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When going from ideal fluid dynamics to dissipative fluid dynamics, 
the corrections (viscosity, (heat conductivity), …) are twofold:


 modification of the fluid four-velocity u(x)


☛ solution of                  with


  


 at freeze-out

☛ within the (naive?) Cooper–Frye prescription


!

f receives corrections                              so that     remain 
continuous in the transition from a fluid to a collection of particles. 

@µT
µ⌫(x) = 0

Tµ⌫(x) = ✏(x)uµ(x)u⌫(x)� P (x)�µ⌫(x) + ⇡µ⌫(x)⇡µ⌫(x)

E~p
d3N

d3~p
=

g

(2⇡)3

Z

⌃
f

✓
p · u(x)

T

◆
p · d3�(x)

f = fid.+ �f (1) + �f (2) + · · · Tµ⌫
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When going from ideal fluid dynamics to dissipative fluid dynamics, 
the corrections (viscosity, (heat conductivity), …) are twofold:


 modification of the fluid four-velocity u(x)


☛ solution of                  with


  


The dissipative part    of the stress tensor involves the various 
transport coefficients (η, ζ, κ…). 


Here, the temperature dependences of the coefficients over the 
whole history of the hydrodynamical evolution affect the particle 
spectra. 

☛ (as yet) unknown functional dependences η(T), ζ(T), κ(T)…

@µT
µ⌫(x) = 0

Tµ⌫(x) = ✏(x)uµ(x)u⌫(x)� P (x)�µ⌫(x) + ⇡µ⌫(x)⇡µ⌫(x)

⇡µ⌫



Dissipative effects 

in heavy ion collisions

N.Borghini — 4/23New frontiers in QCD, YITP, Kyoto, Nov.-Dec., 2013

Dissipative correction at freeze-out: in the Cooper–Frye prescription


!

there come corrections                                         to the phase space 
occupation factor. 


 The functional form of the corrections has been computed

Teaney 2003 (shear); Dusling & Teaney, Denicol et al., Monnai & Hirano 2008- (bulk); 

Teaney & Yan 2013 (conformal 2nd order terms)

mostly assuming freeze-out to a simple-component kinetic gas in 
the relaxation time approximation. 

☛ actual functional forms not fully known. 


 Only the values of the transport coefficients at freeze-out matter.

 ☛ if freeze-out at some temperature Tf.o., only η(Tf.o.), ζ(Tf.o.)…

E~p
d3N

d3~p
=

g

(2⇡)3

Z

⌃
f

✓
p · u(x)

T

◆
p · d3�(x)

f = fid.+ �f (1) + �f (2) + · · ·
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Dissipative correction at freeze-out: in the Cooper–Frye prescription
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E~p
d3N

d3~p
=

g

(2⇡)3

Z

⌃
f

✓
p · u(x)

T

◆
p · d3�(x)

f = fid.+ �f (1) + �f (2) + · · ·

Dissipative corrections to the occupation factor:

�f (1)
shear = C 0

shear

✓
p · u(x)

T

◆
⇡µ⌫(x)pµp⌫fid.

✓
p · u(x)

T

◆

involves η

�f (1)
bulk = C 0

bulk

�
p · u(x), p2

�
⇧(x)fid.

✓
p · u(x)

T

◆

involves ζ
…
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If Tf.o < Tc, the decoupling fluid is to a good approximation conformal:

ε

☛ one may first forget ζ and the non-conformal 2nd order terms. 
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Consider the Cooper–Frye formula    (T is the freeze-out temperature)


!

!

The phase space occupation factor f  is proportional to f id., which will 
be approximated by a Maxwell–Boltzmann distribution. 

!

The integral can be computed with the saddle-point approximation, 
without needing any detail on the freeze-out surface Σ.


(☞ the ensuing results are thus to a large extent irrespective of the velocity 
profile, i.e. of whether u(x) is a solution to ideal or dissipative fluid dynamics)

!

☛ one needs to determine the saddle point, which is* the minimum of 
p  u(x)/T.

E~p
d3N

d3~p
=

g

(2⇡)3

Z

⌃
f

✓
p · u(x)

T

◆
p · d3�(x)

.
* at least approximately
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Taking the Cooper–Frye formula seriously


!

!

one may approximate the integral using the steepest-descent method.

E~p
d3N

d3~p
=

g

(2⇡)3

Z

⌃
f

✓
p · u(x)

T

◆
p · d3�(x)

N.B. & J.-Y.Ollitrault 2005
Two categories of particles:


 ‘‘slow particles’’: velocity     coincides with that of the fluid u(x) at 

 some point on Σ.

☛ at a given rapidity y,                  y .

p

m

maximum fluid velocity

in the direction of pµ

The minimum value of p  u(x)/T is larger than m/T..

|pt| < mu
max

( )

 ‘‘fast particles’’:                  y .|pt| > mu
max

( )The minimum value of p  u(x)/T simply equals m/T, independent of the 
particle momentum.

.
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‘‘Slow particles’’: emitted by fluid cells w.r.t. which they are at rest. 


Velocity     coincides with that of the fluid u(x) at the saddle point.p

m

 Freezing out from an ideal fluid:

The Cooper–Frye integral


yields a function of the particle velocity only, with an m-dependent 
prefactor:


!
!
Fourier-expanding, the flow coefficients vn for all particles coincide 
when considered at the same transverse velocity and rapidity. 


⇒ ‘‘mass-scaling’’ of anisotropic flow

E~p
d3N

d3~p
=

g

(2⇡)3

Z

⌃
fid.

✓
p · u(x)

T

◆
p · d3�(x)

E~p
d3N

d3~p
= C(m)F

✓
pt

m
,

◆
y

N.B. & J.-Y.Ollitrault 2005
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Particles with velocity     are all emitted from the same saddle point.p

m

 Freezing out from a dissipative fluid:

Considering first order only, the Cooper–Frye integral again gives 
an m-dependent pre factor times a function of the particle velocity.


!

⇒ mass-scaling of anisotropic flow persists

yE~p
d3N

d3~p
= C 0(m)F 0

✓
pt

m
,

◆

Proof: 

• Since the saddle point obeys uµ(x) = pµ/m, the shear term vanishes


!

• For the bulk viscosity term, use the ‘‘universality’’ of the saddle point

�f (1)
shear = C 0

shear

✓
p · u(x)

T

◆
⇡µ⌫(x)pµp⌫fid.

✓
p · u(x)

T

◆
with pµpνπµν = 0

�f (1)
bulk = C 0

bulk

�
p · u(x), p2

�
⇧(x)fid.

✓
p · u(x)

T

◆

m2= m universal
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Fast particles emitted in a given direction come from the same saddle 
point, where the fluid has velocity                 . 


At the saddle point,                                              ,  with here

                      . 

☛ governs the particle spectrum. 


As a second step, write


!

and Taylor-expand (with respect to the small coefficients Vn) to find 
the flow coefficients             .

u
max

(y,') = ū
max

(y)


1 + 2

X

n�1

Vn(y) cosn('� n)

�

u
max

(y,')

u0

max

⌘
p

1 + u2

max

p · u(x) = mtu
0

max

(y,')� ptumax

(y,')

vn(pt, y)



v4(pt) =
I(pt)2

2
V 2
2 + I(pt)V4

v5(pt) = I(pt)
2V2V3 + I(pt)V5

Reasonable(?) assumption: the velocity of the freezing-out fluid mostly  
has elliptic and triangular anisotropies: V2, V3 ≫ V1, V4, V5, V6


One then finds


 


 


 


 


 


where                                  with 

v6(pt) =
I(pt)3

6
V 3
2 +

I(pt)2

2
V 2
3 + I(pt)

2V2V4 + I(pt)V6

Fast particles from an ideal fluid
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v2(pt) = I(pt)V2

v3(pt) = I(pt)V3

N.B. & J.-Y.Ollitrault 2005; D.Teaney & L.Yan 2012

I(pt) ⌘
ū
max

T
(pt �mtv̄max

) v̄
max

⌘ ū
maxp

1 + ū2

max
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v2(pt) = I(pt)V2

v3(pt) = I(pt)V3

N.B. & J.-Y.Ollitrault 2005; D.Teaney & L.Yan 2012

I(pt) ⌘
ū
max

T
(pt �mtv̄max

) v̄
max

⌘ ū
maxp

1 + ū2

max

at high momentum   (not too high, hydro should hold!)

⇠ 1

2
v2(pt)

2

⇠ 1

6
v2(pt)

3 +
1

2
v3(pt)

2

⇠ v2(pt)v3(pt)



Assumptions: V2, V3 ≫ V1, V4, V5, V6 & azimuthal dependence of the 
shear part of the stress tensor is neglected (for the sake of simplicity only).
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Remarks: 

 Strictly speaking, the values of these Fourier coefficients, as well 
as that of       (which enters the function      ) are different from 
those of the ideal case.


 Hereafter I only mention the correction due to shear viscosity. That 
arising from bulk viscosity and those from second order terms lead 
to similar results. 

I(pt)ū
max



Assumptions: V2, V3 ≫ V1, V4, V5, V6 & azimuthal dependence of the 
shear part of the stress tensor is neglected (for the sake of simplicity only).


One then finds


 


 


 


 


 


where         is a positive function proportional to η, whose functional 
dependence reflects that of the viscous correction         .

v6(pt) =


I(pt)3

6
� I(pt)2D(pt)

2

�
V 3
2 +


I(pt)2

2
� I(pt)D(pt)

�
V 2
3 + · · ·

v5(pt) = [I(pt)
2 � I(pt)D(pt)]V2V3 + [I(pt)�D(pt)]V5

v4(pt) =


I(pt)2

2
� I(pt)D(pt)

�
V 2
2 + [I(pt)�D(pt)]V4

v3(pt) = [I(pt)�D(pt)]V3

v2(pt) = [I(pt)�D(pt)]V2
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D(pt)
�f (1)

shear
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D(pt)

at high momentum

�f (1)
shear



Assumptions: V2, V3 ≫ V1, V4, V5, V6 & azimuthal dependence of the 
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D(pt)

at high momentum

�f (1)
shear

What 
do w

e do
 with t

hat 
stuf

f??



Inspecting these results more carefully…
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:
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:

9
=

;
same momentum dependence, i.e.

the ratio         should be constantv3(pt)

v2(pt)
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:

The ratio         should be constant
v3(pt)

v2(pt)
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:

The ratio         should be constant
v3(pt)

v2(pt)

for which the saddle-point 
approximation holds

Not quite constant…

yet identical for K and p!
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:

The ratio         should be constant
v3(pt)

v2(pt)

for which the saddle-point 
approximation holds

Not quite constant…

yet identical for K and p!

Does 

V2,V3 ≫ V1 


hold?
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:

The ratio         should be constant
v3(pt)

v2(pt)

for which the saddle-point 
approximation holds

Not quite constant…

yet identical for K and p!

Does 

V2,V3 ≫ V1 


hold?

v3(pt) = [I(pt)�D(pt)]V3 + [I(pt)
2 � I(pt)D(pt)]V1V2

v3(pt)

v2(pt)
=

V3

V2
+ I(pt)V1 ' V3

V2
+ v1(pt)

Actually,

!

thus


!

which might explain the data…


But no identified        is available yet.

linear(?)

v1(pt)



Inspecting the results more carefully…
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:

<
1

2
v2(pt)

2

as seen in transport and

in (real) hydro simulations



Inspecting the results more carefully…
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:

as seen in (real) hydro simulations

> v2(pt)v3(pt)

(I use                 )I(pt) > D(pt)



Inspecting the results more carefully…
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:

together with

yield v5(pt)� v2(pt)v3(pt)

v2(pt)
= D(pt)V3

i.e. isolate the dissipative contribution to        . v3(pt)



Inspecting the results more carefully…
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:

and

yield

i.e. again isolate the dissipative contribution (here to        ). v2(pt)

2v4(pt)� v2(pt)
2 = �D(pt)

2V 2
2



More relations can be found…


For instance, combining


                                          


(analogous to the relation on slide 20)  and


!

one at once comes up with a relation between four harmonics…


!

… up to the caveats on my summary slide!

Fast particles from a viscous fluid

relations between flow harmonics
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:

2v4(pt)� v2(pt)
2 = �D(pt)

2V 2
2

v5(pt)� v2(pt)v3(pt)

v3(pt)
= D(pt)V2



 Viscosity and other dissipative phenomena strike twice: 

   ☛ throughout the evolution and at freeze-out 


 Their contributions at freeze-out might be isolated

   ☛ relations between various flow harmonics (for a given particle species)

   ☛ (similar relations with multiparticle correlations; not shown here)

   ☛ hope (naïve?): using particles which decouple earlier / later, one 

       may access the temperature dependence of the transport coefs.


 Caveats:

Throughout this talk, fluctuations were neglected (not a big deal)

How much of these ideas survives: 1. real hydro; 2. rescatterings


      ☛ realistic studies needed!

Dissipative corrections

to anisotropic flow
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