdot \mathrm{d}^3 \sigma(\mathbf{x})$$

one may approximate the integral using the steepest-descent method. N.B. & J.-Y.Ollitrault 2005

Two categories of particles:

Some point on Σ .

► at a given rapidity y, $|\mathbf{p}_t| < m u_{\max}(\mathbf{y})$. The direction of p^{μ}

• "fast particles": $|\mathbf{p}_t| > mu_{\max}(\mathbf{y})$. The minimum value of $\mathbf{p} \cdot \mathbf{u}(\mathbf{x})/T$ is larger than m/T.

Dissipative effects in heavy ion collisions

Principle and ideas of the calculations

Results

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

Results for slow particles

"Slow particles": emitted by fluid cells w.r.t. which they are at rest. Velocity $\frac{p}{m}$ coincides with that of the fluid u(x) at the saddle point.

Freezing out from an ideal fluid:

The Cooper-Frye integral
$$E_{\vec{p}} \frac{\mathrm{d}^3 N}{\mathrm{d}^3 \vec{p}} = \frac{g}{(2\pi)^3} \int_{\Sigma} f_{\mathrm{id.}} \left(\frac{\mathsf{p} \cdot \mathsf{u}(\mathsf{x})}{T} \right) \mathsf{p} \cdot \mathrm{d}^3 \sigma(\mathsf{x})$$

yields a function of the particle velocity only, with an m-dependent prefactor:

$$E_{\vec{p}} \frac{\mathrm{d}^3 N}{\mathrm{d}^3 \vec{p}} = C(m) F\left(\frac{\mathbf{p}_t}{m}, \mathbf{y}\right)$$

Fourier-expanding, the flow coefficients v_n for all particles coincide when considered at the same transverse velocity and rapidity.

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

Universität Bielefeld

N.B. & J.-Y.Ollitrault 2005

Results for slow particles

Particles with velocity $\frac{p}{m}$ are all emitted from the same saddle point.

Freezing out from a dissipative fluid:

Considering first order only, the Cooper-Frye integral again gives an m-dependent pre factor times a function of the particle velocity.

$$E_{\vec{p}} \frac{\mathrm{d}^3 N}{\mathrm{d}^3 \vec{p}} = C'(m) F'\left(\frac{\mathbf{p}_t}{m}, \mathbf{y}\right)$$

 \Rightarrow mass-scaling of anisotropic flow persists

Proof:

• Since the saddle point obeys $u^{\mu}(\mathbf{x}) = p^{\mu}/m$, the shear term vanishes

$$\delta f_{\text{shear}}^{(1)} = C_{\text{shear}}' \left(\frac{\mathsf{p} \cdot \mathsf{u}(\mathsf{x})}{T} \right) \pi^{\mu\nu}(\mathsf{x}) p_{\mu} p_{\nu} f_{\text{id.}} \left(\frac{\mathsf{p} \cdot \mathsf{u}(\mathsf{x})}{T} \right) \text{ with } p^{\mu} p^{\nu} \pi_{\mu\nu} = \mathbf{0}$$

• For the bulk viscosity term, use the "universality" of the saddle point

Fast particles

Fast particles emitted in a given direction come from the same saddle point, where the fluid has velocity $u_{\max}(y, \varphi)$.

At the saddle point, $\mathbf{p} \cdot \mathbf{u}(\mathbf{x}) = m_t u_{\max}^0(y, \varphi) - p_t u_{\max}(y, \varphi)$, with here $u_{\max}^0 \equiv \sqrt{1 + u_{\max}^2}$.

w governs the particle spectrum.

As a second step, write

$$u_{\max}(y,\varphi) = \bar{u}_{\max}(y) \left[1 + 2\sum_{n\geq 1} V_n(y) \cos n(\varphi - \Psi_n) \right]$$

and Taylor-expand (with respect to the small coefficients V_n) to find the flow coefficients $v_n(p_t, y)$.

Fast particles from an ideal fluid

Reasonable(?) assumption: the velocity of the freezing-out fluid mostly has elliptic and triangular anisotropies: V_2 , $V_3 \gg V_1$, V_4 , V_5 , V_6

One then finds

$$v_2(p_t) = I(p_t)V_2$$

 $v_3(p_t) = I(p_t)V_3$ • $v_4(p_t) = \frac{I(p_t)^2}{2}V_2^2 + I(p_t)V_4$ $v_5(p_t) = I(p_t)^2 V_2 V_3 + I(p_t) V_5$ • $v_6(p_t) = \frac{I(p_t)^3}{\epsilon}V_2^3 + \frac{I(p_t)^2}{2}V_3^2 + I(p_t)^2V_2V_4 + I(p_t)V_6$ where $I(p_t) \equiv \frac{\bar{u}_{\max}}{T}(p_t - m_t \bar{v}_{\max})$ with $\bar{v}_{\max} \equiv \frac{u_{\max}}{\sqrt{1 + \bar{u}_{\max}^2}}$ N.B. & J.-Y.Ollitrault 2005; D.Teaney & L.Yan 2012

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

N.Borghini – 13/23

Fast particles from an ideal fluid

Reasonable(?) assumption: the velocity of the freezing-out fluid mostly has elliptic and triangular anisotropies: V_2 , $V_3 \gg V_1$, V_4 , V_5 , V_6

One then finds at high momentum (not too high, hydro should hold!)

$$v_2(p_t) = I(p_t)V_2$$

 $v_3(p_t) = I(p_t)V_3$ • $v_4(p_t) = \frac{I(p_t)^2}{2}V_2^2 + I(p_t)V_4 \sim \frac{1}{2}v_2(p_t)^2$ • $v_5(p_t) = I(p_t)^2 V_2 V_3 + I(p_t) V_5 \sim v_2(p_t) v_3(p_t)$ • $v_6(p_t) = \frac{I(p_t)^3}{6}V_2^3 + \frac{I(p_t)^2}{2}V_3^2 + \sim (\frac{1}{6}v_2(p_t)^3 + \frac{1}{2}v_3(p_t)^2)$ where $I(p_t) \equiv \frac{\bar{u}_{\max}}{T}(p_t - m_t \bar{v}_{\max})$ with $\bar{v}_{\max} \equiv \frac{u_{\max}}{\sqrt{1 + \bar{u}_{\max}^2}}$ N.B. & J.-Y.Ollitrault 2005; D.Teaney & L.Yan 2012

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

N.Borghini – 13/23

Assumptions: V_2 , $V_3 \gg V_1$, V_4 , V_5 , V_6 & azimuthal dependence of the shear part of the stress tensor is neglected (for the sake of simplicity only).

Remarks:

- Strictly speaking, the values of these Fourier coefficients, as well as that of \bar{u}_{\max} (which enters the function $I(p_t)$) are different from those of the ideal case.
- Hereafter I only mention the correction due to shear viscosity. That arising from bulk viscosity and those from second order terms lead to similar results.

Assumptions: V_2 , $V_3 \gg V_1$, V_4 , V_5 , V_6 & azimuthal dependence of the shear part of the stress tensor is neglected (for the sake of simplicity only).

One then finds

•
$$v_2(p_t) = [I(p_t) - D(p_t)]V_2$$

• $v_3(p_t) = [I(p_t) - D(p_t)]V_3$
• $v_4(p_t) = \left[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)\right]V_2^2 + [I(p_t) - D(p_t)]V_4$
• $v_5(p_t) = [I(p_t)^2 - I(p_t)D(p_t)]V_2V_3 + [I(p_t) - D(p_t)]V_5$
• $v_6(p_t) = \left[\frac{I(p_t)^3}{6} - \frac{I(p_t)^2D(p_t)}{2}\right]V_2^3 + \left[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)\right]V_3^2 + \cdots$

where $D(p_t)$ is a positive function proportional to η , whose functional dependence reflects that of the viscous correction $\delta f_{\rm shear}^{(1)}$.

Assumptions: V_2 , $V_3 \gg V_1$, V_4 , V_5 , V_6 & azimuthal dependence of the shear part of the stress tensor is neglected (for the sake of simplicity only).

One then finds at high momentum

•
$$v_2(p_t) = [I(p_t) - D(p_t)]V_2$$

•
$$v_3(p_t) = [I(p_t) - D(p_t)]V_3$$

• $v_4(p_t) = \left[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)\right]V_2^2 + [I(p_t) - D(p_t)]V_4$
• $v_5(p_t) = [I(p_t)^2 - I(p_t)D(p_t)]V_2V_3 + [I(p_t) - D(p_t)]V_5$
• $v_6(p_t) = \left[\frac{I(p_t)^3}{6} - \frac{I(p_t)^2D(p_t)}{2}\right]V_2^3 + \left[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)\right]V_3^2 + \cdots$

where $D(p_t)$ is a positive function proportional to η , whose functional dependence reflects that of the viscous correction $\delta f_{\rm shear}^{(1)}$.

Assumptions: V_2 , $V_3 \gg V_1$, V_4 , V_5 , V_6 & azimuthal dependence of the shear part of the stress tensor is neglected (for the sake of simplicity only).

where $D(p_t)$ is a positive function proportional to η , whose functional dependence reflects that of the viscous correction $\delta f_{\rm shear}^{(1)}$.

Inspecting these results more carefully...

•
$$v_2(p_t) = [I(p_t) - D(p_t)]V_2$$

• $v_3(p_t) = [I(p_t) - D(p_t)]V_3$
• $v_4(p_t) = \left[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)\right]V_2^2 + [I(p_t) - D(p_t)]V_4$
• $v_5(p_t) = [I(p_t)^2 - I(p_t)D(p_t)]V_2V_3 + [I(p_t) - D(p_t)]V_5$
• $v_6(p_t) = \left[\frac{I(p_t)^3}{6} - \frac{I(p_t)^2D(p_t)}{2}\right]V_2^3 + \left[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)\right]V_3^2 + \cdots$

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

Inspecting these results more carefully...

•
$$v_2(p_t) = [I(p_t) - D(p_t)]V_2$$

• $v_3(p_t) = [I(p_t) - D(p_t)]V_3$
• $v_3(p_t) = [I(p_t) - D(p_t)]V_3$
• the ratio $\frac{v_3(p_t)}{v_2(p_t)}$ should be constant
• $v_4(p_t) = \left[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)\right]V_2^2 + [I(p_t) - D(p_t)]V_4$
• $v_5(p_t) = [I(p_t)^2 - I(p_t)D(p_t)]V_2V_3 + [I(p_t) - D(p_t)]V_5$
• $v_6(p_t) = \left[\frac{I(p_t)^3}{6} - \frac{I(p_t)^2D(p_t)}{2}\right]V_2^3 + \left[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)\right]V_3^2 + \cdots$

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

N.Borghini — 17/23

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

N.Borghini – 17/23

The ratio $rac{v_3(p_t)}{v_2(p_t)}$ should be constant

Actually,

$$v_3(p_t) = [I(p_t) - D(p_t)]V_3 + [I(p_t)^2 - I(p_t)D(p_t)]V_1V_2$$

Thus

$$\frac{v_3(p_t)}{v_2(p_t)} = \frac{V_3}{V_2} + I(p_t)V_1 \simeq \frac{V_3}{V_2} + \underbrace{v_1(p_t)}_{V_1}$$
linear(?)

which might explain the data...

But no identified $v_1(p_t)$ is available yet.

Inspecting the results more carefully...

•
$$v_2(p_t) = [I(p_t) - D(p_t)]V_2$$

• $v_3(p_t) = [I(p_t) - D(p_t)]V_3$

•
$$v_4(p_t) = \left[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)\right]V_2^2 < \frac{1}{2}v_2(p_t)^2$$

•
$$v_5(p_t) = [I(p_t)^2 - I(p_t)D(p_t)]V_2V_3 + [as_{p_t}seen_{lin_p_t}ransport and$$

• $v_6(p_t) = \left[\frac{I(p_t)^3}{6} - \frac{I(p_t)^2D(p_t)}{2}\right]V_2^3 + \left[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)\right]V_3^2 + \cdots$

Inspecting the results more carefully...

•
$$v_2(p_t) = [I(p_t) - D(p_t)]V_2$$

•
$$v_3(p_t) = [I(p_t) - D(p_t)]V_3$$

- $v_4(p_t) = \left| \frac{I(p_t)^2}{2} I(p_t)D(p_t) \right| V_2^2 + [I(p_t) D(p_t)]V_4$
- $v_5(p_t) = [I(p_t)^2 I(p_t)D(p_t)]V_2V_3 > v_2(p_t)v_3(p_t)$

as seen in (real) hydro simulations (I use $I(p_t) > D(p_t)$)

Inspecting the results more carefully...

•
$$v_2(p_t) = [I(p_t) - D(p_t)]V_2$$

•
$$v_3(p_t) = [I(p_t) - D(p_t)]V_3$$

- together $\left| \begin{array}{c} I(p_t)^2 \\ \text{with} \\ 2 \end{array} I(p_t) D(p_t) \right| V_2^2 + [I(p_t) D(p_t)] V_4$
- $v_5(p_t) = [I(p_t)^2 I(p_t)D(p_t)]V_2V_3 + [I(p_t) D(p_t)]V_5$

yield
$$\frac{v_5(p_t) - v_2(p_t)v_3(p_t)}{v_2(p_t)} = D(p_t)V_3$$

i.e. isolate the dissipative contribution to $v_3(p_t)$.

Inspecting the results more carefully...

•
$$v_2(p_t) = [I(p_t) - D(p_t)]V_2$$

• and
$$t = [I(p_t) - D(p_t)]V_3$$

• $v_4(p_t) = \left[\frac{I(p_t)^2}{2} - I(p_t)D(p_t)\right]V_2^2 + [I(p_t) - D(p_t)]V_4$

• $v_5(p_t) = [I(p_t)^2 - I(p_t)D(p_t)]V_2V_3 + [I(p_t) - D(p_t)]V_5$

yield $2v_4(p_t) - v_2(p_t)^2 = -D(p_t)^2 V_2^2$

i.e. again isolate the dissipative contribution (here to $v_2(p_t)$).

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

N.Borghini – 21/23

More relations can be found...

For instance, combining

$$\frac{v_5(p_t) - v_2(p_t)v_3(p_t)}{v_3(p_t)} = D(p_t)V_2$$

(analogous to the relation on slide 20) and

$$2v_4(p_t) - v_2(p_t)^2 = -D(p_t)^2 V_2^2$$

one at once comes up with a relation between four harmonics...

... up to the caveats on my summary slide!

New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

Viscosity and other dissipative phenomena strike twice: throughout the evolution and at freeze-out

Their contributions at freeze-out might be isolated

relations between various flow harmonics (for a given particle species)

(similar relations with multiparticle correlations; not shown here)

hope (naïve?): using particles which decouple earlier / later, one may access the temperature dependence of the transport coefs.

Caveats:

- Throughout this talk, fluctuations were neglected (not a big deal)
- How much of these ideas survives: 1. real hydro; 2. rescatterings realistic studies needed!