Nicolas BORGHINI

Universität Bielefeld

- Heavy quarkonia in a medium as a dissipative quantum system?
- Master-equation approach to dissipative quantum systems
 - internal degrees of freedom
 - external degrees of freedom
- Master-equation approach to the real-time evolution of quarkonia in a QGP.

N.B. & C.Gombeaud, arXiv:1003.2945 + arXiv:1009.4271

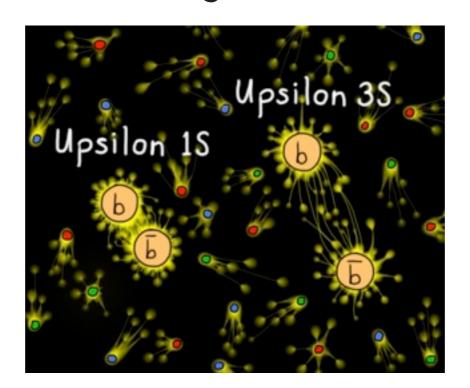
- Heavy quarkonia in a medium as a dissipative quantum system?
- Master-equation approach to dissipative quantum systems
 - internal degrees of freedom
 - mexternal degrees of freedom
- Master-equation approach to the real-time evolution of quarkonia in a QGP.

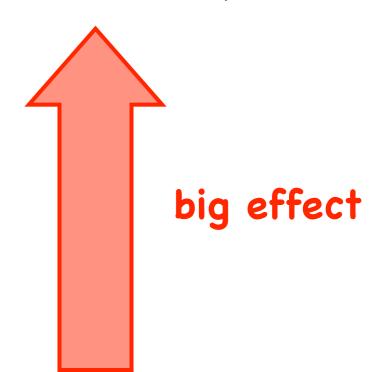
N.B. & C.Gombeaud, arXiv:1003.2945 + arXiv:1009.4271

A naïve picture...

Quarkonia - few internal degrees of freedom: "small system"

almost no influence





Quark-gluon plasma - many degrees of freedom

Medium can transfer energy & momentum to the quarkonium without being significantly affected: small system in contact with a reservoir.

Paradigm setup of dissipative quantum systems.

Might be useful to study the real-time dynamics of quarkonia.

Dissipative quantum systems: generic setup & properties

 \odot Small system S + reservoir R constitute a closed total system:

Hermitian Hamiltonian $H=H_{\mathcal{S}}+H_{\mathcal{R}}+V$ \Rightarrow unitary evolution free small free interaction system reservoir

- The reservoir/bath dynamics are "uninteresting": the corresponding degrees of freedom are integrated out.
 - \Rightarrow non-unitary effective evolution ($(H_S)_{\rm eff}$) of the small system:

open, dissipative quantum system.

Reservoir influence encoded in non-Hermitian $(H_{\mathcal{S}})_{\mathrm{eff}}$.

right see also next talk by Nirupam Dutta!

Dissipative quantum systems: time scales

$$H = H_{\mathcal{S}} + H_{\mathcal{R}} + V$$
 free small free interaction system reservoir

 $V=S\,R$, where S acts on the small system, R acts on the reservoir.

In a large reservoir in a stationary state, the autocorrelation function $\langle R(t)R(t-\tau)\rangle$ takes non-negligible values only in a small interval around $\tau=0$, of typical size τ_c .

characteristic of the reservoir fluctuations (Should not be resolved by the small system?)

- Heavy quarkonia in a medium as a dissipative quantum system?
- Master-equation approach to dissipative quantum systems
 - internal degrees of freedom
 - external degrees of freedom
- Master-equation approach to the real-time evolution of quarkonia in a QGP.

N.B. & C.Gombeaud, arXiv:1003.2945 + arXiv:1009.4271

Master equation formalism

("Redfield formalism": Wangsness & Bloch 1953, Redfield 1957)

ullet Total system described by its density matrix ho(t)

unitary evolution:
$$\frac{\mathrm{d}\rho(t)}{\mathrm{d}t} = \frac{1}{\mathrm{i}\hbar}[H,\rho(t)]$$

- Integrating out the reservoir degrees of freedom:
 - \Rightarrow reduced density operator $\rho^{\mathcal{S}}(t) \equiv \mathrm{Tr}_{\mathcal{R}} \big(\rho(t) \big)$ obeys a non-local evolution equation
- \odot Neglect correlations between reservoir and small system & consider evolution of small system on time scales $\gg \tau_{\rm c}$.

$$\Rightarrow$$
 local equation $\frac{\mathrm{d} \rho^{\mathcal{S}}(t)}{\mathrm{d} t} = \frac{1}{\mathrm{i} \hbar} [H_{\mathcal{S}}, \rho^{\mathcal{S}}(t)] + \mathcal{L}[\rho^{\mathcal{S}}(t)]$

encodes properties of the bath and its coupling to the small system

Master equation formalism: ingredients

- The small system is characterized by the reduced density matrix.
 - ⇒ energy eigenstates
 - Hereafter: diagonal elements $\rho_{ii}^{\mathcal{S}}$ ("populations") only.
- ullet From the reservoir, only the average number of excitations $\langle n_{\lambda} \rangle$ in each mode λ is needed.
 - \Rightarrow can be a thermal bath, but not necessarily
- Interaction: rates $\Gamma_{i\to k}$ of the reservoir-induced transitions between states of the small system.

Master equation formalism: internal degrees of freedom

neglect the motion of the small system

For the populations of the energy eigenstates, the master equation for the reduced density matrix yields coupled Einstein equations

$$\frac{\mathrm{d}\rho_{ii}^{\mathcal{S}}}{\mathrm{d}t}(t) = -\sum_{k \neq i} \Gamma_{i \to k} \, \rho_{ii}^{\mathcal{S}}(t) + \sum_{k \neq i} \Gamma_{k \to i} \, \rho_{kk}^{\mathcal{S}}(t)$$

IF the reservoir is a thermal bath at temperature T, then the rates satisfy $\Gamma_{i \to k} \, \mathrm{e}^{-E_i/k_B T} = \Gamma_{k \to i} \, \mathrm{e}^{-E_k/k_B T}$, and the populations tend to stationary solutions $\left(\rho_{ii}^{\mathcal{S}}\right)_{\mathrm{eq.}} \propto \mathrm{e}^{-E_i/k_B T}$.

"equilibration of the internal degrees of freedom"

Master equation formalism: external degrees of freedom

motion of the small system

The energy eigenstates are now labeled with their internal quantum numbers and their momentum: $\rho_{ii.\mathbf{pp}}^{\mathcal{S}}$.

Define then
$$\pi(\mathbf{p},t) \equiv \sum_i \rho_{ii,\mathbf{pp}}^{\mathcal{S}}(t)$$
, summed over all internal states.

- The rate of evolution of $\pi(\mathbf{p},t)$ is lower than those of the $\rho_{ii,\mathbf{pp}}^{\mathcal{S}}(t)$.
- \odot When the internal degrees of freedom have equilibrated, π obeys a Fokker-Planck equation (for small momenta)

$$\frac{\partial \pi(\mathbf{p}, t)}{\partial t} = \eta_D \nabla_{\mathbf{p}} \cdot \left[\mathbf{p} \pi(\mathbf{p}, t) \right] + \kappa \triangle_{\mathbf{p}} \pi(\mathbf{p}, t)$$

IF the reservoir is a thermal bath at temperature T, $\kappa = \eta_D M_{\mathcal{S}} k_B T$.

Master equation formalism: time scales

 \odot Characteristic scale τ_c of the reservoir fluctuations.

«

Typical scale for the evolution of the populations of internal states

$$\approx 1 / \Gamma_{i \to k}$$

«

Characteristic scale for the evolution of the small system momentum

$$\approx 1 / \eta_D$$

- Heavy quarkonia in a medium as a dissipative quantum system?
- Master-equation approach to dissipative quantum systems
 - internal degrees of freedom
 - mexternal degrees of freedom
- Master-equation approach to the real-time evolution of quarkonia in a QGP.

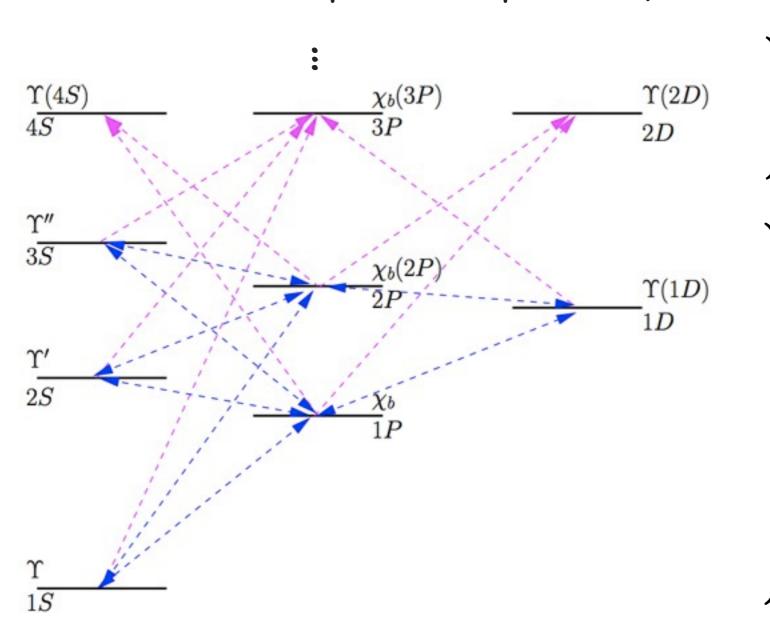
N.B. & C.Gombeaud, arXiv:1003.2945 + arXiv:1009.4271

- Plasma modeled as a 3-dimensional reservoir
 - f 0 "Gaussian bath" ($\langle n_{\lambda} \rangle$ peaked around some energy)
 - 2 Thermal bath

 \bigcirc ... which induces vector transitions (through dipolar coupling) in the \bigcirc \bigcirc system

- ... and more precisely, between bb states.
 - why bottomonia? because there are more of them! (and thereby allow us to bypass "cold nuclear matter" issues?)

Simplified (but not simplistic) exploratory model:



Cannot transition back to bound states:

"continuum"

Stable in vacuum.

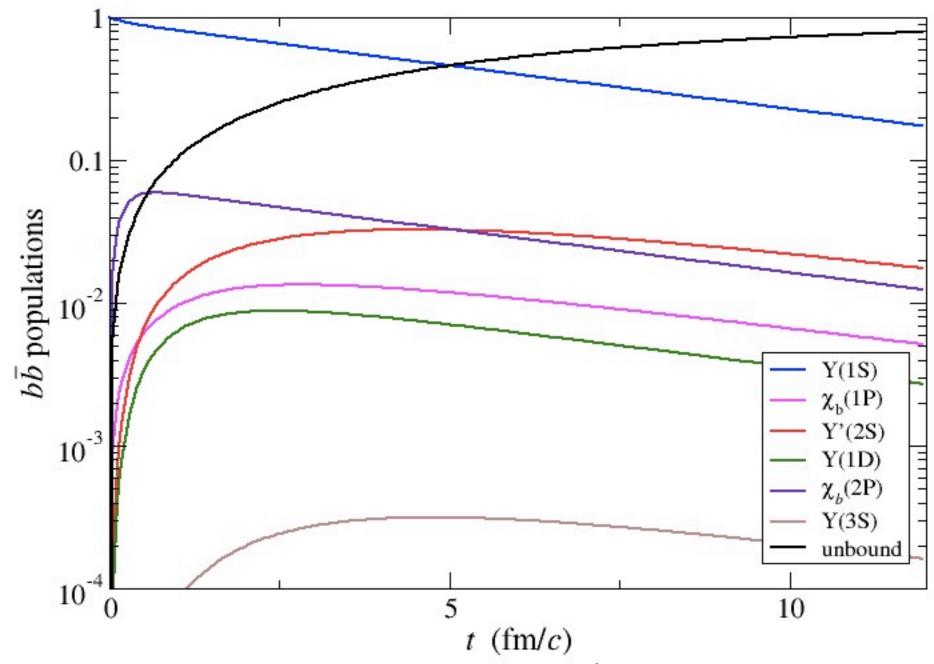
Can absorb or emit bath excitations (2-way transitions)

Some transitions are missing, dissociated states are poorly modeled...

(Static) Bottomonia in a Gaussian bath

...peaked around $5T_c$

Initial condition: only the ground state is populated at t=0.



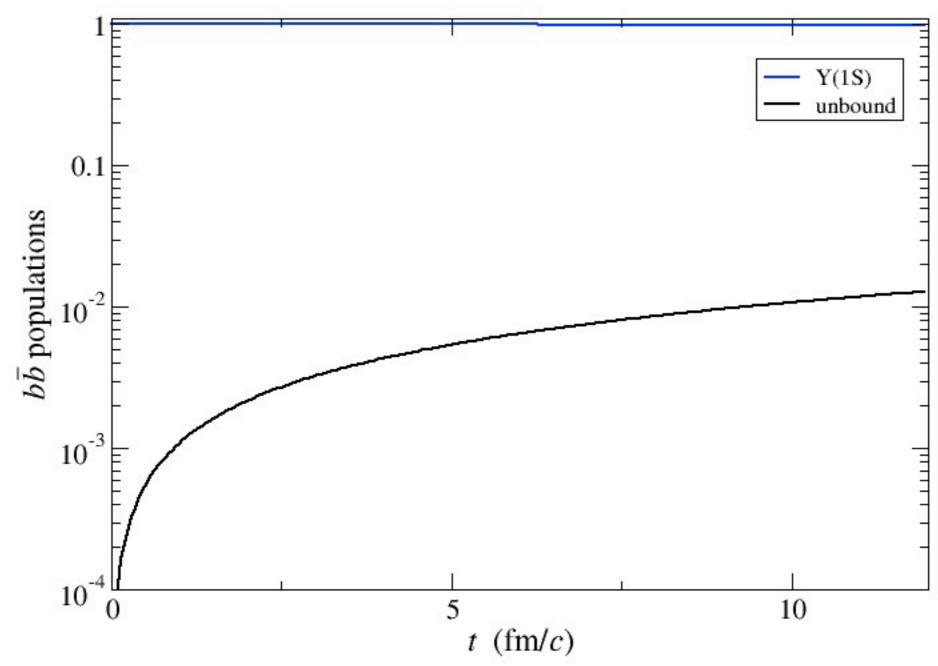
roper energy to induce transitions / dissociation.

N.Borghini — 14/21

(Static) Bottomonia in a Gaussian bath

...peaked around $10T_c$

Initial condition: only the ground state is populated at t=0.

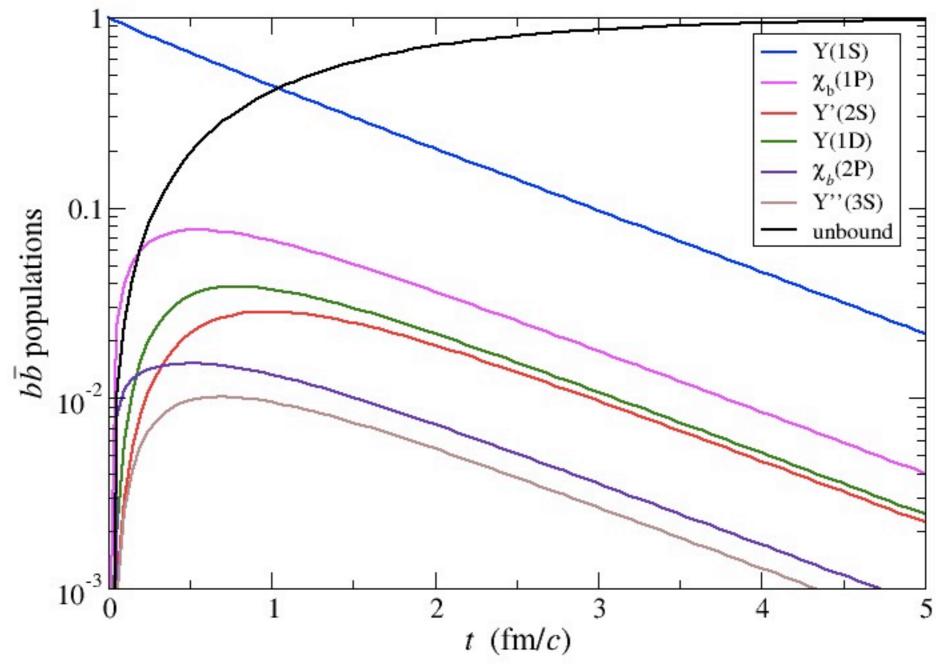


the gluons are too energetic to dissociate the bottomonia.

(Static) Bottomonia in a thermal bath

...at $T = 5T_c$

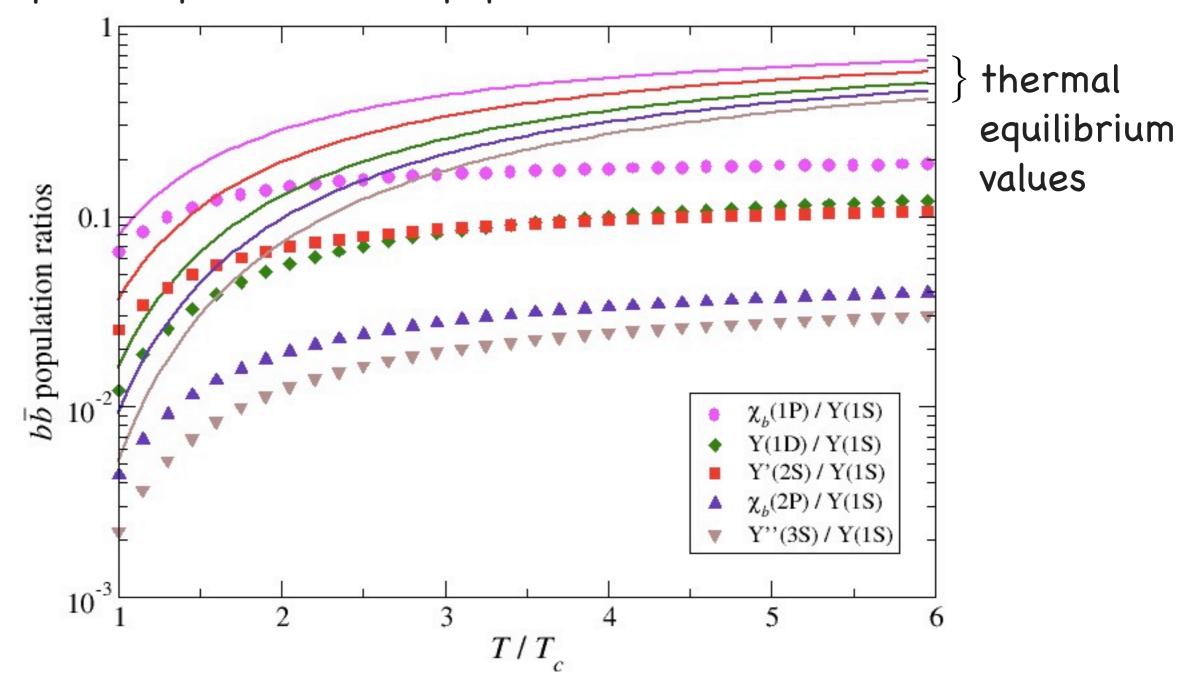
Initial condition: only the ground state is populated at t=0.



After a transient regime, the various bound states evolve together.

(Static) Bottomonia in a thermal bath

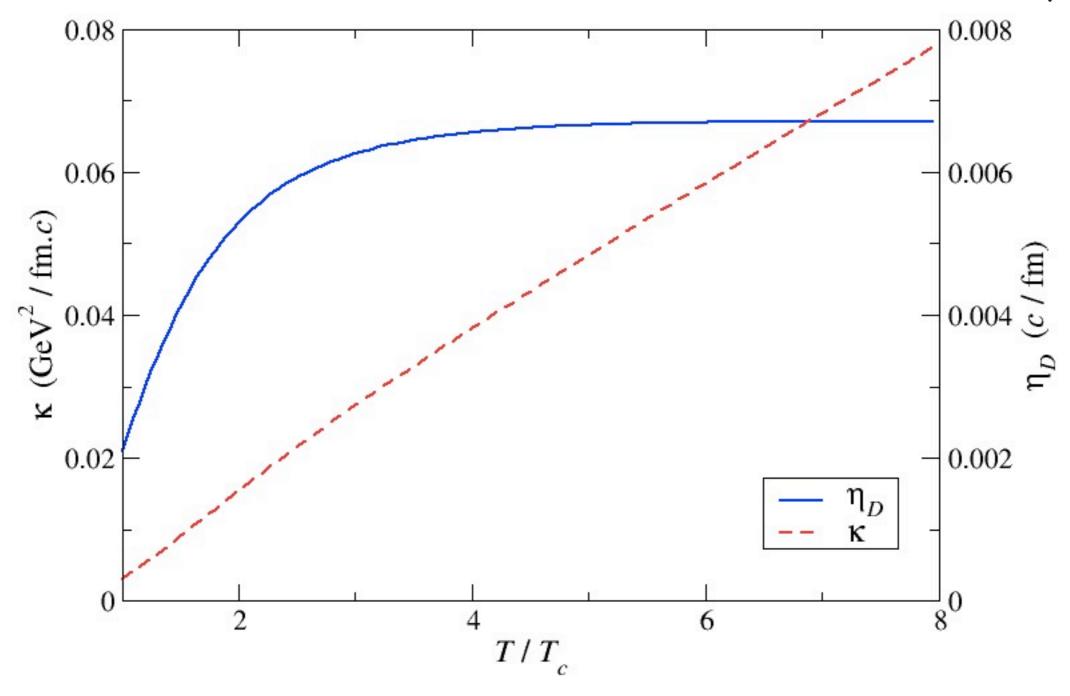
After a transient regime, the various bound states evolve together: (quasi-)equilibrium, the population ratios remain constant



The quasi-equilibrium ratios differ from the statistical model values.

Bottomonia in a thermal bath

After a transient regime, the bound states reach a (quasi-)equilibrium, in which their momentum distribution obeys a Fokker-Planck equation.



But...

- After a transient regime, the various bound bb states immerged in a QGP evolve together.
 - melting picture
- At quasi-equilibrium, the population ratios differ from those found in statistical models
- ...and the bottomonium momentum distribution obeys a Fokker-Planck equation*.
 - Modeling as a dissipative quantum system is promising!

/21 Universität Bielefeld

^{*} at least in the non-relativistic regime

- After a transient regime, the various bound bb states immerged in a QGP evolve together.
 - differs from the sequential melting picture
- At quasi-equilibrium, the population ratios differ from those found in statistical models
- ...and the bottomonium momentum distribution obeys a Fokker-Planck equation*.
 - Modeling as a dissipative quantum system is promising!

BUT... what about the time scales?

- - melting picture
- At quasi-equilibrium, the population ratios differ from those found in statistical models
- ...and the bottomonium momentum distribution obeys a Fokker-Planck equation*. $\eta_D^{-1} \approx \mathcal{O}(10^2 \, \text{fm/}c)$

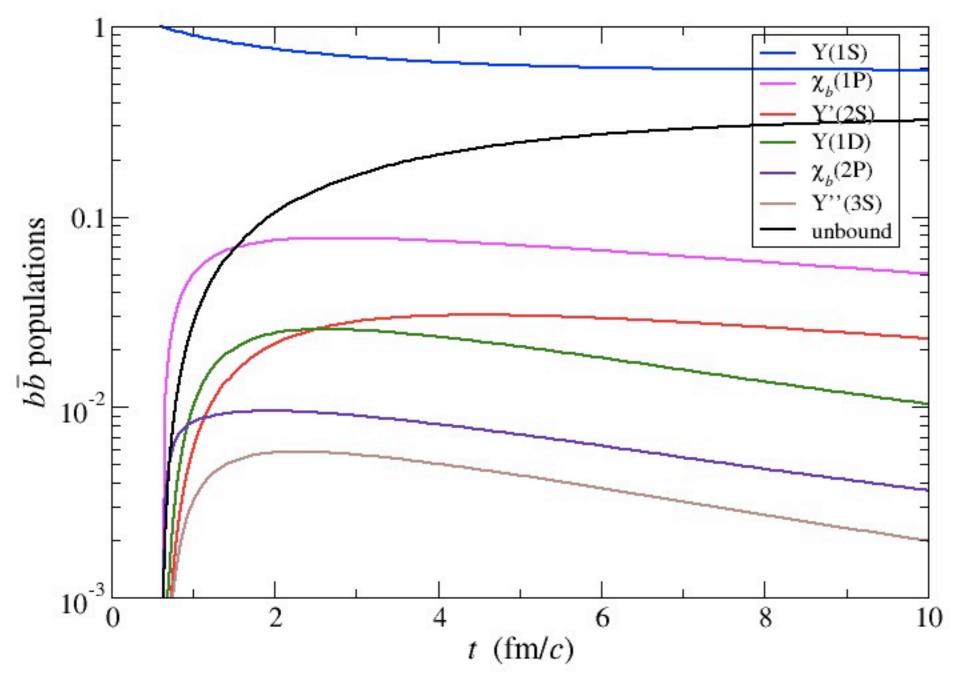
The leading behavior here is the disappearance of the bound states!

Modeling as a dissipative quantum system is promising!

BUT... what about the time scales?

Bottomonia in a QGP with evolving temperature

using the time-dependence of temperature as computed by Shen et al., arXiv:1005.3226



The bound states do not have time to equilibrate with each other!

- Modeling the real-time dynamics of quarkonia in a (deconfined) medium as those of a dissipative quantum system seems to be viable.
- The master-equation approach hints at possible behaviors
 - regeneration of excited states
 - mot enough time to develop Fokker-Planck dynamics(?)
- Need to investigate more realistic microscopic models as well as alternative approaches to dissipative quantum systems

mext talk by Nirupam Dutta!

and to make contact with existing descriptions.

extra slides

Time-dependence of temperature

At the center of the hydrodynamically expanding fireball created in Pb-Pb collisions at $\sqrt{s_{_{NN}}}$ = 2.76 TeV Shen et al., arXiv:1005.3226

