Dissipative corrections to anisotropic flow

Nicolas BORGHINI

Universitä† Bielefeld

Dissipative corrections to anisotropic flow

- Dissipative effects in heavy ion collisions
- Principle and ideas of the calculations
- Results

Christian Lang \& N.B., arXiv:1312.????

Dissipative corrections to anisotropic flow

- Dissipative effects in heavy ion collisions
- Principle and ideas of the calculations
- Results

Dissipative effects in heavy ion collisions

When going from ideal fluid dynamics to dissipative fluid dynamics, the corrections (viscosity, (heat conductivity), ...) are twofold:
modification of the fluid four-velocity $u(x)$

- solution of $\partial_{\mu} T^{\mu \nu}(x)=0$ with

$$
T^{\mu \nu}(\mathrm{x})=\epsilon(\mathrm{x}) u^{\mu}(\mathrm{x}) u^{\nu}(\mathrm{x})-\mathcal{P}(\mathrm{x}) \Delta^{\mu \nu}(\mathrm{x})+\pi^{\mu \nu}(\mathrm{x})
$$

at freeze-out

- within the (naive?) Cooper-Frye prescription

$$
E_{\vec{p}} \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} \vec{p}}=\frac{g}{(2 \pi)^{3}} \int_{\Sigma} f\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right) \mathrm{p} \cdot \mathrm{~d}^{3} \sigma(\mathrm{x})
$$

f receives corrections $f=f_{\text {id. }}+\delta f^{(1)}+\delta f^{(2)}+\cdots$ so that $T^{\mu \nu}$ remain continuous in the transition from a fluid to a collection of particles.

Dissipative effects in heavy ion collisions

When going from ideal fluid dynamics to dissipative fluid dynamics, the corrections (viscosity, (heat conductivity), ...) are twofold:
o modification of the fluid four-velocity $u(x)$

- solution of $\partial_{\mu} T^{\mu \nu}(x)=0$ with

$$
T^{\mu \nu}(\mathrm{x})=\epsilon(\mathrm{x}) u^{\mu}(\mathrm{x}) u^{\nu}(\mathrm{x})-\mathcal{P}(\mathrm{x}) \Delta^{\mu \nu}(\mathrm{x})+\pi^{\mu \nu}(\mathrm{x})
$$

The dissipative part $\pi^{\mu \nu}$ of the stress tensor involves the various transport coefficients ($\eta, \zeta, \kappa \ldots$.$) .$

Here, the temperature dependences of the coefficients over the whole history of the hydrodynamical evolution affect the particle spectra.

- (as yet) unknown functional dependences $\eta(T), \zeta(T), \kappa(T)$...

Dissipative effects in heavy ion collisions

Dissipative correction at freeze-out: in the Cooper-Frye prescription

$$
E_{\vec{p}} \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} \vec{p}}=\frac{g}{(2 \pi)^{3}} \int_{\Sigma} f\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right) \mathrm{p} \cdot \mathrm{~d}^{3} \sigma(\mathrm{x})
$$

there come corrections $f=f_{\text {id. }}+\delta f^{(1)}+\delta f^{(2)}+\cdots$ to the phase space occupation factor.

- The functional form of the corrections has been computed

Teaney 2003 (shear); Dusling \& Teaney, Denicol et al., Monnai \& Hirano 2008- (bulk); Teaney \& Yan 2013 (conformal 2nd order terms) mostly assuming freeze-out to a simple-component kinetic gas in the relaxation time approximation.

Dissipative effects in heavy ion collisions

Dissipative correction at freeze-out: in the Cooper-Frye prescription Dissipative corrections to the occupation factor:

$$
\delta f_{\text {shear }}^{(1)}=C_{\text {shear }}^{\prime}\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right) \xrightarrow{\frac{\pi}{}_{\mu \nu}(\mathrm{x})} p_{\mu} p_{\nu} f_{\mathrm{id} .}\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right)
$$

$$
\delta f_{\text {bulk }}^{(1)}=C_{\text {bulk }}^{\prime}\left(\mathrm{p} \cdot \mathrm{u}(\mathrm{x}), \mathrm{p}^{2}\right) \xrightarrow{\prod(\mathrm{x})} f_{\mathrm{id}}\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right)
$$

Dissipative effects in heavy ion collisions

Dissipative correction at freeze-out: in the Cooper-Frye prescription

$$
E_{\vec{p}} \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} \vec{p}}=\frac{g}{(2 \pi)^{3}} \int_{\Sigma} f\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right) \mathrm{p} \cdot \mathrm{~d}^{3} \sigma(\mathrm{x})
$$

there come corrections $f=f_{\text {id. }}+\delta f^{(1)}+\delta f^{(2)}+\cdots$ to the phase space occupation factor.

- The functional form of the corrections has been computed

Teaney 2003 (shear); Dusling \& Teaney, Denicol et al., Monnai \& Hirano 2008- (bulk); Teaney \& Yan 2013 (conformal 2nd order terms) mostly assuming freeze-out to a simple-component kinetic gas in the relaxation time approximation.

- actual functional forms not fully known.
- Only the values of the transport coefficients at freeze-out matter.
* if freeze-out at some temperature $T_{\text {f.o., }}$ only $\eta\left(T_{\text {f.o. }}\right), \zeta\left(T_{\text {f.o. }}\right)$...

Dissipative corrections at freeze-out

 If $T_{\text {f. } 0}<T_{\mathrm{c}}$, the decoupling fluid is to a good approximation conformal:

* one may first forget ζ and the non-conformal 2nd order terms.

Dissipative corrections to anisotropic flow

- Dissipative effects in heavy ion collisions
- Principle and ideas of the calculations

Particle emission at freeze-out

Consider the Cooper-Frye formula (T is the freeze-out temperature)

$$
E_{\vec{p}} \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} \vec{p}}=\frac{g}{(2 \pi)^{3}} \int_{\Sigma} f\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right) \mathrm{p} \cdot \mathrm{~d}^{3} \sigma(\mathrm{x})
$$

The phase space occupation factor f is proportional to f id., which will be approximated by a Maxwell-Boltzmann distribution.

The integral can be computed with the saddle-point approximation, without needing any detail on the freeze-out surface Σ.
(profile, i.e. of whether $u(x)$ is a solution to ideal or dissipative fluid dynamics)

* one needs to determine the saddle point, which is* the minimum of $\mathrm{p} \cdot \mathrm{u}(\mathrm{x}) / T$.

Particle emission at freeze-out

Taking the Cooper-Frye formula seriously

$$
E_{\vec{p}} \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} \vec{p}}=\frac{g}{(2 \pi)^{3}} \int_{\Sigma} f\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right) \mathrm{p} \cdot \mathrm{~d}^{3} \sigma(\mathrm{x})
$$

one may approximate the integral using the steepest-descent method.
N.B. \& J.-Y.Ollitrault 2005

Two categories of particles:

- "slow particles": velocity $\frac{p}{m}$ coincides with that of the fluid $u(x)$ at some point on Σ.
- at a given rapidity $y,\left|\mathbf{p}_{t}\right|<m u_{\max }(y)$. maximum fluid velocity in the direction of p^{μ}
The minimum value of $\mathrm{p} \cdot \mathrm{u}(\mathrm{x}) / T$ simply equals m / T, independent of the particle momentum.

Particle emission at freeze-out

Taking the Cooper-Frye formula seriously

$$
E_{\vec{p}} \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} \vec{p}}=\frac{g}{(2 \pi)^{3}} \int_{\Sigma} f\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right) \mathrm{p} \cdot \mathrm{~d}^{3} \sigma(\mathrm{x})
$$

one may approximate the integral using the steepest-descent method.
N.B. \& J.-Y.Ollitrault 2005

Two categories of particles:

- "slow particles": velocity $\frac{p}{m}$ coincides with that of the fluid $u(x)$ at some point on Σ.
- at a given rapidity $y,\left|\mathbf{p}_{t}\right|<m u_{\max }(y)$. in the direction of p^{μ}

0 "fast particles": $\left|\mathbf{p}_{t}\right|>m u_{\max }(\boldsymbol{y})$.
The minimum value of $\mathrm{p} \cdot \mathrm{u}(\mathrm{x}) / T$ is larger than m / T.

Dissipative corrections to anisotropic flow

- Dissipative effects in heavy ion collisions
- Principle and ideas of the calculations
- Results

Results for slow particles

"Slow particles": emitted by fluid cells w.r.t. which they are at rest. Velocity $\frac{p}{m}$ coincides with that of the fluid $u(x)$ at the saddle point.

- Freezing out from an ideal fluid:

The Cooper-Frye integral $E_{\vec{p}} \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} \vec{p}}=\frac{g}{(2 \pi)^{3}} \int_{\Sigma} f_{\text {id. }}\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right) \mathrm{p} \cdot \mathrm{d}^{3} \sigma(\mathrm{x})$ yields a function of the particle velocity only, with an m-dependent prefactor:

$$
E_{\vec{p}} \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} \vec{p}}=C(m) F\left(\frac{\mathbf{p}_{t}}{m}, y\right)
$$

Fourier-expanding, the flow coefficients v_{n} for all particles coincide when considered at the same transverse velocity and rapidity.

$$
\Rightarrow \text { "mass-scaling" of anisotropic flow }
$$

N.B. \& J.-Y.Ollitrault 2005

Results for slow particles

Particles with velocity $\frac{p}{m}$ are all emitted from the same saddle point.

- Freezing out from a dissipative fluid:

Considering first order only, the Cooper-Frye integral again gives an m-dependent pre factor times a function of the particle velocity.

$$
E_{\vec{p}} \frac{\mathrm{~d}^{3} N}{\mathrm{~d}^{3} \vec{p}}=C^{\prime}(m) F^{\prime}\left(\frac{\mathbf{p}_{t}}{m}, y\right)
$$

\Rightarrow mass-scaling of anisotropic flow persists

Proof:

- Since the saddle point obeys $w^{\mu}(\mathbf{x})=p^{\mu} / m$, the shear term vanishes

$$
\delta f_{\text {shear }}^{(1)}=C_{\text {shear }}^{\prime}\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right) \pi^{\mu \nu}(\mathrm{x}) p_{\mu} p_{\nu} f_{\text {id. }}\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right) \text { with } p^{\mu} p^{v} \pi_{\mu \nu}=0
$$

- For the bulk viscosity term, use the "universality" of the saddle point

$$
\begin{array}{r}
\delta f_{\mathrm{bulk}}^{(1)}=C_{\mathrm{bulk}}^{\prime}\left(\mathrm{p} \cdot \mathrm{u}(\mathrm{x}), \mathrm{p}^{2}\right) \Pi(\mathrm{x}) f_{\mathrm{id} .}\left(\frac{\mathrm{p} \cdot \mathrm{u}(\mathrm{x})}{T}\right) \\
=m \quad m^{2} \xrightarrow{\square} \text { universal }
\end{array}
$$

Fast particles

Fast particles emitted in a given direction come from the same saddle point, where the fluid has velocity $u_{\max }(y, \varphi)$.

At the saddle point, $\mathrm{p} \cdot \mathrm{u}(\mathrm{x})=m_{t} u_{\max }^{0}(y, \varphi)-p_{t} u_{\max }(y, \varphi)$, with here $u_{\max }^{0} \equiv \sqrt{1+u_{\max }^{2}}$.

- governs the particle spectrum.

As a second step, write

$$
u_{\max }(y, \varphi)=\bar{u}_{\max }(y)\left[1+2 \sum_{n \geq 1} V_{n}(y) \cos n\left(\varphi-\Psi_{n}\right)\right]
$$

and Taylor-expand (with respect to the small coefficients V_{n}) to find the flow coefficients $v_{n}\left(p_{t}, y\right)$.

Fast particles from an ideal fluid

Reasonable(?) assumption: the velocity of the freezing-out fluid mostly has elliptic and triangular anisotropies: $V_{2}, V_{3} \gg V_{1}, V_{4}, V_{5}, V_{6}$

One then finds

- $v_{2}\left(p_{t}\right)=I\left(p_{t}\right) V_{2}$
- $v_{3}\left(p_{t}\right)=I\left(p_{t}\right) V_{3}$
- $v_{4}\left(p_{t}\right)=\frac{I\left(p_{t}\right)^{2}}{2} V_{2}^{2}+I\left(p_{t}\right) V_{4}$
- $v_{5}\left(p_{t}\right)=I\left(p_{t}\right)^{2} V_{2} V_{3}+I\left(p_{t}\right) V_{5}$
- $v_{6}\left(p_{t}\right)=\frac{I\left(p_{t}\right)^{3}}{6} V_{2}^{3}+\frac{I\left(p_{t}\right)^{2}}{2} V_{3}^{2}+I\left(p_{t}\right)^{2} V_{2} V_{4}+I\left(p_{t}\right) V_{6}$
where $I\left(p_{t}\right) \equiv \frac{\bar{u}_{\text {max }}}{T}\left(p_{t}-m_{t} \overline{\mathrm{~m}}_{\text {max }}\right)$ with $\quad \overline{\mathrm{v}}_{\max } \equiv \frac{\bar{u}_{\max }}{\sqrt{1+\bar{u}_{\max }^{2}}}$

Fast particles from an ideal fluid

Reasonable(?) assumption: the velocity of the freezing-out fluid mostly has elliptic and triangular anisotropies: $V_{2}, V_{3} \gg V_{1}, V_{4}, V_{5}, V_{6}$

One then finds at high momentum (not too high, hydro should hold!)

- $v_{2}\left(p_{t}\right)=I\left(p_{t}\right) V_{2}$
- $v_{3}\left(p_{t}\right)=I\left(p_{t}\right) V_{3}$
- $v_{4}\left(p_{t}\right)=\frac{I\left(p_{t}\right)^{2}}{2} V_{2}^{2}$
$\sim \frac{1}{2} v_{2}\left(p_{t}\right)^{2}$
- $v_{5}\left(p_{t}\right)=I\left(p_{t}\right)^{2} V_{2} V_{3}$
$\sim v_{2}\left(p_{t}\right) v_{3}\left(p_{t}\right)$
- $v_{6}\left(p_{t}\right)=\frac{I\left(p_{t}\right)^{3}}{6} V_{2}^{3}+\frac{I\left(p_{t}\right)^{2}}{2} V_{3}^{2} \sim \frac{1}{6} v_{2}\left(p_{t}\right)^{3}+\frac{1}{2} v_{3}\left(p_{t}\right)^{2}$
where $I\left(p_{t}\right) \equiv \frac{\bar{u}_{\text {max }}}{T}\left(p_{t}-m_{t} \overline{\mathrm{v}}_{\text {max }}\right)$ with $\quad \overline{\mathrm{v}}_{\max } \equiv \frac{\bar{u}_{\text {max }}}{\sqrt{1+\bar{u}_{\text {max }}^{2}}}$
N.B. \& J.-Y.Ollitrault 2005; D.Teaney \& L.Yan 2012

Fast particles from a viscous fluid

Assumptions: $V_{2}, V_{3} \gg V_{1}, V_{4}, V_{5}, V_{6} \&$ azimuthal dependence of the shear part of the stress tensor is neglected (for the sake of simplicity only).

Remarks:

- Strictly speaking, the values of these Fourier coefficients, as well as that of $\bar{u}_{\max }$ (which enters the function $I\left(p_{t}\right)$) are different from those of the ideal case.
- Hereafter I only mention the correction due to shear viscosity. That arising from bulk viscosity and those from second order terms lead to similar results.

Fast particles from a viscous fluid

Assumptions: $V_{2}, V_{3} \gg V_{1}, V_{4}, V_{5}, V_{6} \&$ azimuthal dependence of the shear part of the stress tensor is neglected (for the sake of simplicity only).

One then finds

- $v_{2}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{2}$
- $v_{3}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{3}$
$v_{4}\left(p_{t}\right)=\left[\frac{I\left(p_{t}\right)^{2}}{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{2}^{2}+\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{4}$
- $v_{5}\left(p_{t}\right)=\left[I\left(p_{t}\right)^{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{2} V_{3}+\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{5}$
- $v_{6}\left(p_{t}\right)=\left[\frac{I\left(p_{t}\right)^{3}}{6}-\frac{I\left(p_{t}\right)^{2} D\left(p_{t}\right)}{2}\right] V_{2}^{3}+\left[\frac{I\left(p_{t}\right)^{2}}{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{3}^{2}+\cdots$
where $D\left(p_{t}\right)$ is a positive function proportional to η, whose functional dependence reflects that of the viscous correction $\delta f_{\text {shear }}^{(1)}$.

Fast particles from a viscous fluid

Assumptions: $V_{2}, V_{3} \gg V_{1}, V_{4}, V_{5}, V_{6} \&$ azimuthal dependence of the shear part of the stress tensor is neglected (for the sake of simplicity only).

One then finds at high momentum

- $v_{2}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{2}$
- $v_{3}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{3}$
- $v_{4}\left(p_{t}\right)=\left[\frac{I\left(p_{t}\right)^{2}}{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{2}^{2}$
- $v_{5}\left(p_{t}\right)=\left[I\left(p_{t}\right)^{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{2} V_{3}$
- $v_{6}\left(p_{t}\right)=\left[\frac{I\left(p_{t}\right)^{3}}{6}-\frac{I\left(p_{t}\right)^{2} D\left(p_{t}\right)}{2}\right] V_{2}^{3}+\left[\frac{I\left(p_{t}\right)^{2}}{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{3}^{2}$
where $D\left(p_{t}\right)$ is a positive function proportional to η, whose functional dependence reflects that of the viscous correction $\delta f_{\text {shear }}^{(1)}$.

Fast particles from a viscous fluid

Assumptions: $V_{2}, V_{3} \gg V_{1}, V_{4}, V_{5}, V_{6} \&$ azimuthal dependence of the shear part of the stress tensor is neglected (for the sake of simplicity only).

One then finds at high momentum

- $v_{2}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{2}$
- $v_{3}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{3}$
- $v_{4}\left(p_{t}\right)=\left[\frac{I\left(p_{t}\right)^{2}}{2}-I(n) d o\right.$
- $v_{5}\left(p_{t}\right)=\left[I V\right.$ dat do $\left.\left(p_{t}\right)\right] V_{2} V_{3}$
$v_{6}\left(p_{t} \int_{6}^{W}-\frac{I\left(p_{t}\right)^{2} D\left(p_{t}\right)}{2}\right] V_{2}^{3}+\left[\frac{I\left(p_{t}\right)^{2}}{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{3}^{2}$
where $D\left(p_{t}\right)$ is a positive function proportional to η, whose functional dependence reflects that of the viscous correction $\delta f_{\text {shear }}^{(1)}$.

Fast particles from a viscous fluid: relations between flow harmonics

Inspecting these results more carefully...

- $v_{2}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{2}$
- $v_{3}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{3}$
- $v_{4}\left(p_{t}\right)=\left[\frac{I\left(p_{t}\right)^{2}}{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{2}^{2}+\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{4}$
- $v_{5}\left(p_{t}\right)=\left[I\left(p_{t}\right)^{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{2} V_{3}+\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{5}$
- $v_{6}\left(p_{t}\right)=\left[\frac{I\left(p_{t}\right)^{3}}{6}-\frac{I\left(p_{t}\right)^{2} D\left(p_{t}\right)}{2}\right] V_{2}^{3}+\left[\frac{I\left(p_{t}\right)^{2}}{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{3}^{2}+\cdots$

Fast particles from a viscous fluid: relations between flow harmonics

Inspecting these results more carefully...

- $\left.v_{2}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{2}\right\}$ same momentum dependence, i.e.
- $\left.v_{3}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{3}\right\}$ the ratio $\frac{v_{3}\left(p_{t}\right)}{v_{2}\left(p_{t}\right)}$ should be constant

Fast particles from a viscous fluid: relations between flow harmonics

The ratio $\frac{v_{3}\left(p_{t}\right)}{v_{2}\left(p_{t}\right)}$ should be constant

Fast particles from a viscous fluid: relations between flow harmonics

The ratio $\frac{v_{3}\left(p_{t}\right)}{v_{2}\left(p_{t}\right)}$ should be constant

Fast particles from a viscous fluid: relations between flow harmonics

The ratio $\frac{v_{3}\left(p_{t}\right)}{v_{2}\left(p_{t}\right)}$ should be constant

Fast particles from a viscous fluid: relations between flow harmonics

The ratio $\frac{v_{3}\left(p_{t}\right)}{v_{2}\left(p_{t}\right)}$ should be constant
Actually,
$v_{3}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{3}+\left[I\left(p_{t}\right)^{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{1} V_{2}$
thus
$\frac{v_{3}\left(p_{t}\right)}{v_{2}\left(p_{t}\right)}=\frac{V_{3}}{V_{2}}+I\left(p_{t}\right) V_{1} \simeq \frac{V_{3}}{V_{2}}+v_{1}\left(p_{t}\right)$
which might explain the data...
But no identified $v_{1}\left(p_{t}\right)$ is available yet.

Fast particles from a viscous fluid: relations between flow harmonics

Inspecting the results more carefully...

- $v_{2}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{2}$
$v_{4}\left(p_{t}\right)=\left[\frac{I\left(p_{t}\right)^{2}}{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{2}^{2}<\frac{1}{2} v_{2}\left(p_{t}\right)^{2}$
as seen in transport and in (real) hydro simulations

Fast particles from a viscous fluid: relations between flow harmonics

Inspecting the results more carefully...

- $v_{2}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{2}$
- $v_{3}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{3}$
- $v_{5}\left(p_{t}\right)=\left[I\left(p_{t}\right)^{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{2} V_{3}>v_{2}\left(p_{t}\right) v_{3}\left(p_{t}\right)$
as seen in (real) hydro simulations (I use $I\left(p_{t}\right)>D\left(p_{t}\right)$)

Fast particles from a viscous fluid: relations between flow harmonics

Inspecting the results more carefully...

- $v_{2}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{2}$
- $v_{3}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{3}$
together with
- $v_{5}\left(p_{t}\right)=\left[I\left(p_{t}\right)^{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{2} V_{3}$
yield

$$
\frac{v_{5}\left(p_{t}\right)-v_{2}\left(p_{t}\right) v_{3}\left(p_{t}\right)}{v_{2}\left(p_{t}\right)}=D\left(p_{t}\right) V_{3}
$$

i.e. isolate the dissipative contribution to $v_{3}\left(p_{t}\right)$.

Fast particles from a viscous fluid: relations between flow harmonics

Inspecting the results more carefully...

- $v_{2}\left(p_{t}\right)=\left[I\left(p_{t}\right)-D\left(p_{t}\right)\right] V_{2}$
and
- $v_{4}\left(p_{t}\right)=\left[\frac{I\left(p_{t}\right)^{2}}{2}-I\left(p_{t}\right) D\left(p_{t}\right)\right] V_{2}^{2}$
yield

$$
2 v_{4}\left(p_{t}\right)-v_{2}\left(p_{t}\right)^{2}=-D\left(p_{t}\right)^{2} V_{2}^{2}
$$

i.e. again isolate the dissipative contribution (here to $v_{2}\left(p_{t}\right)$).

Fast particles from a viscous fluid: relations between flow harmonics

More relations can be found...
For instance, combining

$$
\frac{v_{5}\left(p_{t}\right)-v_{2}\left(p_{t}\right) v_{3}\left(p_{t}\right)}{v_{3}\left(p_{t}\right)}=D\left(p_{t}\right) V_{2}
$$

(analogous to the relation on slide 20) and

$$
2 v_{4}\left(p_{t}\right)-v_{2}\left(p_{t}\right)^{2}=-D\left(p_{t}\right)^{2} V_{2}^{2}
$$

one at once comes up with a relation between four harmonics...
... up to the caveats on my summary slide!

Dissipative corrections to anisotropic flow

- Viscosity and other dissipative phenomena strike twice:
- throughout the evolution and at freeze-out
- Their contributions at freeze-out might be isolated
- relations between various flow harmonics (for a given particle species)
- (similar relations with multiparticle correlations; not shown here)
* hope (naïve?): using particles which decouple earlier / later, one may access the temperature dependence of the transport coefs.
- Caveats:
- Throughout this talk, fluctuations were neglected (not a big deal)
- How much of these ideas survives: 1. real hydro; 2. rescatterings - realistic studies needed!

